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Abstract: Learning-from-demonstrations is an emerging paradigm to obtain ef-
fective robot control policies for complex tasks via reinforcement learning without
the need to explicitly design reward functions. However, it is susceptible to imper-
fections in demonstrations and also raises concerns of safety and interpretability
in the learned control policies. To address these issues, we use Signal Temporal
Logic to evaluate and rank the quality of demonstrations. Temporal logic-based
specifications allow us to create non-Markovian rewards, and also define interest-
ing causal dependencies between tasks such as sequential task specifications. We
validate our approach through experiments on discrete-world and OpenAI Gym
environments, and show that our approach outperforms the state-of-the-art Maxi-
mum Causal Entropy Inverse Reinforcement Learning.
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1 Introduction
One of the emerging methods to design control policies for robots is the paradigm of learning-from-
demonstrations (LfD) [1, 2]. This paradigm has led to vibrant research on a number of different
approaches such as apprenticeship learning (AL) [3], inverse reinforcement learning (IRL) [4, 5],
and behavior cloning via supervised learning [6]. IRL seeks to recover the reward function from a
set of human demonstrations that could be generalized to similar reinforcement learning (RL) tasks.
Behavior cloning on the other hand relies on supervised learning to model/mimic the actions of a
teacher. Designing reward functions for RL tasks requires expert knowledge in this domain and
is not trivial to recover rewards [7]. In addition, it is difficult even for experts to design reward
functions for RL tasks that involve multiple and/or sequential objectives.

At its core, LfD provides a mechanism to indirectly provide specifications on expected behavior
of a robot, and learning a control policy from these specifications. LfD can also address the issue
in designing rewards for multiple objectives. However, there are methodological limitations to the
prevalent LfD paradigm: (i) a demonstration is an inherently incomplete and implicit specification
of the robot behavior in a specific fixed initial configuration or in the presence of a single disturbance
profile. The control policy that is inferred from a demonstration may thus perform unsafe or unde-
sirable actions when the initial configuration or disturbance profile is different [8]. Thus, learning
from demonstrations lacks robustness, (ii) not all demonstrations are equal: some demonstrations
are a better indicator of the desired behavior than others, and the quality of a demonstration often
depends on the expertise of the user providing the demonstration [7]. There is also lack of metrics to
evaluate the quality of demonstrations on tasks [9, 8], (iii) demonstrations have no way of explicitly
specifying safety conditions for the robot, and safely providing a demonstration is itself a skill [8, 7],
(iv) there may be many optimal demonstrations, each trying to optimize a particular objective (also
known as user preference).

In order to overcome some of these shortcomings, we propose a technique where the user provides
partial specifications in a mathematically precise and unambiguous formal language. In this work,we
use the formalism of Signal Temporal Logic (STL) as the specification language of choice, but our
framework is flexible to allow other kinds of formalisms. In recent years, STL has been extensively
used in cyber-physical system applications [10, 11, 12]. Essentially a formula in STL is evaluated
over a temporal behavior of the system (e.g. a multi-dimensional signal consisting of the robot’s
position, joint angles, angular velocities, linear velocity etc.). STL allows Boolean satisfaction
semantics: a behavior satisfies a given formula or violates it. A more useful feature of STL in the
context of our work is its quantitative semantics that define how robustly a signal satisfies a formula
or define a signed distance of the signal to the set of signals satisfying the given formula [13, 14].
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Certain assumptions about the task and environment are required to learn accurate cost or reward
functions and thus cannot be generalized to other applications without modification [7], and STL is
one of the ways of defining properties of tasks and environments. We use STL specifications for two
distinct purposes: (1) to evaluate and automatically rank demonstrations based on their fitness w.r.t.
the specifications, and (2) to infer rewards to be used in a model-free RL procedure used to train the
control policy. The quality of demonstrations, also known as fitness, is the degree of satisfaction
of the demonstration on the defined STL specifications. We present a novel way of estimating the
quality of a demonstration over a set of specifications by representing the specifications in a directed
acyclic graph to encode the relative priorities among them.

An important problem to address when designing and training RL agents is the design of state-based
reward functions [15] as a means to incorporate knowledge of the goal and the environment model
in training an RL agent. As reward functions are mostly handcrafted and tuned, poorly designed
reward functions can lead to the RL algorithm learning a policy that produces undesirable or unsafe
behaviors or simply to a task that remains incomplete [16]. The key insight of this work is that the
use of even partial STL specifications can help in a mechanism to automatically evaluate and rank
demonstrations, leading to learning robust control policies and inferring rewards to be used in a
model-free RL setting. The ultimate objective of this work is to provide a framework for a flexible
structured reward function formulation. The main contributions of our work are:

1. We propose a framework for LfD using STL specifications to infer rewards without the necessity
for optimal or perfect demonstrations. In other words, our method can infer non-Markovian
rewards even from imperfect or sub-optimal demonstrations and are used by the robot to find a
policy using off-the-shelf model-free RL algorithms with slight modifications.

2. We show that our method can also learn from only a small number of demonstrations which is
practical for non-expert users and also for large environments that result in sparse rewards, while
not introducing additional hyperparameters for the reward inference procedure.

3. We also tackle the problem of achieving multiple sequential goals/objectives by combining STL
specifications with Q-Learning. Using a discrete-world setting, we show that effective control
policies can be learned such that they satisfy the defined safety requirements while also trying to
imitate the user preferences.

