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Abstract: Predicting the future behavior of moving agents is essential for real
world applications. It is challenging as the intent of the agent and the corresponding
behavior is unknown and intrinsically multimodal. Our key insight is that for
prediction within a moderate time horizon, the future modes can be effectively
captured by a set of target states. This leads to our target-driven trajectory prediction
(TNT) framework. TNT has three stages which are trained end-to-end. It first
predicts an agent’s potential target states 7" steps into the future, by encoding
its interactions with the environment and the other agents. TNT then generates
trajectory state sequences conditioned on targets. A final stage estimates trajectory
likelihoods and a final compact set of trajectory predictions is selected. This is in
contrast to previous work which models agent intents as latent variables, and relies
on test-time sampling to generate diverse trajectories. We benchmark TNT on
trajectory prediction of vehicles and pedestrians, where we outperform state-of-the-
art on Argoverse Forecasting, INTERACTION, Stanford Drone and an in-house
Pedestrian-at-Intersection dataset.

Keywords: Trajectory prediction, multimodal prediction.

1 Introduction

Predicting the future states of moving agents in a real-world environment is an important and
fundamental problem in robotics. For example, in the setting of autonomous driving on public roads,
it is essential to have an accurate understanding of where the other vehicles and pedestrians will likely
be in the future, in order for an autonomous vehicle to take safe and effective actions.

A key challenge to future prediction is the high degree of uncertainty, in large part due to not knowing
the intents and latent characteristics of the other agents. For example, a vehicle commonly has a
multimodal distribution of futures: it could turn, go straight, slow down, speed up, efc. Depending on
other scene elements, it could pass, yield, change lanes, or pull into a driveway. This challenge has
garnered a lot of interest in the past few years. One approach to model the high degree of multimodality
is to employ flexible implicit distributions from which samples can be drawn—conditional variational
autoencoders (CVAEs) [1], generative adversarial networks (GANs) [2], and single-step policy
roll-out methods [3]. Despite their competitive performance, the use of latent variables to model
intents prohibits them to be interpreted, and often requires test-time sampling to evaluate probabilistic
queries (e.g., “how likely is the agent to turn left?”). Furthermore, considerable effort has gone
into addressing mode collapse in such models, in the machine learning community at large [4] and
specifically for self-driving cars [5, 6].

To address these limitations, we make the observation that for our task (e.g. vehicle and pedestrian
trajectory prediction), the uncertainties over a moderately long future can be mostly captured by the
prediction of possible fargets of the agents. These targets are not only grounded in physical entities
that are interpretable (e.g. location), but also correlate well with intent (e.g. a lane change or a right
turn). We conjecture that the space of targets can be discretized in a scene — allowing a deterministic
model to generate diverse targets in parallel — and later refined to be more accurate.
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Figure 1: Illustration of the TNT framework when applied to the vehicle future trajectory prediction
task. TNT consists of three stages: (a) target prediction which proposes a set of plausible targets
(stars) among all candidates (diamonds). (b) farget-conditioned motion estimation which estimates a
trajectory (distribution) towards each selected target, (c) scoring and selection which ranks trajectory
hypotheses and selects a final set of trajectory predictions with likelihood scores.

These observations lead to our proposed farget-driven trajectory prediction framework, named TNT.
We first cast the future prediction problem into predicting a distribution over discretized target
states, and then formulate a probabilistic model in which trajectory estimation and likelihood are
conditioned on such targets. The resulting framework has three stages that are trained end-to-end:
(1) target prediction estimates a distribution over candidate targets given scene context; (2) target-
conditioned motion estimation predicts trajectory state sequences per target; and (3) scoring and
selection estimates the likelihood of each predicted trajectory, taking into account the context of
all other predicted trajectories. We obtain a final set of compact diverse predictions by ranking the
likelihoods and suppressing redundant trajectories. An illustration of our three-stage model when
applied to vehicle trajectory prediction is shown in Figure 1. Although our model is end-to-end
trained, its three stage layout, with interpretable outputs at each stage, closely follows the typical
processing steps in traditional robotics motion forecasting and planning systems [7, 8], thus making
it easy to incorporate domain knowledge during deployment.

We demonstrate the effectiveness of TNT on multiple challenging trajectory prediction bench-
marks. In the driving domain we evaluate on the Argoverse Forecasting dataset [9] and INTERAC-
TION dataset [10]; for pedestrians, the Stanford Drone dataset [11] and an in-house Pedestrian-at-
Intersection dataset. We achieved the state-of-the-art performance on all benchmarks.

