34

35
36
37
38
39
40
41
42
43
44
45
46
47

Learning a Decentralized Multi-arm Motion Planner

1 Justification on Sim2Real Transfer

Our algorithm is tested in the PyBullet simulation environment [1]. We are not able to provide
real-world experiments. However, we believe our algorithm is able to generalize to real-world robot
setup for the following reasons:

First, our system uses joint state as input instead of estimation from a perception algorithm. In current
industry level robot systems, the joint state measurements are often highly accurate and the sim2real
difference is negligible.

Second, our benchmark environment takes into account the delay of an inference pass of the motion
planning policy. This means by the time the motion planner’s actions are received and executed on the
robots, the observations from which those actions were computed have been outdated by the amount
of time which a forward pass takes, which is the case for the real-world robot setup. However, since
our policy has an inference time of 1.09ms on a single CPU thread, our policy is still able to perform
well with this delay.

2 Training details

The state of an arm includes its base pose (7), its end-effector pose

(7), its link positions ((30 for 10 links), its joint configuration (6), Hyperparameter Value
and its target end-effector pose (7). One frame of history forallarm  ActorIr 0.0005
state components except for base pose is stacked on top, givinga  Q function Ir 0.001
final arm state vector of size (7x 1)+ (7x2)+(30%2)+(6x2)+  Discount Factor 0.99
(7x2)=107. Exponential Decay 7 0.001
The policy consists of an LSTM state encoder and a MLP motion ~ Batch Size 4096
planner. The LSTM state encoder has input dimension 107, hid- ~ Warm-up Timesteps 20,000
den dimension 256, 1 layer, is single directional, and uses a zero Replay Buffer Size 50,000

initial hidden state. The MLP has 3 layers, [256,128],[128,64], and

Table 1: Hyperparameters.

[64,6] where 6 is the action dimension. After each MLP layer is a
Hyperbolic Tangent activation function.

The Q function’s LSTM shares the same architecture with the policy’s LSTM, and its MLP differs only
in that its output dimension is 1 and does not have an activation function.

The policy was trained using the curriculum in Tab. 2 on position tolerance €, and orientation tolerance
€, and graduates to the next level when it achieves at least 70% success rate on average in the latest
100 episodes.

The hyperparameters used for Soft Actor Critic are shown in Tab. 1.

3 Behavior Cloned Policy to deal with the Sparse Reward Problem

While [2] could use a pretrained behavior cloned 08
policy for RL in their sparse reward setting, their o7
application was in path planning for grounded
robots in a 2D configuration space which corre-
sponds to the cartesian space, which is signifi- ¢
cantly simpler than motion planning for robotic o>
arms in 6 dimensional joint configuration space. o1
We observed that a behaviour cloned multi-arm 001 ——— ] ] i
motion planning policy, despite achieving high ’ v % ? ® ?
success rates initially, quickly collapses to 0%
success rate, and is unable to recover, when not
provided with expert demonstrations (Fig. 1).
We hypothesize that for a task as difficult as

0.6

2os
5

R:

7 0.4

cce!

0.3

Figure 1: Without expert demonstrations, a behav-
ior cloned policy quickly drops to 0% success rate.
Plot is averaged over 5 seeds.



48
49

50

51
52
53
54
55

56

Level ¢, (cm) ¢, (rad)

1 10.0 0.20
2 8.0 0.16
3 6.0 0.14
4 4.0 0.1
5 3.6 0.09
6 3.2 0.08
7 2.8 0.07
8 2.6 0.06
9 24 0.05
10 22 0.05
11 2.1 0.05
12 2.0 0.05
13 1.9 0.05
14 1.8 0.05
15 1.7 0.05
16 1.6 0.05
17 1.5 0.05
18 1.4 0.05
19 1.3 0.05
20 1.2 0.05
21 1.1 0.05
21 1.0 0.05

Table 2: Training Curriculum

generic multi-arm motion planning for tightly coupled multi-arm systems, a constant supply of expert
demonstrations in the context of failure, is much more helpful for the policy than a good initialization.

4 Denser Reward Alternative to side-step the Sparse Reward Problem

Semnani et al. [3] addressed [2]’s drawback of relying on a pretrained behavior cloned policy with a
dense delta-position based reward. However, their robots are single-linked, while our robot arms have
multiple links, which means the arms can easily get stuck in local optima with a corresponding delta
end-effector position reward, especially when arms are close to each other. Thus, such a dense reward
scheme would introduce incentives issues, and can not be applied to our problem.

References

[1] E. Coumans and Y. Bai. Pybullet, a python module for physics simulation in robotics, games and
machine learning, 2017.

[2] M. Everett, Y. F. Chen, and J. P. How. Motion planning among dynamic, decision-making agents
with deep reinforcement learning. CoRR, abs/1805.01956, 2018. URL http://arxiv.org/
abs/1805.01956.

[3] S.H. Semnani, H. Liu, M. Everett, A. de Ruiter, and J. P. How. Multi-agent motion planning for
dense and dynamic environments via deep reinforcement learning. /[EEE Robotics and Automation
Letters, 5(2), 2020.


http://arxiv.org/abs/1805.01956
http://arxiv.org/abs/1805.01956
http://arxiv.org/abs/1805.01956

	Justification on Sim2Real Transfer
	Training details
	Behavior Cloned Policy to deal with the Sparse Reward Problem
	Denser Reward Alternative to side-step the Sparse Reward Problem