2 Preliminaries
Definition 1 (Environment). It is a tuple E = (S,A) consisting of the set of all possible states S
defined over Rn and actions A, where n is the dimension of the real space. A goal or objective in E
is an element of S.
Definition 2 (Demonstration). A demonstration (or a policy or trace) is a finite sequence
of state-action pairs. Formally, a demonstration d of length L ∈ N is given as d =
{(s1, a1), (s2, a2), ..., (sL, aL)}, where si ∈ S and ai ∈ A. That is, d is an element of (S ×A)L.

Signal Temporal Logic (STL) is a real-time logic, generally interpreted over a dense-time domain for
signals that take values in a continuous metric space (such as Rm). For a policy or demonstration,
the basic primitive in STL is a signal predicate µ that is a formula of the form f(x(t)) > 0, where
x(t) is the tuple (state, action) of the demonstration x at time t, and f is a function from the signal
domain D = (S ×A) to R. STL formulas are then defined recursively using Boolean combinations
of sub-formulas, or by applying an interval-restricted temporal operator to a sub-formula. The syntax
of STL is formally defined as follows: ϕ ::= µ | ¬ϕ | ϕ ∧ ϕ | GIϕ | FIϕ | ϕUIϕ. Here,
I = [a, b] denotes an arbitrary time-interval, where a, b ∈ R≥0. The semantics of STL are defined
over a discrete-time signal x defined over some time-domain T. The Boolean satisfaction of a signal
predicate is simply True (>) if the predicate is satisfied and False (⊥) if it is not, the semantics for
the propositional logic operators ¬,∧ (and thus ∨,→) follow the obvious semantics. The temporal
operators model the following behavior:

• At any time t, GI(ϕ) says that ϕ must hold for all samples in t+ I .
• At any time t, FI(ϕ) says that ϕ must hold at least once for samples in t+ I .
• At any time t, ϕUIψ says that ψ must hold at time t′ in t+ I , and in [t, t′), ϕ must hold.

A signal satisfies an STL formula ϕ if it is satisfied at time t = 0. The quantitative semantics of
STL are defined in the appendix. Intuitively, they represent the numerical distance of “how far” a
signal is away from the signal predicate. For a given requirement ϕ, a demonstration or policy d that
satisfies it is represented as d |= ϕ and one that doesn’t is represented as d 6|= ϕ.
Example 1. Consider a 6 × 6 grid environment and the policies shown in green and yellow
(Figure 1). Each cell in the grid is represented a tuple (x, y) indicating its coordinates with the
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origin at top-left (0, 0). The possible actions in each cell are {U,D,L,R}. The red cells are
regions to be avoided and a policy is required to start at blue cell and end at brown. Consider
the specifications: ϕ1 := F[0,9](x(t) = (0, 4)) and ϕ2 := G[0,9](distred(x(t)) ≥ 1) where
distred is the taxi-cab distance between a cell and its nearest red cell. For the green policy, π =
{((4, 0), R); ((4, 1), R); ((4, 2), U); ((3, 2), U); ((2, 2), U); ((1, 2), U); ((0, 2), R); ((0, 3), R);
((0, 4), U)}. Here we consider the signal x to represent only the states of π. We see that ϕ1 is
satisfied since the brown cell (0, 4) occurs in the policy within 9 time-steps. We compute the distred

and we see that the policy intersects with red cells and hence ϕ2 is not satisfied since there exists a
time-step at which the cells coincide. In a similar way, we can see that the yellow policy satisfies
both requirements since the goal state occurs in its policy and its distred is always greater than 0.

Figure 1: Demonstrations in a
grid-world.

Figure 2: Weights on nodes in a
DAG.

There are two classes of temporal logic requirements: (i) hard
requirements ΦH and (ii) soft requirements ΦS . Hard re-
quirements are the certain properties of a system that are re-
quired to be invariant, i.e., the system must obey the rules or
operate within its constraints at all times. Examples of this
are: a robot should always operate/remain within its opera-
tional workspace, the joint velocities of a robot must always
be within a specific range [va, vb], etc. These properties can be
interpreted as safety requirements for the system and they typ-
ically have the form: G(ϕ). Such requirements always need
to be satisfied by a system before being able to satisfy the soft
requirements. Soft requirements typically correspond to the
optimality of a system such as performance, efficiency, etc.
These specifications may also be competing with each other
and might require some trade-offs.

3 Methodology
Problem Formulation. In this work, we aim to infer rewards
from user demonstrations and STL specifications. Given a
transition system M\{R, T} with unknown rewards and tran-
sition probabilities, a finite set of high-level specifications in
STL Φ = ΦH ∪ ΦS and a finite dataset of human demonstra-
tions D = {d1, d2, ..., dm} in an environment E, where each demonstration is defined as in Defini-
tion 2, the goal is to infer a reward function R for M such that the resulting robot policy π obtained
by a model-free RL algorithm, satisfies all the requirements of Φ 1. The hard requirements are given
by ΦH = {ϕ1, ϕ2, ..., ϕp} and the soft requirements are given by ΦS = {ϕp+1, ϕp+2, ..., ϕq}.
Framework. In this section we design a framework (Figure 3) for learning reward functions
from demonstrations and STL specifications. A user defines a set of specifications or system
requirements which are arranged in a directed acyclic graph structure, explained in section 3.1.
The user also provides a demonstration-set D, which is then utilized by algorithms described
in section 3.1, to infer a reward function R for the robot. The problem is then solved through

