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Abstract: Reasoning about human motion is a core component of modern human-
robot interactive systems. In particular, one of the main uses of behavior prediction
in autonomous systems is to inform robot motion planning and control. However,
a majority of planning and control algorithms reason about system dynamics rather
than the predicted agent tracklets (i.e., ordered sets of waypoints) that are com-
monly output by trajectory forecasting methods, which can hinder their integration.
Towards this end, we propose Mixtures of Affine Time-varying Systems (MATS)
as an output representation for trajectory forecasting that is more amenable to
downstream planning and control use. Our approach leverages successful ideas
from probabilistic trajectory forecasting works to learn dynamical system represen-
tations that are well-studied in the planning and control literature. We integrate our
predictions with a proposed multimodal planning methodology and demonstrate
significant computational efficiency improvements on a large-scale autonomous
driving dataset.

Keywords: Trajectory Forecasting, Learning Dynamical Systems, Motion Plan-
ning, Autonomous Vehicles

1 Introduction

Reasoning about human motion is an important prerequisite to safe and socially-aware robot nav-
igation. As a result, multi-agent behavior prediction has become a core component of modern
human-robot interactive systems such as self-driving cars. In particular, one of the main uses of be-
havior prediction in autonomous systems is to inform robot motion planning and control. Accordingly,
there have been many approaches tackling human motion prediction specifically. Earlier models
were predominantly deterministic regressors leveraging state-space models [1], Gaussian process
regression [2], inverse reinforcement learning [3], game theory [4], or recurrent neural networks
(RNNs) [5]. Recent works focus on capturing the multimodality of human behavior, developing
deep generative models that leverage conditional variational autoencoders (CVAEs) [6] to explicitly
capture multimodality [7, 8, 9, 10, 11, 12], or generative adversarial networks [13] to implicitly do so
[14, 15]. A unifying theme among these otherwise disparate works is that they produce trajectories
(or distributions thereof) for each agent in a scene, an intuitive output representation that matches
common evaluation metrics. However, a majority of planning and control algorithms reason about
system dynamics rather than future agent tracklets (i.e., ordered sets of waypoints), which can hin-
der the integration of state-of-the-art trajectory forecasting methods in planning and control. For
example, sampling future trajectory distributions to obtain rare events may be too expensive in a
fixed-computation, safety-critical setting such as autonomous driving.

Contributions. To bridge this gap, we propose Mixtures of Affine Time-varying Systems (MATS) as
an output representation for trajectory forecasting that is significantly more amenable to downstream
planning and control use. Our contributions are two-fold. First, we show that MATS, a linear-affine
dynamical structure, is a viable trajectory forecasting representation even for highly non-linear real-
world systems. Second, we show that such a prediction representation yields significant reductions
in downstream planning and control complexity, even when accounting for multimodal predictions
(i.e., the potential for many possible futures), at the cost of a minor regression in raw prediction
performance due to the added structure.
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Figure 1: Our model represents edges in a spatiotemporal graph as blocks of dynamical system
matrices. Blocks that are fully determined by dynamics (e.g., A’s diagonal and c) or solely involve
the ego-robot (e.g., the first block of B) are not learned (blue). All other blocks model agent-agent
interactions or uncertainty, and are learned (green). Note that off-diagonal blocks in the ego-robot’s
row in A are zero, encoding the fact that the ego-robot is only controlled by its actions, uR.

2 Related Work

Integrating Trajectory Forecasting with Motion Planning. While there are a plethora of methods
for multi-agent trajectory forecasting [16], many are developed without explicit consideration for
downstream use cases and only produce future agent tracklets as prediction outputs. As a result,
state-of-the-art trajectory forecasting methods are rarely used by the wider robotics community,
especially due to the complexities of incorporating multimodal prediction distributions (commonly
produced by current generative trajectory forecasting methods). Recently, works such as the Neural
Motion Planner (NMP) [17] have designed output representations for trajectory forecasting that
allow for more direct integration with downstream motion planners. In particular, NMP’s perception
module outputs a cost volume over time that is used with a sampling-based motion planner to
evaluate trajectory samples at runtime. However, while cost volumes are amenable for downstream
planning methods, such as sampling-based motion planners, the predictions do not account for the
environment’s dynamic response to the ego-vehicle’s actions. In this work, we present a trajectory
forecasting representation that allows for the direct optimization of the ego-vehicle’s future controls
while simultaneously predicting the trajectories of other agents. In particular, the predictions take
into consideration the ego-vehicle’s future motion as well as agent-agent interactions.

To incorporate trajectory forecasting in planning, motion planners usually either optimize a plan in
position space that avoids predicted agent locations (using a lower-level feedback controller to track
the plan) [18, 19] or project the predictions into the ego-vehicle’s control space and then optimize
its controls (which are directly executed) [20]. Our proposed planner takes a similar approach to
the latter, and leverages the future-conditional MATS predictions produced by our model to produce
interaction-aware plans.

