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Abstract: We present a new method for multi-modal, long-term vehicle trajectory
prediction. Our approach relies on using lane centerlines captured in rich maps of
the environment to generate a set of proposed goal paths for each vehicle. Using
these paths – which are generated at run time and therefore dynamically adapt to
the scene – as spatial anchors, we predict a set of goal-based trajectories along
with a categorical distribution over the goals. This approach allows us to directly
model the goal-directed behavior of traffic actors, which unlocks the potential for
more accurate long-term prediction. Our experimental results on both a large-scale
internal driving dataset and on the public nuScenes dataset show that our model
outperforms state-of-the-art approaches for vehicle trajectory prediction over a
6-second horizon. We also empirically demonstrate that our model is better able
to generalize to road scenes from a completely new city than existing methods.
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1 Introduction

Predicting the future behavior of actors in a traffic scene is a critical task for the development of
safe and effective self-driving technology. In this work, we focus on predicting the future motion of
vehicles using rich map context. In particular, we leverage the fact that human drivers exhibit goal-
directed behavior, meaning they drive with the aim of reaching a particular destination. Furthermore,
we recognize that the motion of drivers is heavily guided by the network of roads and lanes, which
we access via high-definition maps of the environment. Using these observations, we construct a
multi-modal trajectory prediction model that first generates a set of proposed goal paths for each
actor using the centerlines of mapped lanes in the scene, and then predicts a categorical distribution
over these goals along with one or more trajectories for each goal.

Importantly, by leveraging set-based neural network architectures [1], our model is able to handle
an arbitrary number of goals for each actor in the scene. Because of this characteristic, our model is
map adaptive. Specifically, we can construct a set of goals from any scene with any lane topology,
as long as the area has been mapped. We can therefore naturally handle N-way (e.g., 3-way, 4-way,
5-way, 6-way) intersections and other unusual map geometries (e.g., roundabouts, curvy roads).

Although human drivers usually respect mapped lane boundaries, it is also critically important for an
autonomy system to be able to predict motion that deviates from this norm. In order to capture non-
map-compliant behavior, we augment our goal-based trajectory modes with one or more additional
motion-based trajectory modes which aim to extrapolate the actor’s current motion into the future,
and are designed to capture the driving behavior that is not covered by the set of goals that we
generate. By reasoning about the set of trajectories that are plausible when considering both goal-
based and motion-based behavior, our approach is able to accurately represent the full distribution
over the future locations of each vehicle in the scene using a compact set of trajectory modes.

Figure 1 highlights the duality of goal-based and motion-based trajectories. We show two different
scenes, each with an actor of interest. In both cases, we just have a single proposed goal path for
each actor, which means that the simplest variant of our model generates two trajectory predictions:
one goal-based trajectory that uses the goal path as a spatial anchor, and one motion-based trajectory
that uses the actor’s heading as a reference direction. Together, these examples illustrate that our
model is able to make use of the goal paths when they make sense, but also learns to fall back to the
motion-based prediction when none of the goals can adequately explain the actor’s current motion.
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(a) The actor is strictly following a right-turning
goal path.

(b) The actor is passing another actor ahead and not
strictly following the proposed goal path.

Figure 1: Examples of two driving scenarios, (a) and (b), each with one actor of interest. In (a),
the goal-based trajectory gets high probability (98%) because the goal provides a good explanation
for the actor’s motion. In (b), since the candidate goal path cannot fully explain the actor’s current
motion, more probability mass (27%) is assigned to the motion-based trajectory than in (a) (2%).

Overall, our model represents the driving scene for each actor as a composition of map elements
(lane goals) and learns a representation of these elements along with a permutation-invariant function
that aggregates information over the elements. By doing so, our approach is better able to generalize
to out-of-distribution scenes than existing methods, some of which have the tendency to memorize
the specific road and lane configurations observed during training. We verify this idea empirically
by training and testing on driving data collected in two completely different cities, and show the
results in Section 3. Combining these results with our intuition, we conclude that the compositional
design of our model provides inductive bias that enables it to adapt to the local road geometry of
any scene and still generate high-quality predictions even when that specific lane configuration has
never before been seen by the model.

2 Related Work

Vehicle future motion forecasting has been an active area of research for the last few decades. Early
works such as [2, 3, 4] use physics-based kinematic models to predict future positions. Although
this class of methods can be accurate in the short-term, they cannot capture long-term behavior of
vehicles, which is mainly driven by the surrounding context and actors’ intrinsic goals. Another line
of research includes deep-learning-based methods such as [5], which improve on the physics-based
models by using recurrent networks to encode actor history and capture context from nearby actors.
Recent work has focused largely on multi-modal prediction, where existing methods broadly fall
into two categories: generative and discriminative. We discuss these in more detail below.

