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Abstract

Digital pathology opens new pathways for computational algorithms to play a significant
role in the prognosis, diagnosis, and analysis of cancer. However, handling large whole
slide images (WSIs) is a vital challenge that these algorithms encounter. In this paper, we
propose a novel technique that creates a compressed representation of histology images.
This representation is composed of cellular maps and compresses the WSIs while keeping
relevant information at hand including the spatial relationships between cells. The com-
pression technique is used to predict the status of ER & PR expressions from H&E WSIs.
Our results show that the proposed compression technique can improve the prediction
performance by 11-26%.
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1. Introduction

Processing the histopathological whole slide images (WSIs) is a challenging task due to
their multi-gigapixel sizes. A naı̈ve solution to handle these images in machine learning
(ML) models is down-sampling them to a small size image. However, down-sampling
destroys high amount of contextual information and may lead to poor results. In prac-
tice, analysing the WSIs at cellular level is essential to understand the tumour micro-
environment or TME Carstens et al. (2017). An alternative solution for handling these
images in the ML models is by splitting them into small image patches of manageable
size. Despite the fact this solution is popular, the relation between different patches and
their surrounding contextual information is lost.
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In Tellez et al. (2019), the authors compress the image using self-supervised approaches
where a CNN is trained in a self-supervised manner and then the feature maps that are
generated by the CNN are used as the compressed representation of a given image. Stream-
ing convolution and gradient check-pointing used by Pinckaers et al. (2019) is a technique
which reduces the memory consumption at the cost of increasing computations. In this
approach, large images at multiple branches are fed into the model. Multiple Instance
Learning (MIL) approaches presented in the computational pathology literature have also
been widely used recently for dealing with weakly-supervised tasks by treating WSIs as
bags of images Campanella et al. (2019). However, these approaches lack interpretability
and do not account for information about nuclei positions and categories. Moreover, most
of them ignore the relational information within the WSIs.

In this paper, we propose a novel representation (CellMaps) that not only reduces the
image size, but also represents the WSIs based on the cellular density. The aim of CellMaps
is to keep all the relevant information intact while reducing the image size. This repre-
sentation keeps the cellular level details, besides capturing spatial information from the
original image. In our experiments, we show that representing the cellular density along
with the contextual information improves the final predictions. CellMaps can be used for
compressing images at different desired levels, depending on the task and available com-
putational capacity.

We employ our approach for the evaluation of Oestrogen Receptor (ER) and Proges-
terone Receptor (PR) expression which are essential prognostic and predictive factors for
breast cancer (BC) patients Hodi et al. (2007). Based on the level of positivity of ER/PR,
chemotherapy or endocrine therapy is often determined Lumachi et al. (2013).

BC tissues are stained with Immunohistochemistry (IHC) biomarkers in routine clini-
cal practice, followed by a visual assessment by pathologists estimating ER/PR expression
distribution across all the tumour tissues Nadji et al. (2005). This practice poses two main
challenges: First, the IHC markers are costly and laborious. Second, it may face lack of
reproducibility as it relies on visual analysis by the pathologists. Therefore, objective au-
tomated techniques that can overcome these challenges are in high demand, specially for
predicting ER/PR expressions which are costly and highly subjective tasks.

Recent studies proposed techniques and automated tools predicting the hormonal ex-
pression in BC tissue. Several studies conduct experiments on tissue micro-array (TMA)
core images Shamai et al. (2019); Rawat et al. (2018); Saha et al. (2020). On the other hand,
some studies have been conducted at the WSI level. Naik et al. Naik et al. (2020) reported
the state-of-art results with an AUC of 0.92, but the approach was trained in a supervised
manner on detailed regions of interest (ROIs) that were annotated by pathologists. Rawat
et al. Rawat et al. (2020) perform a study on a large cohort. Nevertheless, their approach
neither includes the entire extracted patches from the WSI nor set clear exclusion criteria.
The approach randomly selected patches that may face reproducibility issues. Likewise,
Lu et al. Lu et al. (2020b) proposed the Slide Graph technique, which is based on graph
convolutional neural network (GCN). Their technique processes the entire WSI to predict
PR and Her2 status, with AUCs of 0.73 and 0.62, respectively. To the best of our knowl-
edge, ours is the first study to predict ER as well as PR by including the entire WSIs with
clear exclusion criteria, which is more relevant clinically.
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The main contributions of this paper are as follows:

