
Learning a Decentralized Multi-arm Motion Planner1

1 Justification on Sim2Real Transfer2

Our algorithm is tested in the PyBullet simulation environment [1]. We are not able to provide3

real-world experiments. However, we believe our algorithm is able to generalize to real-world robot4

setup for the following reasons:5

First, our system uses joint state as input instead of estimation from a perception algorithm. In current6

industry level robot systems, the joint state measurements are often highly accurate and the sim2real7

difference is negligible.8

Second, our benchmark environment takes into account the delay of an inference pass of the motion9

planning policy. This means by the time the motion planner’s actions are received and executed on the10

robots, the observations from which those actions were computed have been outdated by the amount11

of time which a forward pass takes, which is the case for the real-world robot setup. However, since12

our policy has an inference time of 1.09ms on a single CPU thread, our policy is still able to perform13

well with this delay.14

2 Training details15

Hyperparameter Value

Actor lr 0.0005
Q function lr 0.001
Discount Factor γ 0.99
Exponential Decay τ 0.001
Batch Size 4096
Warm-up Timesteps 20,000
Replay Buffer Size 50,000

Table 1: Hyperparameters.

The state of an arm includes its base pose (7), its end-effector pose16

(7), its link positions ((30 for 10 links), its joint configuration (6),17

and its target end-effector pose (7). One frame of history for all arm18

state components except for base pose is stacked on top, giving a19

final arm state vector of size (7×1)+(7×2)+(30×2)+(6×2)+20

(7×2)=107.21

The policy consists of an LSTM state encoder and a MLP motion22

planner. The LSTM state encoder has input dimension 107, hid-23

den dimension 256, 1 layer, is single directional, and uses a zero24

initial hidden state. The MLP has 3 layers, [256,128],[128,64], and25

[64,6] where 6 is the action dimension. After each MLP layer is a26

Hyperbolic Tangent activation function.27

The Q function’s LSTM shares the same architecture with the policy’s LSTM, and its MLP differs only28

in that its output dimension is 1 and does not have an activation function.29

The policy was trained using the curriculum in Tab. 2 on position tolerance εp and orientation tolerance30

εr, and graduates to the next level when it achieves at least 70% success rate on average in the latest31

100 episodes.32

The hyperparameters used for Soft Actor Critic are shown in Tab. 1.33

3 Behavior Cloned Policy to deal with the Sparse Reward Problem34

0 10 20 30 40 50
Update Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Su
cc

es
s R

at
e

Figure 1: Without expert demonstrations, a behav-
ior cloned policy quickly drops to 0% success rate.
Plot is averaged over 5 seeds.

While [2] could use a pretrained behavior cloned35

policy for RL in their sparse reward setting, their36

application was in path planning for grounded37

robots in a 2D configuration space which corre-38

sponds to the cartesian space, which is signifi-39

cantly simpler than motion planning for robotic40

arms in 6 dimensional joint configuration space.41

We observed that a behaviour cloned multi-arm42

motion planning policy, despite achieving high43

success rates initially, quickly collapses to 0%44

success rate, and is unable to recover, when not45

provided with expert demonstrations (Fig. 1).46

We hypothesize that for a task as difficult as47

1



Level εp (cm) εr (rad)

1 10.0 0.20
2 8.0 0.16
3 6.0 0.14
4 4.0 0.1
5 3.6 0.09
6 3.2 0.08
7 2.8 0.07
8 2.6 0.06
9 2.4 0.05

10 2.2 0.05
11 2.1 0.05
12 2.0 0.05
13 1.9 0.05
14 1.8 0.05
15 1.7 0.05
16 1.6 0.05
17 1.5 0.05
18 1.4 0.05
19 1.3 0.05
20 1.2 0.05
21 1.1 0.05
21 1.0 0.05

Table 2: Training Curriculum

generic multi-arm motion planning for tightly coupled multi-arm systems, a constant supply of expert48

demonstrations in the context of failure, is much more helpful for the policy than a good initialization.49

4 Denser Reward Alternative to side-step the Sparse Reward Problem50

Semnani et al. [3] addressed [2]’s drawback of relying on a pretrained behavior cloned policy with a51

dense delta-position based reward. However, their robots are single-linked, while our robot arms have52

multiple links, which means the arms can easily get stuck in local optima with a corresponding delta53

end-effector position reward, especially when arms are close to each other. Thus, such a dense reward54

scheme would introduce incentives issues, and can not be applied to our problem.55

References56

[1] E. Coumans and Y. Bai. Pybullet, a python module for physics simulation in robotics, games and57

machine learning, 2017.58

[2] M. Everett, Y. F. Chen, and J. P. How. Motion planning among dynamic, decision-making agents59

with deep reinforcement learning. CoRR, abs/1805.01956, 2018. URL http://arxiv.org/60

abs/1805.01956.61

[3] S. H. Semnani, H. Liu, M. Everett, A. de Ruiter, and J. P. How. Multi-agent motion planning for62

dense and dynamic environments via deep reinforcement learning. IEEE Robotics and Automation63

Letters, 5(2), 2020.64

2

http://arxiv.org/abs/1805.01956
http://arxiv.org/abs/1805.01956
http://arxiv.org/abs/1805.01956

	Justification on Sim2Real Transfer
	Training details
	Behavior Cloned Policy to deal with the Sparse Reward Problem
	Denser Reward Alternative to side-step the Sparse Reward Problem