Dynamical System Representations of Multiple Agents. One of the earliest trajectory forecasting
methods, the Social Force model [1], reasons about inter-agent interactions in terms of explicit
physical forces, taking a dynamical system view of human interactions. More recently, works have
studied how general dynamical system models of environments can be learned from observations. For
instance, [21, 22, 23] learn a latent dynamics model directly from sensor input that is then combined
with standard sampling-based motion planners or trajectory optimization algorithms to move an
ego-agent through an environment. Such ideas have even been applied to trajectory forecasting;
Neural Relational Inference [24] first predicts the latent dynamics of agent interactions (i.e., which
agents are interacting) and then forecasts their trajectories taking the predicted interactions into
account. Our work differs in that it produces an explicit physical (not latent) dynamical system model
which can then be used to predict the future states of other agents. This is beneficial as it leads
to an easier integration with downstream planning and control algorithms as well as being more
immediately interpretable since all values are in the original (not latent) state space.

3 Problem Formulation

We aim to generate future trajectory distributions for a time-varying numberN(t) of interacting agents
a1, ..., aN(t). Each agent ai has a semantic class Si, e.g., Car, Bus, Pedestrian, and state s

(t)
i ∈ RDi at

time t. We denote s(t) ∈ RF as the concatenation of all agent states where F =
∑N(t)
i=1 Di is the full

state dimension of the system at time t. Given the states s
(t)
i for each agent ai and their history for the

previous H timesteps, denoted as x = s(t−H:t) ∈ R(H+1)×F , we seek a distribution over all agents’
future states for the next T timesteps, denoted as p(y | x) where y = s(t+1:t+T ) ∈ RT×F . Since
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one of our key desiderata is to enable the close integration of trajectory prediction with downstream
planning and control, we also condition on the ego-agent’s future motion plan, uR ∈ RT×C , where
u

(t)
R ∈ RC is the ego-agent’s control at time t, to obtain p(y | x,uR). Such information is readily

available online, e.g., when evaluating responses to a set of motion primitives or finding the best
future motion plan via optimization (as in Section 5). Throughout this work, the terms “ego-agent,”
“ego-robot,” and “ego-vehicle” refer to the robot being controlled.

4 Trajectory Forecasting with MATS

Affine Time-Varying (ATV) systems generalize linear time-varying systems and are well-studied in
planning, decision making, and control [25]. They are commonly used to model the joint evolution of
agent states (e.g., position, velocity) over time. We choose this specific representation as (i) linear
systems are straightforward to integrate with planning and control, yielding computationally-efficient
algorithms, (ii) time-variance allows the (otherwise linear) model to capture non-linear effects, and
(iii) the affine term accounts for the linearization of non-linear agent dynamics.

Illustrated in Figure 1, our method produces ATV systems by first representing agents and their
interactions as nodes and edges in a directed complete spatiotemporal graph, G = (V,E). Each edge
is then modeled with a deep recurrent probabilistic encoder-decoder architecture that takes as input
the state history of the connected nodes as well as the ego-robot’s future motion plan and produces
a set of ATV system submatrices. The matrices are then stacked together as in Figure 1 to form an
overall ATV system that describes the future motion of all agents. We will now dive into the details
of each component.

Encoding Edges. A directed edge from agent ai to agent aj , (ai, aj) ∈ E, is modeled using two
Long Short-Term Memory (LSTM) networks [26], each with 32 hidden dimensions. Agent aj’s state
history s

(t−H:t)
j is directly encoded by an LSTM whereas ai’s state history is first made relative to

aj’s current state, s
(t−H:t)
i − s

(t)
j , before being encoded by another LSTM. Encoding edges this way

ensures that they are modeled asymmetrically. The LSTM’s last hidden states are concatenated to
form a backbone representation vector, e.

Encoding the Ego-Agent’s Future. Producing predictions that are cognizant of future ego-agent
motion is an important capability for trajectory prediction systems. For example, it allows one to
evaluate candidate motion plans while taking into account potential responses from other agents.
Our model encodes the future T timesteps of the ego-agent’s motion plan, uR, using a bi-directional
LSTM with 32 hidden dimensions. A bi-directional LSTM is used due to its strong performance on
other sequence summarization tasks [27]. The final hidden states are then concatenated into e.

Modeling Multimodality. A key challenge in modeling human behavior is their inherent multi-
modality (i.e., the potential for many possible future actions). To capture this, our model produces a
mixture of ATV systems, where each component ATV system models a high-level latent behavior
for the scene (e.g., groups of vehicles slowing down for a red traffic light). We use a CVAE [6] with
a discrete Categorical latent variable z ∈ Z to decompose the desired p(y | x,uR) distribution as
p(y | x,uR) =

∑
z p(y | z,x,uR) p(z | x,uR). In essence, |Z| individually-predicted ATV system

distributions p(y | z,x,uR) are combined in a weighted sum, according to their mode likelihoods
p(z | x,uR), to form a single MATS model p(y | x,uR). Note that the latent variable z defines a
mode for the entire predicted ATV system, which aids in producing self-consistent predictions, in
contrast to prior CVAE-based approaches that produce z independently per agent [7, 11, 12].