Figure 3: Framework for integrating LfD and STL to infer
reward functions and robot policy.

a feedback loop (Figure 3) on the
inferred reward R using our pro-
posed model-free RL algorithm (sec-
tion 3.2), to obtain a robot policy that
satisfies the user requirements 1. Us-
ing the STL representations, we can
express complex tasks involving mul-
tiple goals, which cannot be easily
encoded or represented in traditional
IRL. The assumptions in this work
are: (1) The world and agent consist
of discrete states and actions 2, (2) we

assume that there exists a feasible path to reach the goals from the initial state, (3) for testing on an
unseen map, we only require that the map is of the same size as the one on which the robot was
trained. We also consider only the states of a policy as our signal and discard the actions associated
with those states when evaluating a specification.

1The ideal procedure would involve verification, but we just empirically verify.
2For continuous state systems, we perform an abstraction that groups several continuous states into abstract

discrete states to avoid the curse of dimensionality.
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3.1 Reward Inference
DAG Representation. A Directed Acyclic Graph (DAG) is an ordered pair G = (V,E) where
V is a set of elements called vertices or nodes and E is a set of ordered pairs of vertices called
edges or arcs, which are directed from one vertex to another. An edge e = (u, v) is directed from
vertex u to vertex v. A path p(u, v) in G is a set of vertices starting from u and ending at v by
following the directed edges from u. The ancestors of a vertex v is the set of all vertices in G that
have a path to v. Formally, ancestor(v) = {u | p(u, v), u ∈ V }. The requirements in ΦH and ΦS
are each represented as a node in a DAG G since our intention is to explicitly capture dependencies
between requirements: we need requirements in ΦH to be satisfied before the requirements in ΦS are
satisfied. Thus, edges in the DAG capture dependencies and user preferences among requirements.
The weight on each node in G is computed using Equation 1 and an example is shown in Figure 2.

w(ϕ) = |Φ| − |ancestor(ϕ)| (1)

where Φ = ΦH ∪ΦS is the set of all specifications. This equation represents the relative importance
of each specification based on the number of dependencies that need to be satisfied. These computed
weights are passed through a softmax function to give higher importance to “harder” specifications.
For an STL specification ϕi ∈ Φ and a demonstration dj ∈ D defined as in Definition 2, the value
robji = ρ(ϕi, dj , t) represents how well the demonstration satisfies the given specification, i.e., the
robustness value is used to assess quality of the demonstration w.r.t the specification. There are two
reward inference rules based on the quality of a demonstration. At a given time t and for every
demonstration dj ∈ D, the final reward is computed as in Equation 2, where q is the total number of
specifications in Φ of which the first p are ΦH and the remaining q− p are ΦS . The reward rdj ∈ R
where R : D → R, i.e., it maps a demonstration to a real number.

rdj =

q∑
i=1

w(ϕi) · robji (2) r(s) =

{
rdj , if s ∈ sbad
0, otherwise

(3)

In addition, the robustness values can be bounded to specific ranges depending on the STL formula,
such as using tanh or piece-wise linear functions. This makes it appropriate to linearly combine
robustness values of specifications since they are on similar scales. For a demonstration, the rewards
in each state must be assigned a numerical value based on rdj described in the following sections.
The rewards for dj are {r(s1), r(s2), ..., r(sL)}where r(s) is the reward corresponding to each state
s ∈ dj .

Specification-ranked demonstrations.
Definition 3 (Good demonstration). We call a demonstration good if the sequence of state-action
pairs in the demonstration satisfies all STL requirements. Every state or state-action pair of the
demonstration does not violate any specification.

Based on this reasoning, the reward is assigned to every state in the demonstration, while other states
are assigned a reward of zero. Let a demonstration dj of length L have a reward value rdj computed
using Equation 2. The reward assignment capturing the non-Markovian or cumulative nature is
given as: r(sl) = l

L · rdj
, where l = 1, 2, ...L; sl ∈ dj . This essentially captures the non-Markovian

nature of the demonstration since the entire trajectory is evaluated, and based on the above equation,
the reward at each step guides the robot towards the goal along the demonstrated path. The good
demonstrations will have strictly non-negative robustness value and hence positive rewards.
Definition 4 (Bad Demonstration). A “bad” demonstration is one which does not satisfy any of the
hard STL requirements ΦH . The demonstration may be imperfect, incomplete or both. At least one
state-action pair in the demonstration fails to satisfy any of hard STL requirements. Mathematically,
given a hard requirement ϕ of the form G(ψ), a demonstration is bad if ∃j : s.t.(sj , aj) 6|= ψ.