1. We present a novel compression technique (CellMaps) that represents image patches
by the cellular density, while keeping the spatial information intact.

2. We present a pipeline predicting the status of ER and PR in TCGA BC cohort using
CellMaps of WSIs, with specific and clear exclusion criteria.

3. We show that the prediction performance is improved when using the compressed
images, compared to using the raw H&E image. .

The paper is organised as follows: In Section 2, we describe the materials and methods,
followed by a discussion of our results in Section 3. We conclude the paper in Section 4.
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Figure 1: An overview of the proposed pipeline. Step III generates the CellMaps com-
pressed representation for every patch that is then fed into a model for patch
level prediction.

2. Materials and Methods

We gathered 356 WSIs from The Cancer Genome Atlas (TCGA), multi-center data Institute.
The collected cohort is a subset of diagnostic cases of TCGA. Additionally, the correspond-
ing molecular status (i.e., ER and PR status) of the cohort were also collected.

2.1 The Proposed Methodology

Our pipeline consists of five main phases. We first exclude fatty regions from the study
as they relatively provide less cellular information, compared to other tissue types. After-
wards, we extract the location of five different cell types in a WSI in order to build a cell
map. The representation of the cell map is shown in Fig 2, where each cell type is repre-
sented in a single layer in the cell map image. We then extract a fixed tile size from each
WSI in our study so that we maintain a fixed input size for our model. Next, we utilised
the widely-used Resnet18 to classify the cell map representation of each extracted tile into
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+ve or -ve based on the patient-level label from TCGA. We train two separate models for
each task (i.e., ER and PR classification). Lastly, we aggregate the tile results at the patient
level.
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Figure 2: An example of how a tile and is compressed. (a) is an image tile. (b) shows a
set of images after extracting the nuclei locations and types. (c) is the CellMaps
representation of the tile.

2.1.1 (I) FATTY REGIONS EXCLUSION.

During tile extraction, we build a mask identifying eleven tissue types, one of which is adi-
pose (i.e., fatty) tissue. The Resnet18model was pre-trained with Kather100k dataset Kather
et al. (2019). A tile is excluded if the majority of its tissue (50% or more) contains fatty re-
gions.

2.1.2 (II) DETECTION AND CLASSIFICATION OF NUCLEI.

To find the locations and types of cells in a given image, we leveraged HoVer-Net Graham
et al. (2019). The HoVer-Net model was trained with the PanNuke dataset Gamper et al.
(2019) consisting of more than 200k labelled nuclei from 19 different tissue types. Having
identified the location and type of each nucleus presented in a given tile, we generate a
preliminary cell map representation. This representation has three dimensions: x, y and
z, see Fig 2 (b). The x and y dimensions of the preliminary representation are the same
as the x and y of the original tile shape, presented in Fig 2 (a), whereas, the z dimension
corresponds to the number of cell types, each of which is represented in a single layer.
In our experiment, we have five different cell types (neoplastic, inflammatory, connective,
dead, and non-neoplastic), so the representation has five different layers, i.e., z = 5.

2.1.3 (III) CONSTRUCTION OF CELL MAPS.

The aim of this stage is to compress the extracted tiles into a smaller size that the classi-
fication model (in stage (IV) of our pipeline) can handle. The representation (as in Fig 2
(c)) shows the cellular density of a given tile for many cell types. It has three dimensions:
compressed(x), compressed(y) and z.