Generating MATS: Combining Dynamics and Learning. The latent variable z and the backbone
representation vector e are then fed into the decoder, a 128-dimensional Gated Recurrent Unit
(GRU) [28]. Each GRU cell outputs a set of submatrices, A(t)

z,ij , B
(t)
z,i , Q

(t)
z,i, for each prediction

timestep t and mode z. The matrices are then stacked together as in Figure 1 to form the following
overall ATV system that describes the future motion of all agents for a specific mode,

s(t+1)
z = A(t)

z s(t)
z +B(t)

z u
(t)
R + c(t)

z +Q(t)
z w(t), (1)

where w(t) ∼ N (0, I). Equation (1) is linear Gaussian as its only source of uncertainty is w(t). Thus,
each component distribution p(y | z,x,uR) can be obtained by iteratively evaluating Equation (1).

As illustrated in Figure 1, our model leverages individual agent dynamics as an inductive bias and
only produces submatrices for system components that are not already modeled by dynamics, e.g.,
the off-diagonal blocks of A which account for inter-agent interactions. Specifically, agent aj’s
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effect on agent ai is contained in Aij ∈ RDi×Dj . Our model leverages the semantic class Si of
each agent ai to fill its corresponding block in A and c with the agent’s corresponding dynamical
system matrices. For example, we model pedestrians as double integrators in this work, thus if agent
ai was a pedestrian then the Aii ∈ RDi×Di submatrix would be the double integrator dynamics
matrix [25] and ci would be zero. Note that the ego-agent’s row in A only contains its own dynamics
(A11 in Figure 1), while the rest of the row consists of zero matrices. This reflects the fact that the
ego-agent is only influenced by its controls, as determined by a downstream planner. Accordingly,
the ego-agent’s entry in B is governed by dynamics while the rest of the blocks in B are produced by
the model, representing the effect of the ego-agent’s control on others’ behavior.

As can be seen in Equation (1), an ATV system is comprised of an autonomous term (A ∈ RF×F
specifies the evolution of the system in the absence of ego-agent controls), a controlled term (B ∈
RF×C determines how the ego-agent’s controls affect other agents), an affine term (c ∈ RF arises
from linearizing non-linear dynamics), and an uncertainty term (Q ∈ RF specifies the model’s
uncertainty). At a high level, we consider the ego-agent’s future motion plan uR as the “control” of
the ATV system, which can then be optimized over using classical optimal control techniques.

Note that our model naturally handles a time-varying number of agents. Past trajectories with various
lengths can be naturally encoded in LSTMs and predictions are made assuming the agents present at
time t will be present until time t+ T . The graph is recreated every timestep from the present agents.

Training Objective. We train the model by maximizing the following discrete InfoVAE objective
function [29, 12],

Ez∼q(·|x,y,uR)

[
log p(y | z,x,uR)

]
− βDKL

(
q(z | x,y,uR) ‖ p(z | x,uR)

)
+ αIq(x; z). (2)

where q(z | x,y,uR) is only produced during training from a bi-directional LSTM with 32 hidden
dimensions that encodes each agent’s future trajectory. To keep the number of parameters low, we use
extensive weight-sharing throughout the model. For example, all LSTMs that encode state histories
for the same agent type (e.g., vehicles) will share weights.

5 Incorporating MATS Predictions in Motion Planning

The ATV form of the overall system dynamics was chosen explicitly because it can be easily integrated
within existing planning algorithms while being expressive enough to accurately model agent-agent
interactions. In this section, we propose one such method that extends standard Model Predictive
Control (MPC) [30] to utilize the multimodal MATS predictions described in the previous section
and produce an interaction-aware motion plan for the ego-robot. We first provide a brief background
on MPC and then describe our proposed planning method.

5.1 Model Predictive Control

MPC is an optimal control framework which casts an optimal control problem as an optimization
over a finite-horizon control sequence to minimize a designer-specified objective function while
satisfying dynamics and control constraints. The optimization problem over a horizon of T steps for
discrete-time systems in our context can be written in the form

min
q̄,ūR

h(q(T )) +

T−1∑
t=1

g(q(t),u
(t)
R ) s.t. q(t+1) = f(q(t),u

(t)
R , t)

q(1) = qinit, q(t) ∈ Q(t), u
(t)
R ∈ U

(t).

(3)

In this section, we use q(t) ∈ Rn and u
(t)
R ∈ Rm to represent the ego-robot system state and control

input at timestep t, and define q̄ = (q(1), . . . ,q(T )) and ūR = (u
(1)
R , . . . ,u

(T−1)
R ). Equation (3)

assumes that the robot is initially at state qinit and obeys dynamics given by f : Rn × Rm 7→ Rn. In
the objective function we have h : Rn 7→ R which yields the terminal state cost and g : Rn×Rm 7→ R
which yields the stage cost. The admissible state set and control set at each time instant are respectively
denoted by Q(t) ⊂ Rn and U (t) ⊂ Rm.

