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Abstract

Meningioma is one of the most prevalent brain tumors in adults. To determine its malig-
nancy, it is graded by a pathologist into three grades according to WHO standards. This
grade plays a decisive role in treatment, and yet may be subject to inter-rater discordance.
In this work, we present and compare three approaches towards fully automatic menin-
gioma grading from histology whole slide images. All approaches are following a two-stage
paradigm, where we first identify a region of interest based on the detection of mitotic
figures in the slide using a state-of-the-art object detection deep learning network. This
region of highest mitotic rate is considered characteristic for biological tumor behavior. In
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the second stage, we calculate a score corresponding to tumor malignancy based on infor-
mation contained in this region using three different settings. In a first approach, image
patches are sampled from this region and regression is based on morphological features
encoded by a ResNet-based network. We compare this to learning a logistic regression
from the determined mitotic count, an approach which is easily traceable and explainable.
Lastly, we combine both approaches in a single network. We trained the pipeline on 951
slides from 341 patients and evaluated them on a separate set of 141 slides from 43 patients.
All approaches yield a high correlation to the WHO grade. The logistic regression and the
combined approach had the best results in our experiments, yielding correct predictions in
32 and 33 of all cases, respectively, with the image-based approach only predicting 25 cases
correctly. Spearman’s correlation was 0:7163, 0:7926 and 0:7900 respectively. It might be
counter-intuitive at first that morphological features provided by the image patches do not
improve model performance. Yet, this mirrors the criteria of the grading scheme, where
mitotic count is the only unequivocal parameter.

Keywords: automatic tumor grading, meningioma, deep learning, known operator learn-
ing

1. Introduction

With 20-30% of all primary brain tumors, meningiomas are reported to be the most frequent
occurring brain tumor in adults (Lam Shin Cheung et al. (2018), Saraf et al. (2011)).
Meningiomas are classified into various sub-types, and graded according to the grading
system of the World Health Organization (WHO) into three grades with ascending risk of
recurrence and/or aggressive growth (Louis et al. (2016)). Grade I is the most prevalent,
accounting for 80 to 90% of all meningiomas. However, even though these low-grade tumors
are mostly benign, recurrence rates range from 7 to 20% (Louis et al. (2016)). Grade II
and III meningiomas are less frequently diagnosed, but tend to show a more aggressive
biological behavior than grade I meningiomas (Louis et al. (2016)). For these, recurrence
rates are reported to be in the range of 30 to 40% for grade II and 50 to 80% for grade
III meningiomas (Louis et al. (2016)). These differences make grading an important factor
for treatment success and tumor management, however, concordance between raters was
reported to be suboptimal (Rogers et al. (2015)).
Beside morphological features like high cellularity, prominent nucleoli or brain invasion, the
presence of cells undergoing cell division (mitotic figures) is a key factor in the WHO grading
scheme (Louis et al. (2016)). Even though mitoses are also part of tumor morphology, their
density (mitotic rate) is still treated as a separate factor in the WHO grading scheme
and is known to be highly correlated with cell proliferation, which is a key predictor for
biological tumor behaviour (Baak et al. (2009)). Consequently, the rate of mitoses per area
(mitotic count, MC), typically counted over ten high power fields, is a factor in many grading
schemes, e.g. for breast cancer (Elston and Ellis (1991)) or lung cancer Kadota et al. (2012).
Yet, it is also known that the inter-rater agreement on mitotic figures is fairly modest, and
that algorithmic approaches offer performance in mitotic figure detection comparable to
humans (Meyer et al. (2005), Malon et al. (2012), Veta et al. (2016)), Aubreville et al.
(2020)).
In this work we perform automated grading of meningiomas from whole slide images (WSIs),
based on deep learning models. We base our approaches on the prediction of mitotic figures
by a state-of-the-art deep learning architecture. Over all images associated with one patient,
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we calculate the highest mitotic count (i.e., the number of mitotic figures per area equivalent
to 10 high power fields). This prediction is then used in three different approaches: First,
we evaluate the performance of a model based on a pre-trained ResNet18 stem to regress the
WHO grade solely based on histopathology patches. Second, the predicted mitotic count
alone is used to train a very simple network to map the WHO grade. Finally, we combine
both approaches and derive a novel explainable model architecture that makes use of the
mitotic count as well as image information, mimicking the diagnostic procedure described
in the WHO grading scheme.

2. Related Work

Several authors addressed the preoperative grading of meningiomas in magnetic resonance
imaging (Zhang et al. (2020), Yan et al. (2017), Lin et al. (2019)). For other tumor types,
automatic grading is an active field of research. For grading prostate cancer, the sum of the
two most common Gleason patterns, called Gleason score is used. The score is a measure
for glandular separation and thus, cancer aggressiveness (Nguyen et al. (2017)). There have
been multiple attempts to asses the Gleason grade via algorithmic approaches (Nguyen et al.
(2017), Lucas et al. (2019)); however, the proposed approaches are of limited transferability
since mitotic figures do not play a role in Gleason grading. A more similar application
is the determination of proliferation scores of breast cancer tissue, where mitotic count
is an important predictive biomarker (Van Diest et al. (2004)). As with meningiomas, the
density of mitotic figures is a criterion for determining tumor proliferation. In the TUPAC16
challenge, participants were faced with the tasks of predicting mitotic scores as well as the
gene expression-based PAM50 score from WSIs of breast cancer tissue (Veta et al. (2019)).
The solutions proposed by the participants can be dived into two groups. The one group
identified a region of interest (ROI) in which they detected mitotic figures. The second group
also detected a ROI but tried to predict tumor proliferation directly (Veta et al. (2019)). A
key difference between these works submitted in the TUPAC16 challenge and ours is that
we aim for a tumor severity prediction instead of only predicting proliferation scores. Shah
et al. also targeted the prediction of tumor proliferation for breast cancer WSIs (Shah et al.
(2017)). In their work, they used a pipeline of different networks to use mitotic figures as well
as general morphological features from histopathological slides to aggregate a categorical
tumor grade and RNA expression predictions (Shah et al. (2017)). Their approach is related
to ours as we also combine the mitotic count with general morphological features. As one
key difference to their approach, our model is designed to be as simple as possible and
thus explainable in the contributions of the pipeline elements. Besides, to the authors’ best
knowledge, this is the first time automatic meningioma grading of histopathology whole
slide images was performed.