2 Related Work

Trajectory prediction has received much attention recently, especially in autonomous driving [9,
10, 12, 13, 14], in social interaction prediction [15, 16, 17, 18] and sports [19, 20]. One of the key
challenges is to model multimodal futures distributions. A popular approach is to model the future
modes implicitly as latent variables [1, 3, 2, 21, 22, 23, 24, 25], which aims at capturing the underlying
intents of the agents. For example, DESIRE [1] used a conditional VAE [26] while PRECOG [3]
used flow-based generative models [27]; Social GAN [2] proposed an adversarial discriminator to
predict realistic futures; Hong et al. [22] modeled the motion patterns with a latent Gaussian mixture
model. However, the use of non-interpretable, latent variables makes it challenging to incorporate
expert knowledge into the system. Furthermore, these models require stochastic sampling from the
latent space to obtain implicit distributions at run time. These properties make them less suitable for
practical deployment.

Alternatively, some approaches attempted to decompose the trajectory prediction task into subtasks,
with the hope that each subtask is more manageable to solve and provides interpretable intermediate
results. For example, Ziebart er al. [28] proposed planning-based prediction for pedestrians, they
first estimated a Bayesian posterior distribution of destinations, and then used inverse reinforcement
learning (IRL) to plan the trajectories. Rehder et al. [29] introduced the notion of goals which are
defined as short-term destinations, and decomposed the problem into goal distribution estimation
and goal-directed planning. The goals were defined as mixture of Gaussian latent variables. Their
followup work [30] then demonstrated that the whole framework can be jointly trained via IRL.



Concurrent to our work, Mangalam et al. [31] proposed to generate endpoints to guide the full
trajectory generation. Unlike TNT, their method still relies on latent variables in CVAE to model the
underlying modes of the endpoints.

Most related to TNT are works that discretize the output space as intents [32] or with anchors [33,
34]. IntentNet [32] manually defined several common motion categories for self-driving vehicles,
such as left turn and lane changes, and learned a separate motion predictor for each intent. This
manual categorization is task and dataset dependent, and may be too coarse to capture intra-category
multimodality. More recently, MultiPath [33] and CoverNet [34] chose to quantize the trajectories
into anchors, where the trajectory prediction task is reformulated into anchor selection and offset
regression. The anchors are either pre-clustered into a fixed set a priori [33] or obtained dynamically
based on kinematic heuristics [34]. Unlike anchor trajectories, the targets in TNT are much lower
dimensional and can be easily discretized via uniform sampling or based on expert knowledge (e.g.
HD maps). Hence, they can be estimated more reliably. Despite their simplicity, we demonstrate that
the targets are informative enough to capture most of the uncertainty in predicting future state, and
our target-driven framework outperforms the anchor-based methods.

3 Formulation

Given a sequence of observed states for a single agent sp = [s_7/41,S_71742, ..., S0, our goal
is to predict its future states sp = [s1, S2, ..., 7] up to some fixed time step 7. Naturally, the
agent interacts with an environment consisting of other agents and scene elements for context:
cp = [c_7r41,C 7742, ...,C0]. We denote x = (sp,cp) for brevity, thus the overall probabilistic
distribution we want to capture is p(sg|x).

In practice, p(sp|x) can be highly multimodal. For example, a vehicle approaching an intersection
could turn left, go straight or change lanes. Intuitively, the uncertainty of future states can be
decomposed into two parts: the target or intent uncertainty, such as the decision between turning left
and right; and the control uncertainty, such as the fine-grained motion required to perform a turn. We
can therefore decompose the probabilistic distribution accordingly by conditioning on targets and
then marginalizing over them:

p(sp|x) = / p(rX)p(sr|r, x)dr, 0
T7€T (cp)

where T (cp) represents the space of plausible targets depending on the observed context ¢p.

Under this formulation, our main insight is that, for applications such as trajectory prediction, by
properly designing the target space 7 (cp) (e.g. target locations), the target distribution p(7|x) can
well capture the intent uncertainty. Once the target is decided, we further demonstrate that the
control uncertainty (e.g. trajectories) can be reliably modeled by simple, unimodal distributions.
We approximate the target space 7 (cp) by a set of discrete locations, turning the estimation of
p(7|x) primarily into a classification task. Compared with latent variational models, our model offers
better interpretability in the form of explicit target distributions, and can naturally incorporate expert
knowledge (such as road topology), when designing the target space T (cp).