The MPC framework entails solving Equation (3) in a receding-horizon fashion. At each iteration,
the open-loop control sequence is computed and the first action is applied. At the next timestep, the
new optimization is solved from the new system state and this process repeats until some termination
condition is achieved.
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5.2 Planning with MATS

We propose a motion planning strategy based on MPC that leverages the MATS trajectory forecasting
representation to plan smooth, socially-aware trajectories inspired by Contingency MPC [31]. Specif-
ically, we extend the formulation given in Equation (3) from planning a single open-loop control
sequence to optimizing multiple control sequences simultaneously, with each sequence accounting
for a particular evolution mode of the agents in a scene (determined by the latent variable z). These
“parallel” control sequences are constrained to achieve agreement across the first tc timesteps to
make the resulting output actionable, which we refer to as the consensus horizon. We formulate the
corresponding optimization as

min
s̄,ūR

∑
z∈Z

h(s(T )
z ) +

∑
z∈Z

T−1∑
t=1

g(s(t)
z ,u

(t)
R,z)

s.t. s(t+1)
z = A(t)

z s(t)
z +B(t)

z u
(t)
R,z + c(t)

z ∀ z ∈ Z

s(1)
z = sinit, s(t)

z ∈ S(t), u
(t)
R,z ∈ U

(t) ∀ z ∈ Z

u
(t)
R,z1 = u

(t)
R,z2 ∀ z1, z2 ∈ Z, t ∈ {1, 2, . . . , tc}.

(4)

This formulation remains largely similar to the one in Equation (3), but we now extend the system of
interest from just the ego-robot to the set of all agents in a scene. The system state, as in Section 3,
is represented by s which is the concatenation of all agent states in a scene, including that of the
ego-robot, q. Notably, we use Equation (1) as the system dynamics constraints, which naturally
includes the robot vehicle’s deterministic dynamics. However, control of the system may only be
achieved through those of the robot vehicle, uR, as in Equation (3). Note that states, controls and sets
are now indexed by the latent variable z ∈ Z which references a particular mode’s prediction. As
such, the decision variables for this problem are s̄ =

⋃
z∈Z(s

(1)
z , . . . , s

(T )
z ) and, slightly abusing the

notation, ūR =
⋃
z∈Z(u

(1)
R,z, . . . ,u

(T−1)
R,z ), representing the state and control trajectories across all

modes indexed by z ∈ Z.

By planning in this manner, each parallel horizon only needs to account for a specific prediction mode
rather than multiple prediction modes. Only the states and controls within the consensus horizon are
subject to constraints over z; however, in the near-term it is unlikely that significant differences in the
environment state sz would emerge. The consensus horizon serves to ensure that the ego-robot will
always take an action that can accommodate any of the predicted future modes. In this way, we posit
that this approach should reduce conservatism in planning without needing to sacrifice constraints.

Benefits of MATS for Planning. The key advantage of planning with MATS, rather than agent
tracklets, is that the optimizer can use the dynamical system representation to fully explore the space
of robot controls around the nominal robot future. Notably, it can observe how these controls affect
the distribution of other agents responses yielding a “dynamic” prediction, i.e., one that changes
post-hoc with different control uR. Although agent tracklets can also be conditioned on a nominal
robot future, the resulting predictions are “static” and cannot change post-hoc. With agent tracklets,
one would need to query the prediction model for every tentative uR, which may not be feasible for
real-time robotic use cases.

More Sophisticated Probabilistic Reasoning. In its current form, Equation (4) weighs the predic-
tions of the z modes equally. However, there exist more sophisticated ways of utilizing the set of
MATS predictions for planning. In particular, the prediction model provides information about mode
likelihood p(z | x,uR) and state uncertainty Qz . One can reason about the relative likelihood of
each mode and accordingly weigh the planning costs in Equation (4). Such a weighting would allow
the planner to prioritize planning for situations that are more likely to occur, while placing lower
importance on low-likelihood predictions. Furthermore, state uncertainty information could inform
collision avoidance bounds for state constraints (e.g., as chance constraints). Further investigation as
to how this probabilistic information can be used is left as future work.

Safety Considerations. The proposed planner is intended to promote efficient, prescient navigation
for autonomous vehicles. As a result, it does not currently guarantee safe behavior, given that we
are reasoning about uncertain predictions of other agents’ future behaviors – a fact that is true for
virtually every probabilistic planner. Further, feasibility is also not guaranteed since we consider a
finite horizon. However, the enforcement of hard safety constraints could be achieved by pairing our
MPC planner with a lower-level, reachability-based controller (e.g., [32]). In fact, the structure of our
MPC algorithm simplifies the integration of these two levels of the control hierarchy, as Equation (4)
permits the inclusion of lower-level reachability terms or constraints.
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Figure 2: Left: Our mixture model’s predictions for an agent interacting with the ego-robot. Each
blue line corresponds to one Affine Time-Varying system component. Right: Our model’s most
likely output Az matrix across prediction timesteps. The joint state s1,2 is the concatenation of the
ego-robot and agent states, hence why the top-right submatrix is all zeros.