Generative models use stochastic sampling to approximate the distribution over future behavior.
R2P2 [6] generates trajectories using a one-step stochastic policy. DESIRE [7] draws samples via
a conditional variational autoencoder. Social GAN [8] and SoPhie [9] utilize GAN architectures
to generate diverse and realistic samples. Overall, these sampling-based methods are challenging
because a very large number of samples may be necessary in order to fully cover the distribution
over future behavior, including interesting but low-probability regions of the distribution.

Discriminative models directly regress future trajectories and often include a classification loss to
induce the model to select the trajectory mode that most closely matches the ground truth. A number
of approaches have been proposed that use different methods to produce a diverse and useful set of
discrete trajectory modes, which are often components in a mixture distribution. MTP [10] learns
multiple different trajectory modes via an unsupervised approach. MultiPath [11] predicts trajectory
residuals from a fixed set of trajectory anchors learned using k-means. CoverNet [12] generates a
large number of dynamically feasible trajectories via a set coverage approach. In this work, because
we use a discriminative approach, we focus on comparing to other methods that do the same.

Several trajectory prediction approaches have proposed different methods for capturing rich scene
context in their input representations. RasterNet [13, 14] rasterizes high-definition maps and the
states of surrounding actors into a bird’s eye view image. VectorNet [15] directly uses vectorized
map information and actor trajectories with minimal information loss. Other very recent works such
as [16, 17, 18] encode lane features using attention mechanisms and pursue some of the same themes
that we investigate in this work. There is also a broad class of methods that jointly perform object
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Figure 2: An overview of our multi-modal goal-based trajectory prediction method. Given a scene,
we process each actor in 3 stages: (a) generate a set of goal paths; (b) encode input representations
for the actor states and goal paths; (c) predict a trajectory distribution using our graph network.

detection and motion forecasting [19, 20, 21], which allows the model to incorporate rich scene
context and appearance features that are learned in the perception stage into the prediction stage.

Our work relies heavily on the use of the Frenet-Serret path-relative coordinate frame [22, 23], which
is deeply rooted in differential geometry and is quite widely used for trajectory planning [24, 25],
though much less frequently employed for trajectory prediction. Our work also makes use of recent
ideas for set-based [1] and graph-based [26, 27] neural network architectures which allow us to
learn permutation-invariant and permutation-equivariant functions of an input set of elements. The
key differences between our method and previous methods lie in how we utilize structured map
information: (1) both our model inputs and outputs are represented in the path-relative coordinate
frame; (2) our model outputs a variable number of trajectories because it adapts to the map geometry.

3 Method

In this section, we describe our novel method for goal-directed trajectory prediction, which we
call GoalNet. For the purposes of this work, we assume that object detection and tracking have
already been performed using sensor inputs from the scene. We are therefore presented with a set
of detected objects with positions and headings (x, y, θ), bounding box dimensions (w, h), higher-
order states (velocity, acceleration), and 2 seconds of motion history (past x, y positions). Given this
information, we focus on predicting the future motion of all dynamic (non-parked) vehicles in the
scene. A high-level overview of our method is provided in Figure 2 with three key components of
our methods highlighted: (1) Goal Proposal: We propose a set of goals for each actor based on local
map geometry. (2) Encoder Module: The actor state and scene context are encoded in this module.
(3) Graph Network Module: We use a graph network to make predictions based on the encoded
features. In the remainder of this section, we describe each module in detail.

3.1 Goal Proposal
The first step of our trajectory prediction method is to generate a set of candidate goals for each
actor. To do this, we leverage high-definition maps of the scene, which are readily available in many
self-driving systems. For the purposes of vehicle motion prediction, we define a goal as a destination
point along a mapped lane together with the spatial path to that destination. We generate a series of
goal paths for each actor using the centerlines of mapped lanes as the spatial paths.

Specifically, given the bounding box of a detected vehicle, we first compute its centroid cx, cy , and
then use a search radius r around the centroid to identify all nearby starting lanes. We then follow
the mapped lane sequences out to a fixed distance d in order to construct a lane graph using the
identified starting lanes as the root nodes. Finally, we generate the set of all paths from any root
node to a leaf node in the lane graph to produce our set of goal paths. Each path is represented as
a sequence of 2D points in space with no temporal component. In this work, we use the generated
goal paths as spatial anchors for our trajectory predictions.

A key feature of our approach is that we are able to generate a variable number of goals for each
actor, allowing our model to adapt to different road geometries at run time. All legally plausible goal
paths will be generated for an actor based on the map structure and the specified search radius r.
For example, in Figure 2, four goals are proposed for the actor approaching the intersection from the
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Figure 3: An illustration of the transformation from the Cartesian (x, y) coordinate frame (a) to the
path-relative (a, c) coordinate frame (b). Full details are provided in Equations 1 and 2.

lower left corner. In contrast, the actor approaching from the top right corner only has two proposed
goals because it is driving in a right-turn-only lane.