Logically, instead of assigning rewards to each state of the demonstration, the reward is only as-
signed to the states or state-action pairs violating the specifications, while other states are assigned
a reward of zero. A bad demonstration will have non-positive robustness value and hence negative
reward. Consider a demonstration dj of length L that has reward value rdj computed using Equa-
tion 2. Let sbad ∈ dj be the states at which a violation of ϕ occurs while sgood be the states that
do not violate the specification (i.e., sbad = {sj | (sj , aj) 6|= ψ}), then the reward assignment is as
shown in Equation 3. Intuitively, it penalizes the bad states while ignoring the others since the good
states may be part of another demonstration or the learned robot policy that satisfies all requirements.
Learner reward. Once the states in each demonstration have been assigned rewards, the next ob-
jective is to rank the demonstrations and combine all the rewards from the demonstrations into a
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cumulative reward that the learner (or robot) will use for finding the desired policy. The demon-
strations are sorted by their robustness values to obtain rankings. The learner reward is initial-
ized to zero for all the states in the environment. The resulting reward for the robot is given by
R =

∑m
j=1 rank(dj) · rdj

and then normalized, where m is the number of demonstrations. This
equation affects only the states that appear in the demonstrations and the intuition here is that prefer-
ence is given to higher-ranked demonstrations. By the definition of robustness and its use in reward
inferences, it is important to note that “better” the demonstration, higher the reward. In other words,
the rewards are non-decreasing as we move from bad demonstrations to good demonstrations. Hence
good demonstrations will strictly have higher reward values and are ranked higher than bad demon-
strations. The demonstrations are provided by users on a known map Etrain and the procedure is
formalized in algorithm 1.
3.2 Learning Policies from Inferred Rewards

Algorithm 1: Reward inference from demonstrations
Input: D := set of demonstrations
Φ := set of specifications
Etrain := train map
Result: Infers the learner reward from demonstrations
begin

rdj ← 0, ∀dj ∈ D
// Initialize all states to zero
Construct DAG, compute Equation 1 for Φ and
perform softmax

for j ← 1 to m do
for i = 1 to q do

Compute robji
rdj ← rdj + w(ϕi) · robji

if robji > 0,∀ϕi ∈ ΦH then // Good demo

r(sl)← l
L · rdj , where l = 1 to L; sl ∈ dj

else // Bad demo
Update using Equation 3

Sort all d ∈ D by their rd values to estimate rank
R←

∑m
j=1 rank(dj) · rdj and normalize

In order to learn a policy from the
inferred rewards, we can use any
of the existing model-free RL algo-
rithms with just 2 modifications to the
algorithm during the training step:-
(1) reward observation step: during
each step of an episode, we record
the partial policy of the agent and
evaluate it with all the hard specifi-
cations ΦH . The sum of the robust-
ness values of the partial policy for
each hard specification is added to
the observed reward. This behaves
like potential-based reward shaping
[17], thereby preserving optimality.
In the case when a close-to-optimal
demonstration is ranked higher than
another better demonstration, the al-
gorithm also takes this into account
and compensates for the mis-ranking
in this step. (2) episode termina-
tion step/condition: we terminate the
episode when, either the goals are
reached or the partial policy violates
any hard specification. These two
modifications lead to faster and safer
learning/exploration. This is especially helpful when agents interact with the environment to learn
and the cost of learning unsafe states/behaviors is high (e.g., the robot can get damaged, or may harm
humans). In our experiments, we show the effectiveness this approach using standard Q-Learning,
which we call Qstl and extend its use for multiple sequential objective MDP. This new Qstl algo-
rithm incorporates RL with verification-in-the-loop method for safer exploration and learning from
imperfect demonstrations. The rewards inferred from algorithm 1, which we now refer to as feed-
forward rewardRff are used to learn the Q-values on a mapEtest that could be the same as train map
or an unseen map of similar size. ThisRff is used as a reference/initialization on the new map, hence
the requirement that the maps be of similar sizes. We now introduce the notion of feedback reward
Rfb that the algorithm uses during execution. Rfb is initially a copy of Rff and gets updated during
each reward observation step of the algorithm as described earlier. Once the Q-values are learned,
the algorithm returns a policy from the start state and ending at the desired goal state. We have
described a Q-Learning procedure that incorporates STL specifications in learning the Q-values and
obtaining a policy, given a start and end state. In order to learn a policy for multiple objectives,
consider a set of goal states Goals = {g1, g2, ..., gk} where k is the number of objectives or goals.
Some specifications can require the robot to achieve the goals in a particular sequential order while
others may require the robot to achieve goals without any preference to order. In the case of arbitrary
ordering, the number of ways to achieve this is k!, hence all the permutations of the goals are stored
in a set. For each permutation or ordering3 of the goals < g1, g2, ..., gk >, a policy is extracted that

follows the order: πp : start
Qstl−−−→ g1

Qstl−−−→ g2
Qstl−−−→ ...

Qstl−−−→ gk. Each of the final concatenated

3Partial ordering helps reduce complexity. In the case of particular ordering, this step can be replaced by
the desired order and the complexity reduces from k ! to 1.
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policies πp is recorded and stored in a dataset represented by Π. At this stage, the policies in Π all
satisfy the hard requirements ΦH and hence all are valid/feasible trajectories. Finally, the policy that
results in maximum robustness w.r.t. the soft requirements ΦS is chosen, which imitates the user
preferences. The algorithms are detailed in the appendix.
4 Experiments
Single-Goal Grid-World. For our experiments, we consider a grid-world environmentE consisting
of a set of states S = {start, goals, obstacles}. The map sizes that we used are: 5 × 5, 7 × 7 and
10 × 10; the obstacles were assigned randomly. The distance metric used for this environment is
Manhattan distance and the STL specifications for this task are:
1. Avoid obstacles at all times (hard requirement): ϕ1 := G[0,T](dobs[t] ≥ 1), where T is the

length of a demonstration and dobs is the minimum distance of robot from obstacles computed
at each step t.