6 Experimental Results

We evaluate our method in two scenarios, an illustrative charged particle system and the nuScenes
dataset [33]. The charged particle system serves as a controlled experiment with well-known non-
linear system dynamics, and the nuScenes dataset evaluates our approach’s feasibility for modeling
and planning with real-world pedestrians and vehicles. We demonstrate the viability of MATS as a
trajectory forecasting representation and find that it significantly reduces planning complexity. Our
trajectory forecasting model and motion planner were implemented in PyTorch and Julia, respectively.
We trained the model on a Ubuntu 18.04 desktop computer containing an AMD Ryzen 1800X CPU
and two NVIDIA GTX 1080 Ti GPUs for 100 epochs on the particle dataset (|Z| = 25) and 16
epochs on the nuScenes dataset (|Z| = 5). More training details can be found in the appendix.

6.1 Two Particle System

To show that the MATS representation can model non-linear dynamics, we consider a scenario where
two agents following double-integrator dynamics interact according to the Social Forces model [1],
visualized in Figure 2. One of the agents, denoted as the “ego-robot”, acts according to a given set of
control actions uR. The other, designated as the “agent”, has an initial velocity v0 ∈ [4, 12]m/s and
avoids the ego-robot with a force proportional to the inverse-square of the distance between the two
(a non-linear relation). We generated a dataset of 700 3s-long scenes for training and tested on 100
held-out scenes. The model was trained to predict the next 12 timesteps (1.2s) having observed the
previous 8 timesteps (0.8s).

Interpreting A. As can be seen in Figure 2, the lower-left block of the most likely Az matrix
(corresponding to the ego-robot’s effect on the agent) has nonzero components that appear during the
interaction and dissipate after. This has a direct interpretation in this scenario, as the bottom two rows
affect the agent’s velocity along the x and y directions (vx, vy) for the next timestep. In particular, as
the ego-robot moves faster in the negative x and y directions (towards the agent), the agent’s next
vx, vy values would decrease, i.e., the agent would move away.

6.2 nuScenes Dataset

nuScenes [33] is a large-scale real-world dataset for autonomous driving comprised of 1000 20s-long
scenes in Boston and Singapore. We model vehicles as dynamically-extended unicycles [34] and
pedestrians as double integrators1. Notably, this means that we linearize vehicles’ dynamics about
their current state to obtain linear dynamical system matrices for their corresponding ATV system
components. Figure 3 shows a set of predictions from our model. In it, we can see that the model
makes smooth predictions with uncertainties that sensibly grow in time.

Quantitative Performance. We compare our trajectory forecasting method against an array of state-
of-the-art approaches using the Final Displacement Error (FDE) metric, i.e., the `2 distance between
the prediction and ground truth trajectories at the last prediction timestep. Our model is compared
against LSTM-based [5, 9, 10] and graph neural network-based [12, 35] approaches that use a variety
of pooling operations to encode agent-agent interactions and scene context (e.g., semantic maps).

1While recent work [12] models humans as single integrators, we choose a double integrator so that
pedestrians can have autonomous motion even if uR = 0 (a single integrator only moves with nonzero controls).
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Figure 3: Our method’s predictions (blue) on various scenes from the nuScenes dataset. The ego-
vehicle is shown in red. Ellipsoids show 95% probability. For clarity, only predictions from the most
likely z mode are shown.

Table 1: FDE for (a) vehicles and (b) pedestrians across time for our method’s most likely mode
compared to state-of-the-art models on the nuScenes dataset. Starred methods had 22-24cm subtracted
from their reported values (their detection/tracking error [35]), as we do not use a detector/tracker. Our
model lags slightly in raw prediction error (due to its affine output structure), but is more amenable to
and yields significant computational efficiency improvements for downstream planning and control.

(a) Vehicle FDE (m)
Method @1s @2s @3s

S-LSTM∗ [5, 35] 0.47 - 1.61
CSP∗ [9, 35] 0.46 - 1.50
CAR-Net∗ [10, 35] 0.38 - 1.35
SpAGNN∗ [35] 0.36 - 1.23
Ours 0.26 0.98 2.20
Trajectron++ [12] 0.07 0.45 1.14

(b) Pedestrian FDE (m)
Method @1s @2s @3s

Ours 0.06 0.21 0.42
Trajectron++ [12] 0.01 0.17 0.37

The results are summarized in Table 1, and show that our method is similar in performance to Trajec-
tron++ [12] for pedestrians, and better than most for early timesteps on vehicles, with performance
dropping off as expected in later timesteps. As mentioned earlier, the core reason for this is that our
method is significantly more structured than other models (namely, it is affine). In comparison, the
baselines all produce predictions directly from their decoder networks and are optimized to minimize
positional prediction error. In contrast, our method predicts each agent’s full state, e.g., position,
velocity, and heading for vehicles. As a result, pure positional prediction performance is not a key
factor in evaluating our method, especially due to the improved efficiency of downstream planning.