3.2 Path-Relative Coordinate Frame
In this section, we describe the path-relative coordinate frame that we use extensively in our model.
We utilize the Frenet-Serret frame, defined in a piecewise linear manner along the ordinarily non-
differentiable polyline. Let ρxy = (ρ1xy, · · · , ρLxy) be a spatial reference path with 2D points ρixy =

(ρix, ρ
i
y) evenly sampled along the path at a fixed spatial resolution δρ. Let τxy = (τ1xy, · · · , τTxy) be

a spatio-temporal trajectory with 2D waypoints τ txy = (τ tx, τ
t
y) evenly sampled in time.

Given a path ρxy and trajectory τxy , whose points are both defined in the Cartesian coordinate frame,
we define the along-track and cross-track decomposition for each trajectory waypoint as follows:

τ ta = itδρ + ‖ρi
t

xy − ρ̃txy‖2 (1)

τ tc = 〈(τ txy − ρ̃txy) , ξ(ρi
t+1
xy − ρi

t

xy)⊥〉 where ξ = ‖ρi
t+1
xy − ρi

t

xy‖−12 (2)

Here ρ̃txy denotes the closest point on the polyline of the path ρxy to the trajectory point τ txy , it

denotes the index of the path point that precedes the closest point ρ̃txy , and ⊥ denotes orthogonal
vector operation. When the closest point is at the end of the reference path, we assume it to be L−1.
Figure 3 shows a graphical depiction of this coordinate frame transformation.

Finally, we define the path projection operator Πρ(·) as an operator that maps the Cartesian frame
representation of a trajectory τ to its representation in the path-relative frame of a specific path ρ. In
the remainder of this paper, when it is clear from context, we drop the subscripts xy and ac.

3.3 Input and Output Representations
We make heavy use of the path-relative coordinate frame for both our input representation and our
output representation, which are described in detail below.

Input Representation: The inputs to our model consist of current and past actor states along with
rich map context in the form of goal proposals. To encode this information into a useful form,
we develop an Encoder Module (see Figure 2) with three parts: (1) Actor State: The historical
positions and current higher-order motion states for the actor of interest are encoded by an RNN and
MLP encoder, respectively. (2) Along-Path Rasters: We construct a path-aligned raster to capture
the scene context along each goal path. The raster has multiple channels, which capture the path
curvature, locations of traffic control regions, and the position and speeds of the closest surrounding
actors to the actor of interest. Each channel has size 80× 4, where each pixel covers a 1m× 1m area.
This is encoded by a CNN encoder. (3) Path-Relative State Rollout: We apply a kinematic equation
to calculate the actor’s extrapolated future positions from its current motion states according to
s̃t = s0 + v0 t+ 0.5 a0 t

2. Given this kinematic trajectory rollout s̃ = (s̃0, · · · , s̃T ), we project it to
the path-relative frame of each goal path ρ to obtain e = Πρ(s̃). Outputs from (1) and (2) are used
as the actor node features a and goal node features g while (3) is used as the edge feature e in the
graph network as described in Section 3.5.

Output Representation: Given a reference goal path ρ, we predict a goal-based trajectory for the
goal by representing the trajectory in the path-relative frame. Specifically, instead of transforming
the ground truth trajectory τxy to an actor-centric frame (centered at the actor’s position and rotated
to align with its heading) and directly regressing τxy as is done in typical existing approaches (e.g.,
[10], [15]), we instead regress τac = Πρ(τxy). This representation has many benefits, including:
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(1) it captures the lane topology in a frame of reference that allows the model to more easily learn
to generalize across paths with different curvatures, and (2) it allows us to naturally decompose the
spatial (cross-track) and temporal (along-track) dimensions of the actor’s future motion.

3.4 Spatial and Temporal Multi-Modality
Our model is multi-modal and contains two types of multi-modality: spatial and temporal. Let N
be the number of goal proposals for an actor and let M be the number of temporal modes for each
spatial mode. Our model outputs a total of K = (N + 1)M trajectories along with a categorical
distribution over the K modes. The “ground truth” mode probability is required for supervision in
training and is assumed to be the product of (a) the target spatial mode probability and (b) the target
temporal mode probability conditioned on its underlying spatial path.

Spatial Modes: Our model contains two types of spatial modes: goal-based and goal-free. Each
goal-based mode is associated with a goal. The target goal-based mode probability is computed
by an algorithm that identifies goal-following behavior. An actor is considered to be following
a goal if its future trajectory stays within a certain cross-track deviation from the goal path (see
Appendix A.1 for details). Because goal paths can partially overlap with one another and the actor’s
observed future trajectory might be quite short (e.g., consider a slow-moving actor), it is possible that
multiple goal paths will match the actor’s behavior. When there are G > 0 goals being followed, we
assign equal target probability 1/G to each of these goals. To capture non-goal-following behaviors
such as pulling onto the shoulder, our model also develops a goal-free spatial mode for each actor.
The target probability for the goal-free mode is set to 1 when none of the goals match the actor’s
future trajectory. Qualitatively, we observe that the goal-free mode typically predicts trajectories
that extrapolate the actor’s current motion, so we also refer to these as motion-based trajectories.