Our overall framework has three conceptual stages. The first stage is target prediction, whose
goal is to model the intent uncertainty with a discrete set of target states 7 based on the observed
context x, and outputs the target distribution p(7|x). The second stage is target-conditioned motion
estimation, which models the possible future motions from the initial state to the target with a
unimodal distribution. The first two stages give rise to the following probabilistic predictions

p(SF‘X) = ZTET(CP) p(T|X)p(SF‘7—a X)
Many downstream applications, such as real-time behavior prediction, require a small set of represen-
tative future predictions rather than the full distribution of all possible futures. Our final stage, scoring

and selection, is tailored for this purpose. We learn a scoring function ¢(sg) over all representative
predictions, and select a final diversified set of predictions.

4 Target-driveN Trajectory Prediction

This section describes our proposed TNT framework in detail. We focus on the task of future
trajectory prediction for moving road agents, where both the states and the targets are represented by
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Figure 2: TNT model overview. Scene context is first encoded as the model’s inputs. Then follows
the core three stages of TNT: (a) target prediction which proposes an initial set of M targets; (b)
target-conditioned motion estimation which estimates a trajectory for each target; (c) scoring and
selection which ranks trajectory hypotheses and outputs a final set of K predicted trajectories.

their physical locations (z;, y;). We begin the section by describing how the context information is
encoded efficiently. We then present details on how the proposed three stages are adapted to the task.
An overview of the TNT model architecture is shown in Figure 2.

4.1 Scene context encoding

Modeling scene context is a first step in trajectory prediction so as to capture agent-road and agent-
agent interactions. TNT can use any suitable context encoder: when the HD map is available, we use
a state-of-the-art hierarchical graph neural network VectorNet [35] to encode the context. Specifically,
polylines are used to abstract the HD map elements ¢p (lanes, traffic signs) and agent trajectories s p;
a subgraph network is applied to encode each polyline, which contains a variable number of vectors;
then a global graph is used to model the interactions between polylines. The output is a global context
feature x for each modeled agent. If scene context is only available in the form of top-down imagery,
a ConvNet is used as the context encoder.

4.2 Target prediction

In our formulation, targets 7 are defined as the locations (x, y) an agent is likely to be at a fixed time
horizon T'. In the first target prediction stage, we aim to provide a distribution of future targets of an
agent p(7|x). We model the potential future targets via a set of N discrete, quantized locations with
continuous offsets: 7 = {7} = {(z™,y") + (Az™, Ay™)}_,. The distribution over targets can
then be modeled via a discrete-continuous factorization:

p(r"x) = m(7"[x) - N(Az™ [ v (%)) - N(Ay™ | vy (%)), 2)

where 7(7"|X) = exp f(7",x)/ >, exp f(7/,X) is a discrete distribution over location choices
(z™,y™). The terms N (-|v(-)) denote a generalized normal distribution, where we choose Huber as
the distance function. We denote the mean as v/(-) and assume unit variance.

The trainable functions f(-) and v(-) are implemented with a 2-layer multilayer perceptron (MLP),
with target coordinates (¥, y*) and the scene context feature x as inputs. They predict a discrete
distribution over target locations and their most likely offsets. The loss function for training this stage
is given by

Ls = Ecls(7T7 u) + Eoffset(”a:» Vy, Axuv Ay"), 3)
where L is cross entropy, Logse; 1S the Huber loss; u is the target closest to the ground truth location,
and Az*, Ay are the spatial offsets of u from the ground truth.

The choice of the discrete target space is flexible across different applications. In the vehicle trajectory
prediction problem, we sample points on lane centerlines from HD maps and use them as target
candidates, with the assumption that vehicles never depart far away from lanes; for pedestrians, we
generate a virtual grid around the agent and use the grid points as targets. Comparing to regression,
the most prominent advantage of modeling the future as a discrete set of targets is that it does not
suffer from mode averaging, which is the major factor that hampers multimodal predictions.



In practice, we over-sample a large number of target candidates as input to this stage, e.g. N = 1000,
to increase the coverage of the potential future locations; and then keep a smaller number of them as
output, e.g. top M = 50, for further processing, as a good choice of M helps to balance between
target recall and model efficiency.

4.3 Target-conditioned motion estimation

In the second stage, we model the likelihood of a trajectory given a target as p(sp|7,x) =

Hle p(st|7,x), again with a generalized normal distribution. This makes two assumptions. First,
future time steps are conditionally independent, which makes our model computationally efficient
by avoiding sequential predictions, as is done in [33, 34, 21, 31]. Second, we are making strong but
reasonable assumption that the distribution of the trajectories is unimodal (normal) given the target.
This is certainly true for short time horizons; for longer time horizons, one could iterate between
(intermediate) target prediction and motion estimation so that the assumption still holds.