CellMaps can compress a given image/tile into a smaller size but keeping cellular level
details, along with their spatial maps to keep the information about cell-cell interactions.
The technique utilises average filtering, which computes the number of cells presented
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Figure 3: An example of tile and its representations with various filter sizes (i.e., size of
avg filter) using CellMaps. The filter sizes are 160, 320, and 480 pixels, from the
top row to the bottom. The images from each cell type is concatenating to build
the compression representation, as shown in the first row.

in a pre-defined size of the average filter. Then each pixel in the representation image
is assigned a ratio (between 0 and 1) based on the cell density of the original image cor-
responding to a window filter size. The larger the filter size, the smaller the CellMaps
representation. Fig 3 shows an example of a tile and its representations with various sizes
using CellMaps.

The CellMaps assists ML models in handling the entire WSIs (or large tile images) with-
out losing the detailed cellular level information. In our experiment, we choose to deal
with large tiles in order to overcome the WSI size variations in TCGA data.

2.1.4 (IV) MODEL PREDICTION.

Resnet18 He et al. (2016) is employed for binary classification of the CellMaps representa-
tions of the extracted tiles into +ve or -ve. The tiles’ ground truth labels are based on the
patient level ER and PR status. Two separate models are being trained (i.e., one for ER and
the other for PR status).

2.1.5 (V) AGGREGATION.

The different tiles belonging to one WSI are aggregated to find the ER/PR status at the
patient level. We apply majority voting (MV) of the tile predictions. A WSI is considered
positive if more than 50% of tiles are predicted positive by the models in stage IV.

3. Experiments and Results

3.1 Datasets
The TCGA collected cases are randomly divided into three datasets: (1) training (50% of
cohort), (2) validation (25%), and (3) testing (25%). Table 1 shows the datasets used for both
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Table 1: The training, validation, and testing datasets.

Molecular ER PR

Classes (+)ve (-)ve Total cases (+)ve (-)ve Total cases

Training 139 39 178 120 57 177
Validation 69 19 88 60 29 89
Testing 70 20 90 60 29 89

Entire 278 78 356 240 115 355

Table 2: Number of extracted tiles for each dataset.

Molecular Training Testing Validation Entire dataset

ER 8, 026 3, 730 4, 387 16, 143
PR 8, 212 3, 922 3, 929 16, 063

experiments (i.e., ER & PR prediction). We maintained the same distribution of positive
and negative classes among all datasets.

Our experiment can be designed at compressing each WSI as a single CellMaps repre-
sentation, i.e., each WSI is compressed and then fed into the model as one single image.
However, this is challenging due to size variations in WSIs. To overcome this challenge, the
experiment was designed at dividing the WSIs into tiles. Nevertheless, we chose to extract
large tiles, sized 9600 × 9600 at 40× magnification, so that the model captures significant
contextual information during training. Table 2 presents the number of tiles extracted for
each dataset.

3.2 Experimental setup

Resnet18 was chosen as a binary classifier for its robustness, reliability, and wide usage
in medical imaging applications Ayyachamy et al. (2019); Lu et al. (2020a); Shaban et al.
(2020). The model was trained for 100 epochs, and we added a dropout layer (with the
configuration of 0.2) before the last fully connected layer to avoid over-fitting. The learning
rate was initialised with a value of 0.01, and a scheduler was implemented to decrease the
learning rate after each epoch such that the model becomes more stable at the later training
stages. The threshold determining the tile positivity are set based on the best performance
on the validation dataset.

3.3 Evaluation of classification performance

The significance of excluding fatty regions. We conducted several experiments, one of
which was conducted without filtering out the fatty regions (FRs) of WSIs in order to draw
a fair evaluation of adding this stage to our proposed pipeline. Table 3 shows the perfor-
mance of two experiments: (1) with and (2) without the FR exclusion. The four columns
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Figure 4: The ROCs curves of the pipeline before and after excluding the FRs

to the right side present the performance without excluding FRs, while the columns to the
left side present the performance with the exclusion of FRs.

