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A Implementation Details

A.1 Baselines

In this section, we discuss the details of our baselines, and in particular how we adapt them to
the LiDAR packet stream setting. We directly adapt the reference implementation provided by the
original authors whenever possible. We found that it is necessary to make minor modification to
architecture and training procedures to account for the difference in dataset (PACKETATG4D vs.
KITTI) and evaluation setup.

HDNet We augment the input to HDNet to 10 sweeps for better detection performance [1]. In
the LiDAR packet stream setting, we adapt HDNet to use our Regional Convolutions as opposed to
regular 2D convolutions. This modification is necessary, since the increased sparsity in rasterizing
just a single packet violates the implicit assumption made by the normalization layers.

PointPillars We make the following modifications to the reference implementation [2]:

• Voxel Feature Encoding: We use a single Voxel Feature Encoding (VFE) layer with 8 input
features and output dimension of 64. To account for small batch size during training, we also
replace BatchNorm with GroupNorm.

• Multi-Class: Instead of training separate models for vehicle vs. cyclists and pedestrians as
proposed in the original paper, we directly use shared backbone with class-specific headers to
output multi-class detection. This ensures the model has similar capacity as other approaches.

PointRCNN We make the following modifications to the reference implementation
(https://github.com/sshaoshuai/PointRCNN):

• Point Resampling: For PACKETATG4D, since we process the full rectangular region of interest
instead of the front view sector in KITTI, we pass in 35,000 points instead 16,384 points to
maintain similar point resolution.

• Model Capacity: We found that it was critical to increase model capacity to achieve comparable
performance. There are two main reasons: 1) the PointNet backbone does not automatically
scale with the number of input points, and 2) the original architecture is designed for single
class, whereas we perform multi-class detection. In particular, we double the feature dimension
for the PointNet backbone, and keep triple the points at each stage of downsampling. We also
add an extra layer in the final MLP regression header.

• Proposal Sampling: We modify the definition of "near" and "far" used for proposal sampling. In
KITTI, it was sufficient to determine the farness based on distance in x-axis, since we are only
processing the front view sector. We extend the definition to incorporate y-axis distance as well.

• Rare Example Mining: Since cyclists are rare in PACKETATG4D, we found that it was essential
explicitly mine for cyclists when sampling RoIs during training.
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• Pedestrian ROI: When sampling pedestrian RoIs, we use distance based thresholds instead of
IoU to be consistent with our evaluation metric for pedestrians.

B Additional Evaluation Details and Results

B.1 History-Aware Detection

One issue in object detection from LiDAR point cloud is that actors can be fully occluded. To infer
the true state of the world from partial observation, it is necessary to leverage the history and physical
motion constraints. STROBE achieves this through the spatial memory module, which is updated
with every new packet. As shown in the manuscript, this is fundamental for accurate detection as it
allows the model to use larger context to do detection within the limited bounds of a single packet.
This approach also has the benefit of allowing the model to recall objects through occlusion, still
producing detections when there are few or no LiDAR points.

So far we have presented results on the common setting in which only actors with at least 1 LiDAR
point are considered. Here, we present additional results on the more challenging history-aware
detection setting, in which the perception model is responsible for all actors with at least 1 LiDAR
point in the past 1 second (i.e. 10 sweeps or 100 packets). Similarly, we consider all models at both
packet and sweep granularity, and at detection emission time (latency mAP) and observation time
(common mAP).

Model
Packet Stream Full Sweep

Vehicle Pedestrian Cyclist Vehicle Pedestrian Cyclist
0.5 0.7 0.5 0.3 0.3 0.5 0.5 0.7 0.5 0.3 0.3 0.5

HDNET [3] 70.3 57.9 68.0 60.5 19.0 13.4 75.8 54.5 78.5 68.0 51.1 31.3
PointPillars [4, 2] 56.8 40.5 47.2 43.4 14.0 5.1 76.7 55.3 70.1 65.7 50.1 31.1
PointRCNN [5] 59.9 53.9 46.6 42.0 23.5 21.4 65.8 51.2 51.5 49.2 28.0 23.7
Our STROBE 86.7 74.0 77.2 69.0 56.2 35.7 83.3 63.2 74.7 65.8 58.7 37.6

Table 1: Latency mAP: Labels are considered at detection emission times.

Model
Packet Stream Full Sweep

Vehicle Pedestrian Cyclist Vehicle Pedestrian Cyclist
0.5 0.7 0.5 0.3 0.3 0.5 0.5 0.7 0.5 0.3 0.3 0.5

HDNET [3] 70.3 58.1 68.1 60.6 19.3 13.7 86.1 73.3 82.5 72.6 66.1 43.5
PointPillars [4, 2] 56.9 40.7 47.3 43.5 14.0 5.1 77.5 64.4 70.4 65.7 50.8 32.6
PointRCNN [5] 60.0 54.0 43.7 42.3 25.8 23.3 73.5 60.6 51.2 49.8 28.4 24.6
Our STROBE 86.9 74.1 77.2 69.1 56.2 35.7 84.4 72.6 75.1 67.1 59.1 39.4

Table 2: Common mAP: Labels are considered at their observation times.

The results in Tables 1 and 2 show that our proposed memory module allows STROBE to retrieve
detections even in absence of points, as evidenced by the small difference in comparison to the
numbers shown in the standard setting of the manuscript. HDNET uses the approach of concatenating
10 sweeps at the input level; while effective, this leads to redundant computation due to the same
frame being used several times. Since PointPillars and PointRCNN do not use past observations they
are not well suited for this setting.
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