Inferring Ego-Vehicle Influence. The block components of the B matrix dictate the effect of the
ego-robot’s control on the other agent’s predicted states. Thus, by analyzing the B matrix one can
determine how other agents will be affected by the ego-robot. Figure 4 visualizes one such analysis,
where the strength of the connection from the ego-robot to a specific agent ai at time t is proportional
to the Frobenius norm of B(t)

z,i . Clear temporal patterns can be seen in the connections between the

ego-vehicle and the vehicles in the scene. In particular, their B(t)
z,i norms are the highest when the

ego-vehicle is in the middle of the intersection, indicating that this is a time of maximal influence on
the other vehicles. Additional figures of the corresponding Bz matrices can be found in the appendix.

6.3 Interaction-Aware Motion Planning

In this section, we demonstrate that our combined predictor-planner framework both works in real-
world scenarios and is more efficient than a state-of-the-art tracklet-based motion planner [36].
We instantiate the framework presented in Section 5 by implementing an MPC planner adapted
from [37, 38]. The planner is tasked with guiding the ego-robot to follow its lane across an intersection
while avoiding collisions with other agents. We model the ego-vehicle as a dynamically-extended
unicycle (which was linearized) and plan using three parallel horizons (corresponding to the three
most probable predicted modes) of horizon length 6.25s with a consensus horizon of 1s. A full
description of the MPC formulation and implementation details can be found in the appendix. The
resulting MPC problem was formulated as a convex Quadratic Program (QP) and solved using
OSQP [39]. Planning was performed in Julia with QP solve times averaging 50ms and PyTorch
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Figure 4: The B matrix allows us to infer the influence that the ego-agent (red vehicle crossing
the intersection) has on other agents. Line thickness is determined by the Frobenius norm of the
corresponding block in theBz matrix of the most-likely mode z. As can be seen, when the ego-vehicle
is in the middle of the intersection it is maximally influencing the other vehicular agents, and less so
before and after being in the intersection. Pedestrians are equally influenced through time.
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Figure 5: Our combined prediction-planning method planning through an intersection. From left to
right, we depict the scene at t = 0.25s, 1s, and 2s, respectively.

trajectory forecasting averaging 200ms on a 2.9 GHz dual-core Intel i5 CPU. The planner’s behavior
is shown in Figure 5 on an intersection crossing scenario from the nuScenes dataset. The ego-vehicle
safely and smoothly crosses the intersection without excessively reacting to nearby agents or impeding
traffic. The three planned horizons, which can be seen most clearly in the left two images differ
primarily in longitudinal velocity. This is caused by differences in the predicted velocities of the
vehicle leading it in its lane, visible in the left-most image.

Comparison to Tracklet-Based Prediction and Planning. We compare our prediction and planning
method to the recent tracklet-based prediction and planning method of [36], which we refer to as
TBPP. It plans maneuvers using a set of pre-determined robot action sequences and repeatedly queries
its trajectory predictor to predict human responses. For the lane change scenario considered in [36],
TBPP takes 0.25s to predict and produce a single plan taking into account 1 other agent. In that same
time budget, our method is able to predict and produce a plan for the scenario depicted in Figure 5,
accounting for 24 interacting agents as well as their 552 directed interactions! Notably, TBPP needs
to generate nearly 100,000 future agent tracklets in parallel on a GPU through two rounds of model
inference and beam search to obtain a sufficient covering of possible future outcomes per planning
step. In comparison, our planner only queries the prediction model on a CPU once per planning step.

7 Conclusion

In this work, we present a novel multimodal output representation for trajectory forecasting, MATS,
and propose a planning methodology that can take advantage of it to efficiently produce interaction-
aware motion plans. In contrast to agent tracklet predictions which predict static trajectory distri-
butions, a key benefit of MATS is that it is dynamic. Namely, a planner can explore the effect of
any ego-robot control sequence post-hoc on the predicted agent behaviors in a scene. Its efficacy
in prediction and planning has been demonstrated on the large-scale, real-world nuScenes dataset,
yielding plans much more efficiently than a recent tracklet-based method. Future work includes
incorporating scene context into the trajectory forecasting model to generate environment-aware
MATS and improve prediction performance, as well as incorporating more sophisticated probabilistic
reasoning and safety considerations into the planner. Finally, we plan to experimentally verify the
performance of our combined prediction-planning framework on real-world hardware.
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A Additional Training Information

The Adam optimizer was used for both datasets, starting from an initial learning rate (specified below)
which was then exponentially decayed every optimizer step with γ = 0.9999 to a minimum learning
rate of 10−5. Further, we follow [12] and anneal β in Equation (2) according to an increasing sigmoid.
Initially, a low β value is used so that the model learns to encode as much information in z as possible
early on. As training continues, β is gradually increased to shift the role of information encoding
from qφ(z | x,y) to pθ(z | x). For α, we found α = 1.0 works well.

A.1 Two Particle System

The model was trained for 100 epochs, with an initial learning rate of 0.001.