2. Eventually, the robot reaches the goal state (soft requirement): ϕ2 := F[0,T](dgoal[t] < 1),
where dgoal is the distance of robot from goal computed at each step. ϕ2 depends on ϕ1.

3. Reach the goal as fast as possible (soft requirement): ϕ3 := F[0,T](t ≤ Tgoal), where Tgoal is
the upper bound of time required to each the goal, which is computed by running breadth-first
search algorithm from start to goal state, since the shortest policy must take at least Tgoal to
reach the goal. ϕ3 depends on both ϕ1 and ϕ2.

STL specifications are defined and evaluated using a Matlab toolbox - Breach [18]. A grid-world
point-and-click game was created using PyGame package that showed the locations of start, obsta-
cles and goals. The users provide demonstrations by clicking on their desired states with the task to
reach the goal state from start without hitting any obstacles. For this map, we used m = 2 demon-
strations (1 good and 1 bad) from a single user. The demonstrations and resulting robot policy are
shown in Figure 4. The blue heatmap figures represent the rewards learned from the demonstrations
(darker represent higher rewards). Since hitting a red obstacle is penalized heavily by the hard re-
quirement compared to other states, the rewards in the other safe states and goal state appear similar
in value due to the scaling difference. For grid sizes 7×7 and 10×10, similar results were observed
and each grid had m = 4 demonstrations (2 good, 1 bad and 1 incomplete). The number of episodes
used for training ranged from 3000 to 10000 depending on the complexity (grid size, number and
locations of obstacles) of the grid-world. The discount factor γ was set to 0.99 and ε-greedy strategy
for actions was used with ε = 0.4. The learning rate used in the experiments is α = 0.1.

(a) Demo 1 (b) Demo 2 (c) Robot Policy

Figure 4: Results: Left figures represent learned rewards. Right figures show the grid-world with
start state (light blue), goal (dark blue), obstacles (red) and demonstration/policy (green).

Multi-Goal Grid-World. We also conducted experiments with a grid-world having k = 2 goals.
The specifications used are as follows:

1. Avoid obstacles at all times (hard requirement): ϕ1 := G[0,T](dobs[t] ≥ 1), where dobs is the
minimum distance of robot from obstacles computed at time-step t.

2. Eventually, the robot reaches both goal states in any order (soft requirement):
ϕ2 := F[0,T](dgoal1 [t] < 1) ∧ F[0,T](dgoal2 [t] < 1). ϕ2 depends on ϕ1.

3. Reach the goals as fast as possible (soft requirement): ϕ3 := F[0,T](t ≤ Tgoal), similar to the
single-goal grid-world experiment. ϕ3 depends on both ϕ1 and ϕ2.

For the 5 × 5 grid, a total of m = 3 demonstrations were provided (2 good and 1 bad) and for
the 7 × 7 grid, only m = 2 good, but sub-optimal demonstrations were provided using similar
hyperparameter settings are indicated earlier. Further details are available in the appendix.
OpenAI Gym. The proposed method was tested on the OpenAI Gym [19] Frozenlake environment
with both 4× 4 and 8× 8 grid sizes as well as on Mountain Car. We compared our method to stan-
dard Q-Learning with hand-crafted rewards, based on the number of exploration steps performed
by the algorithm in each training episode:- (a) FrozenLake: We generated m = 4 demonstrations
by solving the environment using Q-Learning with different hyperparameters to generate different
policies. We also modified the FrozenLake grid to relocate the holes, while the goal location re-
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mained the same. The specifications used are similar to the single-goal grid-world experiment and
are direct representations of the problem statement. Comparisons are shown in Figures 5a and 5b
and we see that our method is able to narrow-down the search exploration space under the same
hyperparameter settings. (b) Mountain Car: We first abstracted the continuous observation space
into 50 × 50 grid sizes and generated m = 2 optimal demonstrations based on a Q-Learning algo-
rithm with preset hyperparameters. We used only one requirement based on the problem definition:
ϕ := F[0,T](dflag[t] ≤ 0), where dflag is the Manhattan distance between the car and the goal flag
positions at time t. The comparison with Q-Learning for hand-crafted rewards is summarized in
Figure 5c. Though there is more variance in the average steps involving our method, we observe
that the worst-case average of our algorithm is still better than the best-case average of standard RL.
Further details about the demonstration and policy are available in the appendix.

(a) Standard Q-Learning (b) LfD+STL (c) Mountain Car

Figure 5: Comparisons of LfD+STL with hand-crafted rewards+Q-Learning for OpenAI Gym envi-
ronments. (a) and (b) pertain to Frozenlake and (c) pertains to Mountain Car.