Table 3: The performance of both experiments, with and without excluding FRs.

Experiment With excluding FRs Without excluding FRs

Molecular ER PR ER PR
Dataset ValidationTestingValidationTestingValidationTestingValidationTesting

Accuracy 0.83 0.81 0.69 0.66 0.84 0.78 0.64 0.674
Precision 0.88 0.84 0.79 0.72 0.83 0.80 0.7 0.72

Recall 0.91 0.93 0.73 0.8 1.00 0.96 0.8 0.85
f1-score 0.89 0.88 0.76 0.76 0.91 0.87 0.75 0.78
AUC 0.83 0.77 0.73 0.65 0.83 0.72 0.69 0.61

Fig 4 presents the area under the receiver operating characteristic (AUC-ROC) for vali-
dation and testing datasets for both ER and PR experiments. The bottom row presents the
performance when excluding the FRs, whereas the top row shows the experiment results
without filtering the FRs. We can see a noticeable improvement when excluding the FRs,
with 4-5% in the AUCs of the testing datasets for ER and PR predictions.

Comparing CellMaps vs raw (H&E) images. To examine the relevance of our CellMaps
technique, another experiment was also conducted. We compare the performance using
the raw H&E images (instead of the compressed images) with the same proposed pipeline,
including the filtration of the FRs. The aggregation of the raw images are also based on
the majority vote. Table 4 shows a considerable drop of (11 − 26%) in the AUCs for the
prediction of ER and PR.

The sensitivity of filter size. Different filter sizes were implemented so as to evaluate its
sensitivity. Table 5 presents four different filter sizes: 160, 320, 480, and 640 pixels at 40×
magnification. The Table does not show a major drop/jump in the performance (i.e., AUCs
of testing datasets) when changing the filter size of the compression technique (CellMaps).

7



MICCAI COMPAY 2021

Table 4: The performance when using raw H&E images.

Molecular ER PR
Datasets Validation Testing Validation Testing

Accuracy 0.7 0.63 0.63 0.62
Precision 0.86 0.77 0.82 0.73
Recall 0.73 0.75 0.66 0.67
f1-score 0.79 0.76 0.73 0.7
AUC 0.62 0.51 0.72 0.54

These results indicate that the model captures the cell density of a given image, regardless
of the level of details. Hence, using our CellMaps input images can be compressed to the
desired size that the ML model can handle without destructing the performance.

Table 5: The performance when changing the filter size.

Molecular Performance
metrics

filter size
(in pixels at 40× magnification)

160 320 480 640

ER

Accuracy 0.72 0.74 0.72 0.81
Precision 0.85 0.85 0.83 0.84
Recall 0.79 0.81 0.81 0.93
f1-score 0.81 0.83 0.82 0.88
AUC 0.72 0.75 0.71 0.77

PR

Accuracy 0.68 0.64 0.60 0.66
Precision 0.71 0.71 0.75 0.72
Recall 0.88 0.78 0.61 0.80
f1-score 0.79 0.74 0.67 0.76
AUC 0.65 0.65 0.61 0.65

4. Conclusions and Future Work

Computational algorithms encounter a crucial challenge while processing multi-gigapixel
histology images. Most machine learning or ML models cannot handle such large sizes,
requiring a division into small patches. Instead, one may design an algorithm handling
large images but down-sampled. ML models usually capture patterns from the detailed
information in histology images.

In this paper, we presented a novel compression technique, the CellMaps. Our tech-
nique is based on average-filtering, yet efficient as it keeps spatial information intact which
is useful for analysing the TME. It does not only reduce the image size, but also represents
the cellular density, which can improve the prediction performance, as our results show. In
future, we will explore the efficacy of this representation for other tasks in computational
pathology.
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