This stage is implemented with a 2-layer MLP. It takes context feature x and a target location 7 as
input, and outputs one most likely future trajectory [$1, ..., §7] per target. Since it is conditioned on
the predicted targets from the first stage, to enable a smooth learning process, we apply a teacher
forcing technique [36] at training time by feeding the ground truth location (z*, y*) as target. The
loss term for this stage is the distance between between predicted states §; and ground truth s;:
T
Lsr = Lug(81,51), )
t=1
where Ly, is implemented as Huber loss over per-step coordinate offsets.

4.4 Trajectory scoring and selection

Our final stage estimates the likelihood of full future trajectories s . This differs from the second stage,
which decomposes over time steps and targets, and from the first stage which only has knowledge of
targets, but not full trajectories—e.g., a target might be estimated to have high likelihood, but a full
trajectory to reach that target might not.

We use a maximum entropy model to score all the M trajectories from the second stage:

exp(g(sr, X))
¢(SF |X) = M , ™ s
> m=1€xP(g(sF, X))
where g(-) is modeled as a 2-layer MLP. The loss term for training this stage is the cross entropy
between the predicted scores and ground truth scores,

Ls3 = Lce(o(sr[x), ¥ (sF)), 6)

where the ground truth score of each predicted trajectory is defined by its distance to ground truth
trajectory ¥(sp) = exp(—D(s,sqr)/)/ >y exp(—D(s',sqr) /), where D(-) is in meters and «
is the temperature. The distance metric is defined as D(s?,s?) = max(||s} — s7|3, ..., ||s¢ — s7|[3).

(&)

To obtain the final small set of K predicted trajectories from the scored M trajectories, we implement
a trajectory selection algorithm to reject near-duplicate trajectories. We first sort the trajectories
according to their score in descending order, and then pick them greedily; if one trajectory is distant
enough from all the selected trajectories, we select it as well, otherwise exclude it. The distance
metric used here is the same as for the scoring process. This process is inspired by the non-maximum
suppression algorithm commonly used for computer vision problems, such as object detection.

4.5 Training and inference details

The above TNT formulation yields fully supervised end-to-end training, with a total loss function
L= M Lsi + XaLsa + A3Ls3, (7

where A1, A2, A3 are chosen to balance the training process.

At inference time, TNT works as follows: (1) encode context; (2) sample N target candidates as input

to the target predictor, take the top M targets as estimated by 7 (7|x); (3) take the MAP trajectory

for each of the M targets from motion estimation model p(sp |7, X); (4) score the M trajectories by
¢(sp|7,x), and select a final set of K trajectories.

5



5 Experiments

5.1 Datasets

Argoverse forecasting dataset [9] provides trajectory histories, context agents and lane centerline for
future trajectory prediction. There are 333K 5-second long sequences in the dataset. The trajectories
are sampled at 10Hz, with (0, 2] seconds for observation and (2, 5] seconds for future prediction.

INTERACTION dataset [10] focuses on vehicle behavior prediction in highly interactive driving
scenarios. It provides 4 different categories of interactive driving scenarios: roundabout (10479
vehicles), un-signalized intersection (14867 vehicles), signalized intersection (10933 vehicles),
merging and lane changing (3775 vehicles).

In-house Pedestrian-at-Intersection dataset (PAID) is an in-house pedestrian dataset collected
around crosswalks and intersections. There are around 77K unique pedestrians for training and 12k
unique pedestrians for test. The trajectories are sampled at 10Hz, 1-sec history trajectory is used to
predict 3-sec future. Map features include crosswalks, lane boundaries and stop/yield signs.

Stanford Drone dataset (SDD) [11] is a video dataset with top-down recordings of college campus
scenes, collected by drones. The RGB video frames provide context similar to road maps in other
datasets. We follow practice of other literature [2, 16, 37], focusing on pedestrian trajectories only:
frames are sampled at 2.5 Hz, 2 seconds of history (5 frames) are used as model input, and 4.8
seconds (12 frames) are the future to be predicted.

