
Proceedings of Machine Learning Research 156 (2021) MICCAI Computational Pathlogy (COMPAY) Workshop

HistoCartography: A Toolkit for Graph Analytics in
Digital Pathology

Guillaume Jaume* gja@zurich.ibm.com
IBM Research, Zurich – EPFL, Lausanne, *equal contribution

Pushpak Pati* pus@zurich.ibm.com
IBM Research, Zurich – ETH, Zurich

Valentin Anklin anklinv@student.ethz.ch
ETH, Zurich

Antonio Foncubierta fra@zurich.ibm.com
IBM Research, Zurich

Maria Gabrani mga@zurich.ibm.com

IBM Research, Zurich

Abstract

Advances in entity-graph analysis of histopathology images have brought in a new paradigm
to describe tissue composition, and learn the tissue structure-to-function relationship.
Entity-graphs offer flexible and scalable representations to characterize tissue organization,
while allowing the incorporation of prior pathological knowledge to further support model
explainability. However, their analysis requires prerequisites for image-to-graph transla-
tion and knowledge of state-of-the-art algorithms applied to graph-structured data, which
can potentially hinder their adoption. In this work, we aim to alleviate these issues by
developing HistoCartography, a standardized python API with necessary preprocess-
ing, machine learning and explainability tools to facilitate graph-analytics in computational
pathology. Further, we have benchmarked the computational time and performance on mul-
tiple datasets across different imaging types and histopathology tasks to highlight the appli-
cability of the API for building computational pathology workflows. HistoCartography
is available at https://github.com/histocartography/histocartography.

Keywords: Graph Representation Learning, Computational Pathology, Python API

1. Introduction

Recent advancements in tissue-slide digitization have paved way for enhancing storage,
sharing capabilities, and computer-aided inspection by leveraging Deep Learning (DL).
Most DL approaches analyze tissue images in three steps, namely patch generation, patch-
level feature extraction, and feature aggregation to produce image-level embeddings for
downstream pathology tasks. However, they suffer from several limitations, (i) the trade-
off between operational resolution and adequate context per-patch, (ii) the aggregation
is often sub-optimal, (iii) comprehensive modeling of tissue composition is missing, and
(iv) the lack of model transparency raises barriers to deployment in real life.

To circumvent these limitations, entity-graphs are proposed (Demir et al., 2004) where
the nodes and edges of the graphs denote tissue entities and their interactions, respec-

©2021 PMLR, 2021.

https://github.com/histocartography/histocartography


MICCAI COMPAY 2021

tively. Entity-graphs, followed by Graph Neural Networks (GNNs)-based processing, have
recently gained popularity in addressing various pathology tasks (Zhou et al., 2019; Chen
et al., 2020; Pati et al., 2021; Anklin et al., 2021; Jaume et al., 2021). The entities can
be biologically-de�ned, e.g., nuclei, tissue regions, glands (Zhou et al., 2019; Pati et al.,
2021; Anklin et al., 2021), or can be patches (Adnan et al., 2020; Aygunes et al., 2020).
The entity-graphs enable to simultaneously capture local entity environment and global
tissue composition. They can seamlessly scale to arbitrary tissue dimensions by incorpo-
rating arbitrary number of entities and interactions, thus o�ering an alternate to Multiple
Instance Learning (MIL) (Campanella et al., 2019; Lu et al., 2021). The entity-graphs
also enable to selectively operate on diagnostically relevant entities, instead of analyzing
the entire tissue (Tellez et al., 2019b; Shaban et al., 2020). Furthermore, when the enti-
ties depict biological units, such as nuclei, glands etc., the analysis allows pathologists to
directly comprehend and reason with the outcomes (Jaume et al., 2020, 2021). However,
constructing an entity-graph based pathological workow demands several prerequisites,
such as entity detection, entity encoding, constructing the graph topology etc., alongside
standard preprocessing, such as stain normalization, tissue detection etc. Additionally, the
workow requires to utilize the recent advancements in DL for processing graph-structured
data. All these may inhibit the adoption of entity-graphs in computational pathology.
In addition, the lack of a standardized framework with the aforementioned functionalities
urge the researchers to reinvent the wheel, which is cumbersome, time-consuming, hampers
reproducibility, and requires a wide range of technical acumen.