A.2 nuScenes Dataset

The model was trained for 10 epochs, with an initial learning rate of 0.002. The model was trained
to predict the next 6 timesteps (3s) having observed the previous 8 timesteps (4s). We used the
nuScenes prediction challenge data splits and trained on the train set, tuning hyperparameters on
the train val set, and evaluating on the val set.

To avoid overfitting to environment-specific characteristics, such as the general directions that agents
move, we augment the data from each scene similar to [12]. Specifically, all trajectories in a scene
are rotated around the origin from 0◦ to 345◦ (inclusive) in 15◦ intervals.

B Motion Planner Implementation Details

The motion planner implementation is adapted from the MPCC controller in [38] to fit Equation (4)
and results in a Quadratic Program (QP) to be solved at each sampling time. The planner is tasked
with planning ego-vehicle trajectories that track a 2D reference path while avoiding agent positions
predicted by the three most probable MATS modes. In this section, we attempt to follow the notational
conventions of [38] where possible.

Reference Path. The reference path is given in terms of spatial coordinates with respect to some
global frame and is parameterized by its arc length θ = [0, L], with L representing the overall length.
The coordinates of a reference point at some θ are denoted X ref(θ) and Y ref(θ). The path heading at
a point (i.e. the angle of the tangent line with respect to the X-axis) is given by Φ(θ). A reference
path is produced by fitting a third order spline to the ego-vehicle’s lane centerline.

Tracking Error. Let [X,Y ]T represent the ego-vehicle’s instantaneous position expressed in the
global frame. We define θP as the arc length parameter yielding the reference point closest to the
ego-vehicle, [X ref(θP ), Y ref(θP )]T . The vehicle’s contouring (orthogonal) and lag (longitudinal)
errors with respect to the reference path are respectively approximated by

êc(X,Y, θP ) = sin(Φ(θP ))(X −X ref(θP ))− cos(Φ(θP ))(Y − Y ref(θP ))

êl(X,Y, θP ) = − cos(Φ(θP ))(X −X ref(θP ))− sin(Φ(θP ))(Y − Y ref(θP )).

In order to penalize tracking error, we include a cost term in the planning objective approximating
qc(ê

c(X,Y, θP ))2 + ql(ê
l(X,Y, θP ))2, where qc and ql are weighting parameters. As the contouring

and lag error functions are nonlinear and would not be compatible with a QP formulation. Instead,
we formulate an approximate tracking penalty by linearizing (i.e. performing a first-order Taylor
expansion) êc,(t) and êl,(t) at each sampling time t about some nominal point [X

(t)
nom, Y

(t)
nom, θ

(t)
nom]T .

For the first iteration, these nominal points are chosen as evenly spaced points along the path
corresponding to motion at some constant velocity. Subsequent iterations use the previous iteration’s
solution as the set of nominal points. These linearized errors are then substituted into the original
tracking penalty term (rather than their original, nonlinear forms) yielding a quadratic objective term
of the form X(t)

Y (t)

θ(t)

T Γ(t)

X(t)

Y (t)

θ(t)

+ l(t)

X(t)

Y (t)

θ(t)


for each sampling time over the planning horizon.
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Ego-Vehicle Dynamics. We model the ego-vehicle as a dynamically-extended unicycle [34] with
dynamics given by 

Ẋ
Ẏ
φ̇
v̇

 =

v cos(φ)
v sin(φ)

ω
a

 .
The ego-vehicle state consists of position coordinates X and Y (as defined previously), heading φ
and longitudinal velocity v. The system is controlled by inputs ω, the heading rate of change, and a,
the longitudinal acceleration. Discrete-time dynamics are derived assuming a zero-order hold on the
controls over each sampling interval (i.e. controls are piecewise constant) and are given by


X(t+1)

Y (t+1)

φ(t+1)

v(t+1)

 =


X(t)

Y (t)

φ(t)

v(t)

+


v(t) ·D(t)

S + a(t) sin(φ(t)+ω(t)∆t)∆t
ω(t) + a(t)

ω(t) ·D
(t)
C

−v(t) ·D(t)
C −

a(t) cos(φ(t)+ω(t)∆t)∆t
ω(t) + a(t)

ω(t) ·D
(t)
S

ω(t)∆t
a(t)∆t

 ,
where ∆t represents the length of the sampling interval and where

D
(t)
S =

sin(φ(t) + ω(t)∆t)− sin(φ(t))

ω(t)
and D(t)

C =
cos(φ(t) + ω(t)∆t)− cos(φ(t))

ω(t)
.

To incorporate dynamics constraints within the QP, the discrete-time dynamics are linearized at each
sampling time about some nominal state and control vectors, q

(t)
nom and u

(t)
nom, respectively. This results

in constraints of the form

q(t+1) = A(t)
egoq

(t) +B(t)
egou

(t) + c(t)
ego (5)

at the beginning of each sampling interval over the planning horizon. Note that A(t)
ego, B(t)

ego and c
(t)
ego

are the results of the linearization about q
(t)
nom and u

(t)
nom.