5.2 Implementation Details

Context encoding. Following VectorNet [35], we convert the map elements and trajectories into a set
of polylines and vectors. Each vector is represented as [ps, pe, f, idp|, where ps and p. are start and
end point of the vector, f is a feature vector, which can contain feature type like lane state, and id,,
is the polyline index that the vector belongs to. We normalize the vector coordinates to be centered
around the location of target agent at the last observed time step. After vectorization, VectorNet is
used to encode context of the modeled agent, and its output feature will be consumed by TNT. One
exception is the Stanford Drone Dataset, which does not offer map data, we therefore use a standard
ResNet-50 [38] ConvNet to encode the birds-eye-view imagery for context encoding.

Target candidate sampling. For vehicle trajectory prediction, we sample points as the target
candidates from lane centerlines (Argoverse dataset) or lane boundaries (INTERACTION dataset).
At least one point is sampled every meter. For pedestrian trajectory prediction, as pedestrians have
much larger moving flexibility, we build a rectangular 2D grid (e.g. 10m x 10m) around the agent,
and the center of each cell (e.g. Im x 1m) is a target candidate.

Model details. The model architectures of all the three stages of TNT are 2-layer MLPs, with the
number of hidden units set to 64. We set the temperature « in ¢(sg) to be 0.01. The loss weights
are A\ = 0.1, Ao = 1.0, A3 = 0.1. TNT is trained end-to-end, for approximately 50 epochs with an
Adam optimizer [39]. The learning rate is set to be 0.001, and batch size is 128.

Table 1: Performance breakdown after each stage on the Argoverse validation set.

| minFDE minADE Miss Rate@2m

| M=50 K=6 M=50 K=6 M=50 K=6
S1: Target Prediction 0.533  1.629 - - 0.027 0.216
S1 + S2: Motion Estimation 0.534 1.632 0488 0.877 0.027 0.216
S1 + S2 + S3: Traj Scoring & Selection - 1.292 - 0.728 - 0.093

Metrics. We adopt the widely used Average Displacement Error (ADE) and Final Displacement
Error (FDE). To evaluate the ADE and FDE for a set of K predicted trajectories, we use minADE i
and minFDE i-. The displacements are all measured in meters, except for the Stanford Drone dataset
where it is in pixels. On Argoverse, we also report miss rate (MR) which measures the ratio of
scenarios where none of the predictions are within 2 meters of the ground truth according to FDE.



Table 2: Comparison of map target sam- Table 3: Comparison of grid target sam-

pling density on Argoverse dataset. pling density on PAID.
target spacing | minFDEg | minADEg grid size | minFDEg | minADEg
target / 5.0m 1.55 0.79 2.0m 0.41 0.22
target / 2.0m 1.31 0.73 1.0m 0.33 0.19
target / 1.0m 1.29 0.72 0.5m 0.32 0.18
target / 0.5m 1.29 0.72 0.2m 0.32 0.18

5.3 Ablation study

Performance breakdown by stage. We discuss the efficacy of each stage of TNT by tracing the
performance on the Argoverse dataset, shown in Table 1. We can see that S1 achieves good target
recall as indicated by minFDE and Miss Rate at M = 50; S2 further generates trajectories as
evaluated by the minADE metric. The minFDE between S1 and S2 are almost the same, which
confirms the fact that the conditional motion estimation is able to generate trajectories ending at the
conditioned targets. Finally S3 narrows down the number of predictions to K = 6 without much loss
compared to M = 50.

Target candidate sampling. The target candidate sampling density has an impact on TNT’s perfor-
mance, as shown in Table 2 on Argoverse and Table 3 on PAID respectively. For vehicles in Argoverse,
we sample targets from lanes, measured as target spacing along the polyline. For pedestrians in PAID,
as they have more freedom of movement, we empirically find that grid targets perform much better
than map-based targets, and report only grid target results. We observe that denser targets lead to
better performance before the saturating point.

Target regression. The comparison between with and without target offset regression in S1 is shown
in Table 4. We can see that with regression the performance improved by 0.16m, which shows the
necessity of position refinement from the original target coordinates.

Table 5: Ablation on motion estimation methods.

| #traj/target | minADEs@S3

Table 4: Ablation on target offset regression.