Discussion and Comparisons. It can be seen that the reward and policy learned by the robot is able
to satisfy all the STL requirements from the given initial condition without having the user to explic-
itly specify/design rewards for the robot and without having to indicate any low-level controls such
as robot actions. Because the algorithm automatically performs ranking of demonstrations, it can be
interpreted as preference-based learning since it prefers to follow a demonstration that has “higher”
satisfaction of the specifications. Another observation is that our method uses fewer demonstrations
and can learn from sub-optimal or imperfect demonstrations. One of the major highlights of our
work is that we do not introduce additional hyperparameters and hence any hyperparameter tuning
depends on the RL algorithm. We also compared our method with Maximum Causal Entropy IRL
(MCE-IRL) [20] on the grid-world and Mountain Car tasks. In the grid-world environment, the
ground truth for a 5 × 5 grid-world is provided in which the goal is at the top-right corner with
reward +2 and the initial state is at the bottom-left. There are 2 states to avoid with reward 0 and
every other state where the agent can traverse has a reward of +1 (Figure 6a). The actual values
of the reward are not important since they can be easily interpreted/represented as potential based
reward functions which preserve policy optimality. MCE-IRL requires at least 60 optimal demon-
strations to recover an approximate reward, whereas our method can recover a more accurate reward
with just 3 (2 good and 1 bad) demonstrations (see Figure 6). Similar results were obtained with
other grid-sizes used in the earlier experiments. For Mountain Car with 50× 50 discretization, both
MCE-IRL and our method obtained very similar rewards, with the former requiring at least 10 op-
timal demonstrations, while the latter used just 2 demonstrations. The ground truth for Mountain
Car is provided by the environment itself. Quantitative comparisons are shown in Table 1. Note that
the demonstrations provided for MCE-IRL are all optimal while the demonstrations for our method
are mixed (i.e., some good and some bad/sub-optimal). In addition, MCE-IRL does not learn an
accurate reward compared to the ground truth. We also noticed that MCE-IRL does not perform
well when there are multiple avoid regions/obstacles scattered over the map (e.g., Frozenlake) and
in such cases, MCE-IRL requires significantly more demonstrations. On smaller environments, the
computation time for inferring rewards is similar for both algorithms. However, as the environment
size increases, the computation time and number of demonstrations increase significantly for MCE-
IRL. All experiments were conducted on a machine with AMD Ryzen 7 3700X 8-core CPU. Lastly,
MCE-IRL was not able to recover the reward for the multiple sequential goals, whereas our method
was able to do so and found a policy that visited both goals safely and in the shortest time. Unlike
many existing IRL techniques, our method also does not involve solving an MDP during the reward
inference procedure and the rewards inferred using our method provide better interpretability w.r.t.
the specifications. The complexity of the reward inference procedure is polynomial in the length
of the specification [21] and hence isn’t affected by the dimensionality of the state space based on
empirical evaluations. As shown in experiments, our algorithm can be used with multiple demon-
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strators each of whom may be trying to act according to their preferences for the same task. We do
not assume uncertainty in sensing and actuation in this setup, and policy synthesis and verification
under uncertainty model will be considered as part of future work.

#Demos Avg. Execution Time (in s)
MCE-IRL Ours MCE-IRL Ours

(5× 5) grid 70 3 3.77 2.62
(7× 7) grid 150 5 6.81 2.74

FrozenLake-4 150 4 3.96 2.81
FrozenLake-8 800 5 13.18 3.11

Mt. Car 10-20 2-3 > 60 2.95
Table 1: Quantitative comparisons between MCE-IRL and our method for different environments.

(a) Ground Truth (b) MCE-IRL with 50 optimal
demos

(c) Ours with 3 demos

Figure 6: Comparing rewards with ground truth and state-of-the-art MCE-IRL.

5 Related Work and Conclusion
Related Work. The use of formal methods with LfD has been explored by the authors of [22] who
proposed to learn tasks with complex structures by combining temporal logics with reinforcement
LfD. It involves designing a special logic, augmenting a finite-state automaton with MDP and then
using behavioral cloning for policy initialization and policy gradient to train the agent, but relies on
optimal/perfect demonstrations. The final learned policy is not found to be very robust w.r.t. the
specifications. The authors in [23] propose a counterexample-guided approach using probabilistic
computation tree logics for safety-aware AL. Similar to our work, they perform a verification-in-
the-loop approach by embedding the logic-checking mechanism inside the training loop and auto-
matically generating a counterexample in case of violation. Most recently, the authors of [24] seek
to learn task specifications from expert demonstrations using the principle of causal entropy and
model-based MDPs. A similar work [25] aims to infer linear temporal logic (LTL) specifications
from agent behavior in MDPs as a path to interpretable AL. There have also been several works
that utilize the robustness semantics of STL to describe reward functions in the RL domain [26, 27].
In [28], the authors propose to use STL and its quantitative semantics to generate locally shaped
reward functions, that considers the robustness of a system trajectory for some finite window of its
execution resulting in a local approximation of the direction of the system trajectory. Traditional
motion-planning with chance constraints has been investigated [29] to produce plans with bounded
risk. However, this work involves solving numerous constraints, manually ranking or selecting
among various feasible paths and expert-designed costs. Our work differs in that the constraints are
now replaced by formal specifications and the costs are rewards that are inferred. Based on these,
the demonstrations are automatically ranked and a new robot policy is learned. Existing works that
learn from suboptimal/imperfect demonstrations do so by filtering such demonstrations or classify-
ing suboptimal demonstrations when most of the other demonstrations are optimal [7].
Conclusion. We introduced a framework that combines human demonstrations and high-level STL
specifications to: (1) quantitatively evaluate and rank demonstrations and (2) infer non-Markovian
rewards for a robot such that the computed policy is able to satisfy all specifications. We conducted
several discrete-world experiments to justify the effectiveness of our method. This approach would
provide new directions for safety and interpretability of robot control policies and verification of
model-free learning methods. Since our framework (a) does not introduce additional hyperparam-
eters, (b) can learn from a few demonstrations and (c) facilitates safer and faster learning, it is
appropriate for non-expert users and real-world applications. It is also well suited for applications
where the maps are known beforehand but there exist dynamic obstacles in the map, such as for
robots in household and warehouse environments, space exploration rovers, etc.
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Appendix