To overcome these constraints, we presentHistoCartography , a novel open-source
python library that facilitates graph-analytics in computational pathology. Speci�cally our
contributions are: (i) a standardized, unit-tested python library that uni�es a set of histol-
ogy image manipulation tools, entity-graph builders, GNN models, and model explainability
tools, (ii) a benchmark assessment of performance and scalability on classi�cation and seg-
mentation tasks in pathology, (iii) a comprehensive overview of graph representation and
modeling in histology, and (iv) a review of extant libraries for histological image analysis.

2. Related Work

2.1 Graphs in Computational Pathology

Entity-graphs are proposed to realize the tissue composition-to-functionality relationship
in terms of the phenotypical and structural characteristics of tissue. The entities can be
nuclei (Demir et al., 2004; Zhou et al., 2019; Wang et al., 2020; Chen et al., 2020; Pati et al.,
2021), tissue regions (Pati et al., 2021), patches (Anand et al., 2020; Adnan et al., 2020; Ay-
gunes et al., 2020; Zhao et al., 2020; Li et al., 2018; Levy et al., 2021), etc. Typically nodes
include handcrafted or DL features to characterize the entities, and the topology can depict
the spatial or semantic relationship among the entities,e.g., k-Nearest Neighbors (k-NN), re-
gion adjacency, or probabilistic models. The graphs can be processed using classic Machine
Learning (ML) (Sharma et al., 2016, 2017) or GNNs to outperform state-of-the-art Convolu-
tional Neural Network (CNN)-based approaches for several pathology tasks across multiple
organs (Garci�a-Arteaga et al., 2017; Zhou et al., 2019; Zhao et al., 2020; Adnan et al., 2020;
Pati et al., 2021; Studer et al., 2021; Anklin et al., 2021). Interestingly, when the graph-
nodes depict biological entities,e.g., nuclei, tissue regions, the entity-graphs combined with

2



MICCAI COMPAY 2021

feature attribution techniques can provide pathologist-friendly interpretations (Zhou et al.,
2019; Jaume et al., 2020; Sureka et al., 2020) and explanations (Jaume et al., 2021), unlike
pixelated blurry saliency maps. A detailed review of graphs in computational pathology is
presented by Ahmedt-Aristizabal et al. (2021).

2.2 Extant Libraries in Computational Pathology

Several open-source libraries facilitate the development of computational pathology work-
ows. Most of them include helper functions to perform standard preprocessing and visu-
alization. Histolab (Arbitrio et al., 2020) includes Whole Slide Image (WSI)-level tissue
detection and tile extraction modules. Syntax (By�eld et al., 2020) provides the same
features with abstraction where modules can be stacked and run in a pre-de�ned pipeline.
StainTools (By�eld et al., 2019) provides tools for stain normalization and augmentation.
HistomicsTK (Beezley et al., 2021) enables to perform tissue detection, object detection
and segmentation, image �ltering, stain normalization and deconvolution, and handcrafted
feature extraction. Further, HistomicsTK allows nuclei segmentation and classi�cation
using classical ML approaches. It also provides a User Interface (UI) to run containerized
modules and pipelines. ThoughHistomicsTK includes valuable functionalities, it caters
limited DL tools. Similarly, OpenSlide (Gilbert et al., 2020) provides a UI to read and visu-
alize histology images that supports most of the WSI formats. Finally,QuPath (Bankhead
et al., 2021) o�ers a UI that allows to read, visualize and annotate WSIs. It also includes
tools to perform stain normalization, nuclei and tissue detection, and implement basic ML
models. However,QuPath is not a python Application Programming Interface (API),
which makes it di�cult to integrate into existing workow and DL frameworks, e.g., Py-
Torch, Tensorow. Most importantly, none of the frameworks provide graph-related helpers.
With the advent of graph-techniques as a new paradigm for analyzing histology images, a
standardized library is desired for reinforcing the development.