‘ IIliIlFDE50 @S1
w/ target reg 0.53 g{l;l;‘eé } 8;;
w/o target reg 0.69 CVAE 10 0.71

Table 6: Comparison with state-of-the-art methods on Argoverse validation and test set. DESIRE and
MultiPath are reimplemented with VectorNet context encoder. Our single model result performs on
par or better than the Argoverse Challenge 2020 winner on the test set.

| subset | minFDEs minADEs Miss Rate@2m

DESIRE [1] 1.77 0.92 0.18
MultiPath [33] validation 1.68 0.80 0.14
TNT (Ours) 1.29 0.73 0.09
Jean (Challenge winner) test 1.42 0.97 0.13
TNT (Ours) 1.54 0.94 0.13

Motion estimation methods. For S2 motion estimation, we compare between our unimodal Huber
regressor with a CVAE regressor which generates multimodal predictions. For CVAE, we vary the
number of sampled trajectories between 1 and 10. The results are shown in Table 5. As expected, the
two perform similar with only 1 trajectory. However, even when we increase the number of CVAE
sampled trajectories by 10, it only marginally improves on the minADE metric. This supports our
assumption in S2 that the agent motion is unimodal given a target.

Latency analysis. We benchmark the latency of TNT with a NVIDIA v100 GPU: in a light scene of
5 agents, the inference latency is 10.8 ms; in a crowded environment with 50 agents, the latency is
64.4 ms. Our analysis further shows that the VectorNet backbone takes 89% of the processing time,
therefore the proposed three-stage trajectory predictor is very efficient.



Predicted Targets (M=50) Predicted Trajecteries (M=50) Selected Trajectories (K=6)

—— History: Context Agents
— History: Modeled Agent
—— Future: Modeled Agent

Prediction: Modeled Agent

=

—— History: Context Agents
— History: Modeled Agent
Modeled Agent
Prediction: Modeled Agent

-

—— History: Context Agents
—— History: Modeled Agent
—— Future: Modeled Agent
—— Prediction: Modeled Agent

=

Figure 3: Qualitative results on Argoverse validation set. Lane centerlines are shown in grey, agent’s
past trajectory in blue, ground truth future trajectory is in light blue. (Left) Top predicted targets,
where darker color corresponds to higher scores. (Middle) Trajectory regression conditioned on
targets. (Right) Predicted trajectories after scoring and selection. More results in supplemental videos.

Table 7: Model performance on INTERAC- Table 8: Comparison with state-of-the-art
TION validation set. methods on PAID.
| minFDEs  minADEg | minFDEg | minADEg
DESIRE [1] 0.88 0.32 DESIRE [1] 0.59 0.29
MultiPath [33] 0.99 0.30 MultiPath [33] 0.43 0.23
TNT (Ours) 0.67 0.21 TNT (Ours) 0.32 0.18

5.4 Comparison with state-of-the-art

Vehicle prediction benchmarks. For trajectory prediction on vehicles, we compare TNT with the
state-of-the-art methods on Argoverse and INTERACTION benchmarks. To make fair comparisons,
we re-implement MultiPath [33] and DESIRE [1] by replacing their ConvNet context encoders with
VectorNet [35]. As shown in Table 6 and Table 7, TNT outperforms all other methods by large
margins and achieves the state-of-the-art performance. Visualizations of the TNT predictions on
Argoverse can be found in Figure 3. We further submit our single model TNT results to the Argoverse
leaderboard. As shown in the bottom rows in Table 6, TNT performs on par or better than the
Argoverse Challenge 2020 winner (its details were undisclosed).

Pedestrian prediction benchmarks. For trajectory prediction on pedestrians, we compare TNT
with state-of-the-art methods on the in-house Pedestrian-At-Intersection Dataset (PAID) and Stanford
Drone Dataset (SDD). On the PAID, we sample targets from a grid of range 20m x 20m with a grid
size of 0.5m. We enhance DESIRE and Multipath with VectorNet for context encoding.

On the SDD, since no map data is provided, we
crop an image patch with resolution of 800800  Table 9: Comparison with state-of-the-art methods
around the agent of interest, and use a ResNet- o SDD. Units are pixels.

50 to extract context features. We use a grid of
range 300 x 300 with a grid size of 6 as targets. | minFDE;  minADE;
As shown in Table 8 and Table 9, TNT outper-

forms all previous methods and achieves the Social LSTM [16] 56.97 3119
state-of-the-art performance on both datasets. Social GAN [2] 41.44 27.25
DESIRE [1] 34.05 19.25
SoPhie [37] 29.38 16.27
6 Conclusion PECNet [31] 25.98 12.79
TNT (Ours) 21.16 12.23

We have presented a novel framework TNT for
multimodal trajectory prediction. It consists of
three interpretable stages: target prediction, target-conditioned motion estimation, and trajectory
scoring. TNT achieves the state-of-the-art performance on four challenging real-world prediction
datasets. As future work we plan to extend our framework to long term future prediction by iteratively
predicting intermediate targets and trajectories.
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