A Reinforcement Learning (RL)
Definition 5 (Model-Free Markov Decision Process (MDP)). It is a tuple M = (S,A,R, γ) where

• S is the state space of the system;
• A is the set of actions that can be performed on the system;
• R is a reward function that typically maps either some s ∈ S or some transition δ ∈ S ×A× S

to R;
• γ is the discount factor for the MDP.

B Quantitative Semantics of STL
A basic example of STL and the mathematical definition of quantitative semantics are described
below.
Example 2. Consider the signal x(t) obtained by sampling the function sin(2πt) at times t0, t1, . . .,
where tj = j × 0.125 (shown in Figure 7). Consider the formula G(x(t) ≥ −1), which requires
that starting at time 0, x(t) is always greater than −1 (at each sample point). Consider the formula
F[0,3](G[0,1](x(t) ≥ 0)). This formula requires that there is some time (say τ ) such that between
times [τ, τ + 1], x(τ) is always greater than 0. Considering that x(t) is a sampling of a sinusoid
with period 1, this formula is also satisfied by x(t).

In addition to the Boolean satisfaction semantics for STL, various researchers have proposed quan-
titative semantics for STL, [14, 30] that compute the degree of satisfaction (or robust satisfaction
values) of STL properties by traces generated by a system.
Definition 6 (Quantitative Semantics for Signal Temporal Logic). Given an algebraic structure
(⊕,⊗,>,⊥), we define the quantitative semantics for an arbirtary signal x against an STL formula
ϕ at time t as follows:

ϕ ρ (ϕ,x, t)
true/false >/⊥

µ f(x(t))
¬ϕ −ρ (ϕ,x, t)

ϕ1 ∧ ϕ2 ⊗(ρ (ϕ1,x, t) , ρ (ϕ2,x, t))
ϕ1 ∨ ϕ2 ⊕(ρ (ϕ1,x, t) , ρ (ϕ2,x, t))
GI(ϕ) ⊗τ∈t+I(ρ (ϕ,x, τ))
FI(ϕ) ⊕τ∈t+I(ρ (ϕ,x, τ))
ϕUIψ ⊕τ1∈t+I(⊗(ρ (ψ,x, τ1) ,⊗τ2∈[t,τ1)(ρ (ϕ,x, τ2)))

The above definition is quite abstract: it does not give specific interpretations to the elements >,⊥
or the operators ⊗ and ⊕. In the original definitions of robust satisfaction proposed in [14, 31], the
interpretation was to set > = +∞, ⊥ = −∞, and ⊕ = max, and ⊗ = min.

C Algorithms
C.1 Q-Learning with STL
This algorithm is a modification of the standard Q-Learning algorithm that integrates STL specifi-
cations during training as described in the main paper (algorithm 2).
C.2 Learning multi-objective robot policy from inferred rewards
We formalize the algorithm that utilizes Qstl to obtain a policy between two states of the environ-
ment and then concatenates the piece-wise policies to form a final control policy for the robot that
is able to visit all the goals/objectives as per the task specification (algorithm 3).

D Experiments
D.1 PyGame Setting
An screenshot of the grid-world created using PyGame package is shown in Figure 8 along with a
sample demonstration. It is a point-and-click game/interface for a user to provide demonstrations.
The task is to select or click on cells starting from the dark blue cell (bottom-left) and ending in the
light blue cell (top-right). The red cells represent “avoid” regions or obstacles.

To illustrate with an example, consider the 5 × 5 grid-world for single goal as shown in Figure 9
and described in the main article. Two demonstrations are provided (1 good and 1 bad). In the good
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Algorithm 2: Qstl algorithm
Input: Rfb := feedback reward
Φ := set of specifications
Etest := test map
start := start state
goal := goal state
Result: Computes agent policy from start to goal
begin

Q[s, a]← 0,∀s ∈ S, ∀a ∈ A // Initialize
for ep← 1 to #Episodes do

πpartial ← ∅
s← start
πpartial ← πpartial + s // the ‘+’ operator here represents
concatenation or append.
done← False
while not done do

a← ε-greedy strategy
Observe next state s′ and reward r based on action a
πpartial ← πpartial + s′ // the ‘+’ operator here represents
concatenation or append.

r ← r +
∑
ϕ∈ΦH

ρ(ϕ, πpartial, t) // adding robustness w.r.t. ΦH to

reward as feedback

Q[s, a]← Q[s, a] + α[r + γmaxaQ[s′, a]−Q[s, a]]
if (s′ ∈ Goals) or (ρ(ϕ, πpartial, t) < 0, for any ϕ ∈ ΦH) then // if goal
state reached or policy violates any ΦH
done← True

π ← policy from start
return π

Algorithm 3: Learning multi-objective robot policy from inferred rewards
Input: Rff := Inferred rewards
Φ := set of specifications
Etest := test map
Result: Learns multi-objective robot policy from inferred rewards
begin

P ← PermutationSet(Goals) // generates permutation of all goal or
objective states.
Rfb ← Rff
Π← ∅
for p ∈ P do // p is an ordering of goals < g1, g2, ..., gk >

πp ← Qstl(Rfb,Φ, Etest, Init, g1) // from algorithm 2

for i← 1 to |Goals| − 1 do
πp ← πp +Qstl(Rfb,Φ, Etest, gi, gi+1) // from algorithm 2

Π← Π ∪ πp
// The resulting policies satisfy all hard requirements

π∗ ← argmaxπ∈Π

∑
ϕ∈ΦS

ρ(ϕ, π, t) // Policy that maximizes robustness of

all soft-requirements
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Figure 7: Properties on a sin wave.