3. Histocartography: Graph Analytics Tool for Pathology

In this section, we highlight the core modules ofHistoCartography , (1) Preprocessing
module: a set of histology image processing tools and entity-graph builders, (2)ML mod-
ule: helpers to learn from entity-graphs, (3) Explainability module: a set of GNN model
interpretability tools. List of module-wise functionalities are summarized in Table 1. To
facilitate integration and reduce boilerplate code,HistoCartography includes a pipeline
runner which allows to pre-de�ne pipeline steps along with loading and saving utilities.

3.1 Preprocessing Module

Stain normalization: Variation in Hematoxylin and Eosin (H&E) staining protocols for
tissue specimens induces appearance variability that adversely impacts computational meth-
ods (Tellez et al., 2019a). To alleviate these variations,HistoCartography implements
two popular normalization algorithms proposed by Macenko et al. (2009) and Vahadane
et al. (2016), similar to StainTools and HistomicsTK , which supports both reference-
based and reference-free normalization,i.e., with manual stain vectors. Figure 1 highlights
a sample normalization output using our API.

3



MICCAI COMPAY 2021

Table 1: Overview of HistoCartography functionalities, with the i/o, CPU and GPU
compatibility, and availability in extant libraries for individual module. I , M, X, G, P
and S denote an image (np.array (Harris et al., 2020)), a mask (np.array), features
(torch.Tensor (Paszke et al., 2019)), a graph (DGLGraph (Wang et al., 2019)), predictions
(torch.Tensor) and importance scores (torch.Tensor), respectively.

Module Function Input Output Existing CPU GPU

P
re

pr
o

ce
ss

in
g

Vahadane Stain Norm I I 3 3 7

Macenko Stain Norm I I 3 3 7

Tissue Mask Detection I M 3 3 7

Nuclei Detection I M 3 3 3

Nuclei Concepts I , M M 3 3 7

Tissue Component Detection I M 7 3 7

Deep Feature Extraction I , M X 7 3 3

Feature Cube Extraction I X 7 3 3

k-NN Graph Building X, M G 7 3 7

RAG Graph Building X, M G 7 3 7

M
L

Cell-Graph Model G P 7 3 3

Tissue-Graph Model G P 7 3 3

HACT Model G, G, X P 7 3 3

E
xp

la
in

er
s GnnExplainer G S 7 3 3

GraphGrad-CAM G S 7 3 3

GraphGrad-CAM++ G S 7 3 3

GraphLRP G S 7 3 3

Tissue Detection: A WSI usually includes signi�cant non-tissue region. Identifying the
tissue regions can con�ne the analysis and reduce computational e�ort. The tissue detec-
tor in HistoCartography iteratively applies Gaussian smoothing and Otsu thresholding
until the mean of non-tissue pixels is below a threshold. This module is common across
Histolab , Syntax , HistomicsTK and QuPath .

Nuclei detection: This module enables to segment and locate nuclei in H&E images.
Though it is well-studied in computational pathology, only a few public implementations
are available. For instance, QuPath allows to detect nuclei but requires model train-
ing and �ne-tuning. While providing exibility, the module includes only elementary
ML methods. HistoCartography integrates two checkpoints from the state-of-the-art
HoVerNet model (Graham et al., 2019) trained on PanNuke (Gamper et al., 2020) and
MoNuSac (Ruchika et al., 2020) datasets for nuclei segmentation and classi�cation.

Tissue Component Detection: HistoCartography includes an unsupervised super-
pixel based approach to segment tissue regions. First, the tissue is oversegmented into
homogeneous superpixels using Simple Linear Iterative Clustering (SLIC) (Achanta et al.,
2012) algorithm. Then, neighboring superpixels are hierarchically merged using color simi-
larity to denote meaningful tissue regions,e.g., epithelium and stroma regions. Superpixels
depicting tissue regions are used by Bejnordi et al. (2015); Pati et al. (2020, 2021).

4




	Introduction
	Related Work
	Graphs in Computational Pathology
	Extant Libraries in Computational Pathology

	Histocartography: Graph Analytics Tool for Pathology
	Preprocessing Module
	Graph Machine Learning Module
	Explainability Module

	Benchmarking HistoCartography
	Computational Time
	Performance Benchmark

	Conclusion