Temporal Modes: Within a spatial mode, an actor could exhibit different temporal behaviors, such
as slowing down or speeding up. For each spatial mode, including both goal-based and goal-free
modes, our model predicts a fixed number M of temporal modes. Following previous work [10],
we use an unsupervised approach to identify the “ground truth” temporal mode on the fly during
training. Given the trajectories for the temporal modes of each spatial mode with nonzero target
probability, the temporal mode whose trajectory is closest to the ground truth trajectory is selected
as the ground truth temporal mode and assigned target probability 1.

3.5 Graph Network Formulation
A central aspect of our approach is that each actor can have a variable number of candidate goal
paths, where the number depends on the complexity of the lane geometry in the surrounding scene.
In order to generate a corresponding number of trajectories, we draw inspiration from set-based and
graph-based neural network architectures [1, 27]. This style of architecture allows us to learn an
equivariant function of the input set of goals, which is agnostic to the ordering of the goals. The
function produces a corresponding set of output elements that have a one-to-one mapping with the
input elements. In our case, we develop a very simple graph model that allows us to predict one or
more trajectories per input goal along with a categorical distribution over the trajectories.

The structure of our Graph Network Module is shown in Figure 2. Each graph contains two types
of nodes: a single actor node A and multiple goal nodes Gj . The graph also has directed edges
Ej that originate at each goal node and terminate at the actor node. Let N be the number of goal
nodes, gj = φg(Rj) be the encoded path raster representation (goal node attributes), a = φs(H)
be the encoded actor state representation (actor node attributes), and ej be the path-relative actor
state rollout (edge attributes), as described in Section 3.3. We execute two layers of graph network
updates, using the following update functions applied in order from left to right:

ẽj = φe(a, ej , gj) ē = ψ({ẽj}Nj=1) ã = φa(a, ē) (3)

where ẽj and ã then become the edge and actor node representations that are used in the subsequent
graph layer. We note that the goal node latent representation does not get updated in the graph
network layers because it does not have any incoming edges in the graph. However, the edge latent
representations eventually capture information from the full set of goals, not just one single goal.
Here φe(·) and φa(·) are 2-layer MLPs and ψ(·) is a permutation-invariant aggregation function
(we use the mean). Given the resulting node and edge representations, we predict the goal-based
trajectories and probabilities from the actor-goal edges and predict the goal-free trajectories and
probabilities from the actor node.
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3.6 Loss Function
The output of our model consists of a set of goal-based trajectories, which are represented in the
path-relative coordinate frame of their associated reference path, a set of goal-free trajectories, which
are represented in the actor-centric coordinate frame, and the mode probabilities associated with
each trajectory. For a given actor i, let τ (i) denote its ground truth future trajectory, let p(i,k) denote
the ground truth mode distribution over K(i) modes, let τ̂ (i,k) denote the k-th predicted trajectory
for the actor, and let p̂(i,k) denote the predicted mode probability of the k-th predicted trajectory.

Our overall loss function decomposes into a classification loss `cls and a regression loss `reg, which
we compute for each actor and sum over all actors. The two components of the loss are given by:

`
(i)
cls = −

∑K(i)

k=1 p
(i,k) log p̂(i,k) (4)

`(i)reg =
∑K(i)

k=1 p
(i,k)

(
‖τ (i)a − τ̂ (i,k)a ‖1 + γ ‖τ (i)c − τ̂ (i,k)c ‖1

)
(5)

where γ > 1 is a scalar that up-weights the cross-track error relative to the along-track error (since
the magnitude of the cross-track error is much smaller on average). Note that we do not treat the
regression loss on goal-free modes differently. We treat the x-value and y-value of the goal-free
trajectory in actor-centric (heading-aligned) frame to be along-track and cross-track, respectively.

4 Experiments

For our experiments, we train and evaluate two versions of our model: GoalNet-1T, which produces
1 temporal mode per spatial mode and thus only has spatial multi-modality, and GoalNet-2T, which
produces 2 temporal modes per spatial mode. Implementation details can be found in Appendix A.2.

4.1 Datasets
In this work, we use two datasets for evaluation: our internal self-driving dataset and the public
nuScenes dataset [28]. Our internal dataset has approximately 4 million frames collected from more
than 100 hours of driving across two American cities. The nuScenes dataset has 700 train snippets
and 150 validation snippets from Boston and Singapore. More details are given in Appendix B.1.

4.2 Baselines
All baselines perform multi-modal prediction and they all have similar input representation but have
different output representations. Additional implementation details can be found in Appendix B.2.