(a) Grid-world
game setup

(b) Example user
demonstration (in
green)

Figure 8: PyGame user-interface.

demonstration, the reward is assigned to every state appearing in the demonstration while other states
are kept at zero. The rewards increase from start state to the goal so as to guide the robot towards
the goal. In the bad demonstration, one of the states coincides with an obstacle and only that state
is penalized. The final robot reward is a linear combination of the demonstration rewards. We also
show the ground truth reward for this map and the rewards extracted using MCE-IRL with over 40
optimal demonstrations. It is clear again that our method infers more interpretable rewards than the
state of the art MCE-IRL, while using far fewer demonstrations. We obtain similar comparisons for
other grids.

(a) Demo 1 (good) (b) Demo 2 (bad) (c) Robot Policy

(d) Ground Truth Reward (e) MCE-IRL Reward

Figure 9: Results for 5× 5 grid-world.

D.2 Multiple Sequential Goal Grid-World
The plots in Figure 10 show the demonstration and learned robot policy for the multi-goal 7 × 7
grid-world. Left figures in each sub-figure represent learned/inferred rewards. Right figures show
the grid-world with start state (light blue), goal (dark blue), obstacles (red) and demonstration/policy
(green). There are two goals and the rewards are inferred accordingly. At the next step, the algorithm
enumerates all possible policies: (a) start→ goal1 → goal2 and (b) start→ goal2 → goal1. The
final policy is a hybrid of the demonstrations while trying to minimize the time (soft requirement).
In this case, it infers a policy start → goal1 (top-right) → goal2 (bottom-right). For sequential
goals, MCE-IRL is unable to learn any reward even from 300 demonstrations. As we see in the
figure, MCE-IRL has 2 problems: (1) it doesn’t learn the reward for obstacles/avoid regions and (2)
it learns only when there are 2 independent terminal states, i.e., it does not consider the sequential
visitation of goals or that all goals must be covered by the policy. Hence a policy with the MCE-
IRL reward and our multi-sequential goal algorithm is forced to visit goal2 and then goal1, thereby
restricting the specification only to this order. MCE-IRL can also learn higher rewards for states
other than the terminal states. Hence, for some cases in experiments, the policy was able to visit
only one goal while ignoring the other.
D.3 Frozenlake
The results in Figure 11 show the robot policy in which demonstrations were provided on one map,
but the agent had to use that information and explore on an unseen map. Left figures of each sub-
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(a) Demo 1 (b) Demo 2 (c) Robot Policy

(d) Ground Truth Re-
ward

(e) MCE-IRL Reward

Figure 10: Results for 7× 7 sequential goal grid-world.

figure represent learned rewards. Right figures show the grid-world with start state (light blue), goal
(dark blue), obstacles or holes (red) and demonstration/policy (green). The robot is finally tested on
a different map. The figures in Figure 12 show comparisons in the exploration space between our
method and standard Q-Learning with hand-crafted rewards.

(a) Demo 1 (b) Demo 2 (c) Robot Policy

Figure 11: Results for 4× 4 FrozenLake

(a) Standard Q-Learning 4× 4 grid (b) LfD+STL 4× 4 grid

Figure 12: Statistics indicating the exploration rate of each algorithm as well as rewards accumulated
in each training episode.

Similar results were obtained in the 8× 8 grid size Frozenlake (see Figure 13). A total of 5 demon-
strations (4 good and 1 incomplete) were provided on a particular map. The agent then had to explore
and learn a policy on 3 different maps using only the rewards from the map on which demonstrations
were provided. The obstacles were moved about in each of the test/unseen maps and we see that the
agent was able to successfully learn a policy to reach the goal.
D.4 Mountain Car Results
In a similar manner we show the demonstrations and rewards inferred in this environment. For the
mountain car, we used a 50×50 grid size to show the scalability of our approach and its performance
for sparse rewards (Figure 14). Other grid sizes used for the experiments were 75×75 and 100×100.
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(a) Demo 1 (b) Demo 2

(c) Robot Policy on test map 1 (d) Robot Policy on test map 2 (e) Robot Policy on test map 3

Figure 13: Results for 8×8 FrozenLake. Left subfigures represent the reward and the right subfigures
show the environment and policy.

(a) Demo 1 (b) Demo 2

(c) Final robot reward

Figure 14: (a) and (b): The left figures represent the simulator reward (1 at goal and 0 elsewhere)
while the right figures show the rewards based on STL specification. (c) Rewards inferred from
demonstrations. Note: In all the figures, the axes represent the cell numbers corresponding to the
grid size.
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