To link the ego-vehicle state to the reference path, and thus be able to compute a tracking error, we
introduce the so-called ”path dynamics,”

θ(t+1) = v(t)
s ∆t+ θ(t). (6)

The path dynamics employ a first-order integration scheme to approximate the ego-vehicle’s arc
length parameter at each sampling time, θ(t), over the planning horizon. We use vs to represent the
velocity projected along the reference path. For the purposes of planning, we consider θ to be an
additional ego-vehicle state component and vs to be an additional control input.

Collision Avoidance. For a particular mode z ∈ Z, the dynamics of all agents in a scene are predicted
by Equation (1), permitting the prediction of agent positions at different sampling times. We use X(t)

j

and Y (t)
j to represent the mean predicted position of agent j ∈ J at time t, where J represents the set

of agents in the scene. Let nj(t)
(t) represent the normal vector from the position of agent j to the

ego-vehicle position at time t. Obstacle avoidance constraints are enforced as half-plane constraints
of the form

n
(t)
j

[
X(t)

Y (t)

]
≥ d,

for all j ∈ J and for all sampling times t over the planning horizon, with d representing a distance
margin.

Planning Problem. We seek motion plans that guide the ego-vehicle to follow its current lane, while
avoiding other agents. We consider predictions from the three most probable modes Z = {z1, z2, z3}.
The MPC optimization problem is formulated as
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min
s̄,ūR

∑
z∈Z

X(T )
z

Y
(T )
z

θ
(T )
z


T

Γ(T )
z

X(T )
z

Y
(T )
z

θ
(T )
z

+ l(T )
z

X(T )
z

Y
(T )
z

θ
(T )
z

+
∑
z∈Z

T−1∑
t=1

X(t)
z

Y
(t)
z

θ
(t)
z


T

Γ(t)
z

X(t)
z

Y
(t)
z

θ
(t)
z

+ l(t)z

X(t)
z

Y
(t)
z

θ
(t)
z

+

qu∆u(t)
z − γv(t)

s,z

s.t. s(t+1)
z = A(t)

z s(t)
z +B(t)

z u
(t)
R + c(t)

z ∀ i ∈ {1, 2, 3}

s(1)
z = sinit, s(t)

z ∈ S(t), u
(t)
R ∈ U

(t), ∀ z ∈ Z

n
(t)
z,j

[
X

(t)
z

Y
(t)
z

]
≥ d, ∀ j ∈ J, z ∈ Z

u
(t)
R,z1 = u

(t)
R,z2 ∀ z1, z2 ∈ Z, t ∈ {1, 2, . . . , tc}.

As before, the decision variables for this problem are s̄ =
⋃
z∈Z(s

(1)
z , . . . , s

(T )
z ) and ūR =⋃

z∈Z(u
(1)
R,z, . . . ,u

(T−1)
R,z ), representing the state and control trajectories across all modes indexed

by z ∈ Z. A slew-rate penalty term, ∆u
(t)
z , weighted by qu, is included in the objective function to

encourage smooth controls. Additionally, we introduce γv(t)
s,z as a reward for progress along the path.

Note that Equation (5) and Equation (6) are assumed to constitute the ”overall” ego-vehicle dynamics
and are included within the first constraint.

Planning Details. Planning is performed with a horizon of 3s with a ∆t of 0.25s (i.e. 12 steps).
A consensus horizon tc of 1s was enforced (i.e. 4 steps). The admissible controls are restricted to
−0.7 rad/s ≤ ω ≤ 0.7 rad/s and −5 m/s2 ≤ a ≤ 4 m/s2. Velocity was restricted to 0.05 m/s ≤ v ≤
12 m/s as a state constraint. For penalty weights, we use qc = 0.5, ql = 0.5, qu = 0.01 and γ = 0.02.

C Additional Frobenius Norm Visualizations

Figure 6 shows the set of B(t)
z matrices from the most likely z mode for the scene depicted in

Figure 4, where clear temporal patterns can be seen in five of the submatrices. These five correspond
to the five other vehicles in the scene, and this pattern is caused by the ego-vehicle crossing through
an intersection, which is a time of maximal influence on the other vehicular agents. Specifically,
the agents numbered 3, 5, 7, 8, 9 in the right of Figure 6 are vehicles and the rest are pedestrians.
Notably, the pedestrian agents interact weakly with the ego-vehicle, indicating that they are acting
independently from the vehicle’s motion. This makes sense as the pedestrians in Figure 4 are walking
on the sidewalk or standing still waiting at a crosswalk, unaffected by the ego-vehicle.
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Figure 6: Left: The set of B(t)
z matrices across time from the most likely z mode for the intersection

scene shown in Figure 4. White horizontal lines separate each agent’s block, e.g., the first 4 × 2
block is the ego-robot’s block and the next 4× 2 block belongs to an agent being modeled. Right:
The Frobenius norm of each non-robot agent’s block in the B(t)

z matrix is visualized per prediction
timestep, normalized so the largest Frobenius norm is 1.
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