Multiple Trajectory Prediction [10]: This method learns trajectory modes in an unsupervised way.
It directly regresses the future ground truth trajectory and only allows the gradient to flow back from
the best-matching predicted trajectory. We use 3 modes for MTP.

MultiPath [11]: This method uses spatio-temporal trajectory anchors, which are estimated by run-
ning k-means on the training data. Its trajectory prediction classifies the ground truth anchor and
regresses the offsets of the ground truth trajectory from this anchor. We use 64 modes for MultiPath.

CoverNet [12]: This method constructs a fixed or dynamic trajectory set that is ensured to provide
ε-coverage over all trajectories in the training set up to an ε tolerance. It then performs classification
over the trajectory set with no additional regression component. Since CoverNet has a publicly
released fixed trajectory set containing 2206 trajectories for the nuScenes dataset, we directly use
that in our nuScenes experiments. We do not experiment with the dynamic version of CoverNet.

4.3 Results
We first compare the relative compactness of each method’s multi-modal trajectory representation.
Table 1 shows the number of trajectory modes used by each approach. GoalNet and MTP have a
similar number of modes on average. Note that we have a large standard deviation, which provides
further evidence that we adapt to different map geometries. By contrast, MultiPath and CoverNet
require many more modes. This can have a significant impact on the run time of downstream motion
planning systems, which often scale in the number of trajectories they must process.

In Table 2, we compare our method with all baselines and demonstrate that we achieve the best
performance in nearly all metrics on both our internal dataset and on the public nuScenes dataset.
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Method Number of Modes

GoalNet-1T (internal) 2.81 ±1.91
GoalNet-1T (nuScenes) 1.99 ±1.46

MTP 3
MultiPath 64

CoverNet (nuScenes) 2206

Table 1: Comparison of the total number of trajectory modes produced by each method (we report
mean± stddev for GoalNet). Note that GoalNet-2T always has twice as many modes as GoalNet-1T.

Method min1ADE min1FDE min3ADE min3FDE min5ADE min10ADE E[ADE]

MTP 2.67 (2.77) 7.08 (7.65) 1.69 (2.10) 4.36 (5.92) 1.69 (2.10) 1.69 (2.10) 2.98 (2.82)
MultiPath 2.91 (4.01) 7.69 (10.39) 1.78 (2.40) 4.61 (6.24) 1.44 (1.85) 1.14 (1.35) 3.33 (4.13)
CoverNet — (4.57) — (10.37) — (2.99) — (6.91) — (2.44) — (1.87) — (4.73)

GoalNet-1T 2.27 (2.13) 5.90 (5.79) 1.86 (1.77) 4.70 (4.75) 1.80 (1.75) 1.79 (1.75) 2.35 (2.18)
GoalNet-2T 2.53 (2.44) 6.57 (6.63) 1.53 (1.41) 3.83 (3.66) 1.34 (1.27) 1.28 (1.22) 2.70 (2.60)

Table 2: Trajectory prediction metrics on our internal dataset and on the public nuScenes dataset.
Results listed as internal (nuScenes). All errors are reported in meters.

Similar to prior work, we report both the average displacement error over all horizons (ADE) and
the final displacement error at 6s (FDE). We measure the mink trajectory error on the trajectory that
best matches the ground truth (in terms of ADE) out of the k most probable trajectories. We also
report the expected (probability-weighted) average displacement error E[ADE].1 GoalNet-1T has
the smallest trajectory error when evaluating the most probable mode (k = 1) and the expected error.
GoalNet-2T has the best performance on nearly all other metrics. In addition to these displacement
error metrics, we also evaluate the along-track error (ATE) and cross-track error (CTE), which we
define in Appendix C. We plot ATE and CTE on nuScenes as a function of the prediction horizon
in Figure 4. From this plot, we see that GoalNet-2T outperforms all baselines across all horizons
on both metrics. However, more notably, both versions of our model achieve a very substantial (40-
50%) gain in cross-track error at the longer time horizons. Furthermore, the gap between GoalNet
and baseline methods quickly widens as the horizon increases, which demonstrates its benefits for
longer-term prediction and underscores the utility of our map-adaptive spatial goals.

In Table 3, we assess the importance of the different components of our model. For this study,
we report results only on turning samples because for actors who are going straight, there will be
no difference between using the path-relative coordinate frame and the actor-centric frame. When
dropping the path raster, we see that ATE degrades, which suggests that knowledge of traffic signs,
surrounding actor information, and path curvature helps the model to better reason about the tem-
poral behavior of the actor. When dropping the path edge features, we see that both ATE and CTE
are significantly degraded, which suggests that projecting the actor’s kinematic state rollout into
the path-relative frame eases the learning process. Lastly, representing both input scene and output
trajectories in the path-relative frame helps reason about actor future behavior around intersections.