3. Materials and Methods

3.1 Datasets

For this work, three different datasets were used. For all of them, hematoxylin and eosin
(H&E)-stained meningioma samples were retrospectively collected from the Department of
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Neuropathology, University Hospital Erlangen, Germany. All samples were digitized using
an Hamamatsu S60 digital slide scanner.

• The training dataset for mitotic figure detection consists of 65 WSIs, completely
annotated for mitotic figures. For the annotation, the WSIs were screened for mitotic
figures and mitotic figure lookalikes by an expert (TK) in mitosis detection using an
open source software solution (Aubreville et al. (2018)). Additionally, to avoid missed
mitotic figures, a machine learning system was trained in a cross-validation scheme to
find additional mitotic figures with high sensitivity, following the procedure described
in (Bertram et al. (2020)). All newly found candidates were then re-evaluated by the
expert and classified into being a mitotic figure or not. In total, 178,826 cell annota-
tions were generated by this procedure. All annotations were subsequently assessed
blindly (without knowing the first expert’s class label) by a pathologist with five years
of experience in histopathology and mitotic figure identification (CB). Disagreed cases
were (again blindly) re-evaluated by a third expert, who is a trained neuropathologist
(SJ). Overall, the data set contains 10,662 annotations for mitotic figures and 168,164
annotations for non-mitotic cells.

• For the meningioma grading training dataset, H&E stained tissue slides of the
years 2009 until 2011 were collected from the hospital’s slide archive. All samples were
reviewed by an expert neuropathologist. Samples without sufficient tissue or with pale
stains were excluded from the study. The original selection contained 47 additional
WSIs which were excluded due to a possible case bleed to the test set. After this
process, 951 samples / whole slide images were included in the study, representing
tumor sections from 341 patients with corresponding tumor grades. For each patient,
the overall WHO grade of the tumor was retrieved from the hospital information
system, leading thus to 341 assigned tumor grades (272 samples of WHO grade 1, 62
samples of WHO grade 2 and 7 samples of WHO grade 3). We would like to highlight
that the retrospective data collection may have resulted in some inconsistencies in
the associated labels. The tumor grade was derived from patient records based on
the most malignant WSI sample. This sample, however, may not be present in the
dataset at hand (which is from a restricted time range, as stated). This kind of label
noise can be tolerated in the training set from our point of view if utmost case is taken
for the curation of the test set as described next.

• The independent test set consists of 121 WSIs from 43 tumor cases, representing
26 patients which are neither part of the mitotic figure detection dataset nor of the
meningioma grading training dataset (17 samples of WHO grade 1, 17 samples of
WHO grade 2 and 9 samples of WHO grade 3). For each WSI, a neuropathologist
re-evaluated the WSIs to contain a sufficient amount of tumor tissue and confirmed
sufficient scanning and staining quality. The dataset represents a complete list of
samples from each of the 26 patients, ranging from 2003 to 2013. For each tumor
sample, a WHO grading was performed by an expert neuropathologist, thus 43 grades
were assigned within the complete set.
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Figure 1: Overview of the three approaches compared in this work. All are based on a
initial mitotic �gure (MF) detection to select the region of interest (ROI) and/or
to calculate the mitotic count (MC), i.e. the MF within the ROI.

3.2 Methods

The aim of this work is to predict a tumor malignancy score for meningiomas given a WSI
as an input. In contrast to the WHO grade, in this study we used a continuous score to
determine tumor malignancy. The aim is to show a smoother transition between di�erent
malignancy levels than is possible with a discrete scale like the WHO grade. Our method
consists of two main stages (see Figure 1). In the �rst stage, mitotic �gures are detected
with a state-of-the-art object detector. Here we used a Faster R-CNN with a ResNet18 as
backbone (Ren et al. (2017); He et al. (2016)). A mitotic �gure was de�ned to be a square
bounding box annotation with width and height of 50 pixels (approx. 2.43 �m 2). We used
the aforementioned training dataset for mitotic �gure detection on which we performed a
random split on whole slide image level, leading to a train, validation and test set of 34,
10 and 21 WSIs, respectively. We trained the model until convergence, as observed by the
validation loss. Selection of the best model parameters was performed retrospectively based
on the minimal validation loss. During inference, the whole WSI was fed patch-wise into
the detector. For this, adjacent patches were cut out of the WSI with an overlap of 10%.
After model inference, the detections were projected back onto the WSI and overlapping
detections were �ltered by a non-maximum suppression (NMS) algorithm. We optimized
the detection threshold on inference results on the complete training set WSIs, using the
F1 score as metric. We then ran inference on the test set and subsequently estimated the
mitotic count (MC) from the detected �gures using a moving window average with a size
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