Next, we conduct an experiment to determine whether our model is able to generalize to unseen
driving scenarios. Our internal dataset contains driving data from two different cities. We observe

1When calculating expected error for CoverNet, for computational efficiency, we keep only the 100 most
probable trajectory modes and renormalize their probabilities.

path
rasters

path edge
features

path-relative
frame

min1 min3

AATE ACTE ADE FDE AATE ACTE ADE FDE

3 3 3 2.79 1.14 3.44 9.29 1.77 0.74 2.15 5.67
7 3 3 3.04 1.06 3.62 9.84 2.02 0.74 2.39 6.36
3 7 3 3.28 1.42 4.04 10.37 1.95 0.88 2.40 6.15
3 3 7 2.89 1.35 3.66 10.10 1.88 0.98 2.40 6.64

Table 3: Ablation study of GoalNet. Results are reported on our internal dataset, and all variations
are evaluated only on challenging turning samples (which constitute 21.7% of the data). Here AATE
and ACTE are the average along-track and cross-track error (averaged over all horizons).
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Figure 4: A comparison of min3 along-track
and cross-track errors at different time horizons.

Method City 1 City 2
(in distribution) (out of distribution)

GoalNet-2T 2.59 2.62 (+1.16% )
MTP 2.66 2.89 (+8.65%)

MultiPath 2.86 3.3 (+15.38%)

Table 4: Results of our inter-city generalization
experiment. All models are trained only on data
from City 1, and we report min1ADE on test
sets from both City 1 and City 2.

5-way
intersection

curved
road

off-map
driving

(a) Truth (b) GoalNet (c) MTP (d) MultiPath

Figure 5: Qualitative examples from our data. The left column shows the actor-of-interest’s ground
truth future trajectory (green), and the subsequent columns show the predicted trajectories from
GoalNet (blue), MTP (yellow), and MultiPath (pink). For all methods, the trajectory probability is
encoded in the alpha opacity value. For GoalNet (our method), we also show the goal paths in red.

that City 2 has more unusual and challenging road geometries than City 1, so we train all models
on data from City 1 but evaluate them on City 2. As shown in Table 4, all models have regressed
performance when switching evaluation from City 1 to City 2. However, ours exhibits the least
regression, which provides evidence that the map-adaptive and compositional design of our model
allows it to generalize quite well to out-of-distribution samples.

In Figure 5, we showcase the ability of our method to handle both map-compliant driving behavior
in unusual map geometries and non-map-compliant driving behavior. In the first example of a 5-
way intersection, we are able to assign non-negligible probability to all modes and produce nice,
lane-following trajectories. In contrast, the trajectory modes of MTP and MultiPath are much less
spatially diverse. In the second example, our predicted trajectory is able to follow the curved road
very well and match the ground truth behavior, whereas both MTP and MultiPath extrapolate the
actor motion and fail to capture the challenging curved lane-following behavior. In the last example
of off-map driving, although we do not have a goal that could capture the ground truth behavior, our
motion-based trajectory still covers this mode by reasoning about the actor’s current motion.

5 Conclusion

In this work, we introduce GoalNet, a novel trajectory prediction model. We derive goals directly
from the underlying map and use the reference paths to provide useful structure for both the model
input and output representations. We produce a semantically interpretable probability distribution
over the goal-based and motion-based modes. We demonstrate that we are able to achieve state-of-
the-art performance and also adapt to unseen map configurations in new cities.
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A Method Design Details

A.1 Path Auto-Labeling Algorithm

The following section provides a detailed description of the path autolabeling algorithm that was
introduced in Section 3.4. In particular, given the ground truth trajectory τxy of the actor of interest
and their N candidate paths ρ1xy, ρ

2
xy, · · · , ρNxy , the path auto-labeling algorithm identifies zero or

more paths taken by the actor.

The algorithm is done in three steps. First, for each path n, we compute maximum cross-track
deviation τncmax

of the trajectory τxy relative to the path ρnxy . Specifically,

τac = Πρn(τxy)

τncmax
= max
t∈{1,··· ,T}

τ tc

Second, among all paths, we choose the path with the minimum value of the maximum cross-track
deviation, namely: τm = arg min(τncmax

). We then select all other paths whose maximum cross-
track deviation is within a tolerance, which we set to 0.1m, of that of τm. Finally, if τmc < 5.0m,
we label all chosen paths as being followed. Otherwise, no path is followed.

A.2 Implementation Details

The following section provides implementation details of the various model components described
in Section 3.

Path Generation: In our path generation algorithm, we use a search radius of r = 2 meters based
on the fact that the average lane is mostly between 3 meters and 4 meters wide. We use a fixed path
length of d = 80 meters because a vehicle traveling at a typical city speed of 30mph will travel 80
meters in 6 seconds. Finally, we use a constant sampling interval of 1 meter for the path points.

Model Architecture: Our path-relative rasters are discretized to have shape (80, 4) with a resolution
of 1m × 1m, which corresponds to 80 meters in along-path distance and 4 meters in cross-path
distance. The path is placed at the central line of the raster. Our rasters have 8 channels in total:
one channel captures the path curvature; two channels capture the position and speed of the 20
closest actors to the target actor; the remaining channels encode traffic sign and signal information,
including stop signs, yield signs, green traffic lights, red traffic lights, and all other traffic lights.
We encode each path raster using a CNN encoder. The overall raster shape is (80, 4, 8). We apply
three 2D convolutional layers on top of each path raster with kernel size (3, 1), and then apply a 2D
max pooling layer to get the encoded goal node features. We use a RNN encoder for the 2-second
actor history sampled at 10Hz and a MLP encoder for its current estimated state to form the actor
node features. The path-relative future roll-out is generated at 2Hz for a duration of 6 seconds and
is directly fed into the graph network as edge features.

Model Prediction: Given the node and edge representations that result from the graph network up-
dates, we generate both edge-level and node-level predictions. From each edge, we output the goal-
based spatial score, the associated temporal scores conditioned on the specific goal-based mode,
and the goal-based trajectories (one for each temporal mode). From the actor node, we output the
goal-free spatial score, the associated temporal scores conditioned on the goal-free mode, and the
goal-free trajectories (one for each temporal mode). Finally, the spatial mode distribution is com-
puted by taking a softmax over the spatial scores and the conditional temporal mode distributions
are computed by taking a softmax over the temporal scores of each spatial mode. We end up with
a joint categorical distribution over all goal-based and goal-free trajectories, where each trajectory
probability is the product of its spatial and temporal probabilities.

B Experimental Settings

B.1 Datasets

The ground truth annotations have a frequency of 10Hz in our internal dataset and 2Hz in nuScenes.
Since we don’t have access to the ground truth labels for the official nuScenes test set, we randomly
subsample 5% of the logs from the train snippets to form our train-val dataset, and use the official
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validation snippets as our test set. For training, we exclude actors that are parked, actors that do
not have at least 6 seconds of future observations, and the ego-vehicle itself. For evaluation, we
additionally exclude all actors whose future trajectories move less than 1 meter over the 6-second
horizon (these are generally easier cases).

Our model does not operate directly on sensor data but on detected and tracked objects. To obtain
the object detections and state estimates for our internal dataset, we run an upstream perception
module and use human-labeled data for the ground truth future positions. For the nuScenes dataset,
we use human labels for both the actor state estimates and ground truth future positions.

B.2 Baseline Implementations

For implementations of different baselines, we use the same configuration for input representation
to emphasize the difference in their output representation. In particular, when constructing the scene
level raster images, we rotate the scene to align with the heading of the sensing vehicle. We have a
full 2-second history channel sampled at 10Hz for each actor in the current timestamp, 8 rasterized
map channels which captures different map semantics, and 3 different traffic sign channels including
yield sign, stop sign and traffic signals. Our scene image has shape (640, 960) which corresponds
to an area of size 100m × 150m. We first apply ResNet50 with a depth multiplier 25% on the
scene image which is downscaled to have size (160, 240). For each actor, we crop an actor-centric
image with a patch size (64, 64) corresponding to an area of size 40m × 40m. An actor-centric
convolution operation is then applied on top of the cropped image. The final pooled feature is
concatenated together with the actor’s velocity and acceleration and fed into an MLP to generate the
final prediction.

For CoverNet specifically, since the method partially depends on having a fixed set of pre-generated
trajectories, we do not report CoverNet results on our internal dataset. For nuScenes, we make use
of the publicly available CoverNet trajectory set.

C Metrics Definitions

C.1 Displacement Error

To evaluate a multi-modal set of predicted trajectories, we take the best trajectory (in terms of mini-
mum average displacement) among the top-k highest-probability trajectories. We refer to this selec-
tion as mink in our evaluation. Note that min1 selects the most probable trajectory. Given a selected
predicted trajectory τ̂xy and ground truth trajectory τxy , we compute the average displacement error
over the full horizon (ADE) and the final displacement error at 6 seconds (FDE) as follows:

ADE = 1
T

∑T
t=1 ‖τ txy − τ̂ txy‖2

FDE = ‖τTxy − τ̂Txy‖2
We also report the expected average displacement error, which is defined as:

E[ADE] =
∑K
k=1 p̂

kADE(τ̂kxy, τxy)

whereK is the total number of trajectory modes, p̂k is the predicted probability of the k-th trajectory
mode, τ̂kxy is the k-th predicted trajectory, and τxy is the ground truth trajectory.

C.2 Along-Track and Cross-Track Error

The along-track error and cross-track error are a decomposition of the trajectory prediction error in
the path-relative coordinate frame of the ground truth trajectory. Given the ground truth trajectory
τxy and the predicted trajectory τ̂xy , we first strip away the temporal component of τxy by re-
sampling τxy at a fixed spatial resolution δτ = 0.1m to obtain ground truth path ρ∗xy . Then, we
project τ̂xy and τxy to the path-relative coordinate frame of ρ∗xy to get the along-track and cross-
track representations of the predicted trajectory τ̂ac = Πρ∗(τ̂xy) and the ground truth trajectory
τac = Πρ∗(τxy). The cross-track error of a prediction point τ̂ txy is the absolute value of its cross-
track component |τ̂ tc |. The along-track error of the prediction point is the absolute difference between
its along-track component and the along-track component of the corresponding ground truth point
at the same timestamp |τ̂ ta − τ ta|. We use AATE and ACTE to refer to the average along-track error
and average cross-track error, where the average is taken over all time horizons (analogous to ADE).
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D Supplementary Results

D.1 Evaluation on Turning Cases

In Table 5, we evaluate our method and baselines on a subset of our data which contains challenging
turning cases. For an actor, if the heading deviation between the last future waypoint in the prediction
horizon and the current heading is larger than 10 degrees, we define it as a turning behavior. For
our internal dataset, these cases comprise 21.68% of our test set; for the nuScenes validation set,
this number is 24.28%. Comparing with Table 2, we notice that the performance gap between our
method and other methods is even wider, suggesting that our model performs better especially on
more challenging scenarios when actors are not simply driving straight.

Method min1ADE min1FDE min3ADE min3FDE min5ADE min10ADE E[ADE]

MTP 3.67 (3.45) 10.15 (9.71) 2.70 (2.87) 7.52 (8.10) 2.70 (2.87) 2.70 (2.87) 3.81 (3.50)
MultiPath 3.89 (4.60) 10.70 (12.09) 2.69 (3.01) 7.53 (8.03) 2.29 (2.47) 1.87 (1.98) 4.20 (4.70)
CoverNet — (5.53) — (13.07) — (3.87) — (9.42) — (3.29) — (2.64) — (5.66)

GoalNet-1T 3.17 (2.70) 8.59 (7.39) 2.51 (2.19) 6.56 (5.88) 2.42 (2.16) 2.42 (2.15) 3.24 (2.75)
GoalNet-2T 3.44 (3.04) 9.30 (8.27) 2.15 (1.84) 5.67 (4.74) 1.87 (1.64) 1.76 (1.58) 3.59 (3.14)

Table 5: Trajectory prediction metrics on our internal dataset and on the public nuScenes dataset on
turning cases only. Results listed as internal (nuScenes). All errors are reported in meters.

D.2 Evaluation on Best Matching Trajectory

Finally, for completeness, we report results by comparing all methods on the trajectory error from the
single trajectory that best matches the ground truth across all trajectory modes. We call this the min∗
metric. This comparison naturally provides an advantage to methods that generate more trajectories.
Given that, we are not surprised to see in Table 6 that CoverNet (which has 2206 modes) always
achieves the best performance on nuScenes, and MultiPath (which has 64 modes) nearly always
achieves the best performance on our internal dataset where CoverNet is not available.

However, despite the fact that our method has many fewer modes than both MultiPath and CoverNet
(see Table 1), we see that we are actually quite competitive on min∗ACTE, which is the average
cross-track error of the best-matching mode. In particular, we are able to outperform MultiPath
on this metric (on both our dataset and nuScenes) and even come close to matching CoverNet’s
performance. Since the cross-track error captures the spatial component of the trajectory error, we
attribute our good performance on this metric to our use of lane-based path anchors. Finally, we
observe that this pattern is further emphasized when we evaluate only on turning cases.

Method min∗ADE min∗AATE min∗ACTE

MTP 1.69 (2.10) 1.44 (1.78) 0.52 (0.71)
MultiPath 0.95 (0.97) 0.75 (0.74) 0.41 (0.46)
CoverNet — (0.75) — (0.58) — (0.35)

GoalNet-1T 1.79 (1.75) 1.61 (1.57) 0.42 (0.47)
GoalNet-2T 1.28 (1.22) 1.12 (1.05) 0.36 (0.42)

Method min∗ADE min∗AATE min∗ACTE

MTP 2.70 (2.87) 2.05 (2.22) 1.18 (1.28)
MultiPath 1.51 (1.45) 1.04 (0.98) 0.86 (0.86)
CoverNet — (1.00) — (0.70) — (0.57)

GoalNet-1T 2.42 (2.15) 2.07 (1.79) 0.73 (0.77)
GoalNet-2T 1.77 (1.58) 1.44 (1.26) 0.65 (0.68)

Table 6: Trajectory prediction metrics of the best overall trajectory (min∗) produced by each method
on both our internal dataset and on the public nuScenes dataset. The left table shows results on all
samples, and the right table shows results on turning cases. Results listed as internal (nuScenes).
All errors are reported in meters.
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