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Abstract

A coreset for a set of points is a small subset of weighted points that approximately preserves
important properties of the original set. Specifically, if P is a set of points, @ is a set of queries,
and f: P x@Q — R is a cost function, then a set S C P with weights w: P — [0,00) is an
e-coreset for some parameter € >0 if ) __cw(s)f(s,q) is a (1+¢) multiplicative approximation to
ZpG pf(p,g) for all ge@. Coresets are used to solve fundamental problems in machine learning
under various big data models of computation. Many of the suggested coresets in the recent
decade used, or could have used a general framework for constructing coresets whose size depends
quadratically on the total sensitivity t.

In this paper we improve this bound from O(t?) to O(tlogt). Thus our results imply more
space efficient solutions to a number of problems, including projective clustering, k-line clustering,
and subspace approximation. The main technical result is a generic reduction to the sample
complexity of learning a class of functions with bounded VC dimension. We show that obtaining
an (v,«)-sample for this class of functions with appropriate parameters v and « suffices to achieve
space efficient e-coresets.

Our result implies more efficient coreset constructions for a number of interesting problems
in machine learning; we show applications to k-median/k-means, k-line clustering, j-subspace
approximation, and the integer (j,k)-projective clustering problem.

Keywords: Dimensionality reduction, coresets, sensitivity sampling

1. Introduction

Coresets are an important technique in machine learning, data sciences, and statistics for
representing a large dataset with a much smaller amount of memory. Coresets are often used as a
pre-processing dimensionality technique to improve the downstream efficiency of algorithms, both
space and time. Informally speaking, a coreset S of an input set P of underlying points p1,...,p is
a smaller number of weighted representatives of P that can be used to approximate the cost of any
query from a set of a given queries. For example, in the common k-means clustering problem, the
coreset must approximate >, d(p;,C)? for every query C, where C'is a set of k points and d(p;,C)
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is taken to be the smallest Euclidean distance from p; to any point in C. Thus to use a coreset S to
approximately solve the k-means clustering problem, it suffices to find the optimal clustering on S
rather than find the optimal clustering on P. Because the size of S is much smaller than the size of
P, ie., |S|<|P|, then finding an optimal clustering on S instead of P will be much more efficient.

More generally, coreset is a set of points P’ with corresponding weight function w(-) such that
>y epw(®)d(p;,C)? is a (14€) approximation to Y i, d(p;,C)?. Coresets have been extensively
studied in k-means clustering Badoiu et al. (2002); Har-Peled and Mazumdar (2004); Frahling and
Sohler (2005, 2008); Feldman and Langberg (2011); Feldman and Schulman (2012); Braverman
et al. (2019); Huang and Vishnoi (2020); Feldman et al. (2020), subspace approximation Desh-
pande et al. (2006); Deshpande and Varadarajan (2007); Feldman and Langberg (2011); Feldman
et al. (2010a, 2013); Clarkson and Woodruff (2015); Sohler and Woodruff (2018), and a number of
other geometric problems and applications Agarwal et al. (2006); Feldman et al. (2006); Clarkson
(2008); Dasgupta et al. (2008); Ackermann and Blomer (2009); Phillips and Tai (2018); Huang
et al. (2018); Assadi et al. (2019); Munteanu et al. (2018); Braverman et al. (2018); Mussay et al.
(2020), due to the increasing availability of big data and the necessity for scalable methods to
process this information.

The most common algorithmic procedure to designing a coreset is the following simple
template. An algorithm first approximately evaluates the sensitivity of each point in the dataset.
Informally, the sensitivity of a point quantities how important or distinct that point is, with
respect to the given objective function on which we would like to optimize. Approximating the
sensitivity of each point can often be done efficiently, so that the time to construct a coreset
is often a lower order term compared to the runtime of the post-processing algorithm. The
template then samples a fixed number of points, so that each point in the dataset with probability
proportional to the sensitivity of the point. This approach is called sensitivity sampling and the
fixed number of points is often a monotonically increasing function of the total sensitivity, defined
to be the sum of the sensitivities of each point. Hence, if the numbered of sampled points is
much smaller than the number of input points, this approach allows for compact dimensionality
reduction, leading to improved performance of post-processing algorithms.

Since the total sensitivity is a central quantity to coreset techniques, the total sensitivity for
various objective functions has been well-studied and completely characterized in some cases.
However, it is not quite known what the optimal dependency between the total sensitivity and
the size of the coreset should be; that is, what is optimal monotonically increasing function of
the total sensitivity that governs the number of sampled points? Clearly smaller functions lead
to smaller coresets, which lead to more efficient post-processing functions. Many recent coreset
constructions in the past decade require constructing coresets whose size depends quadratically
on the total sensitivity. In this paper, we show this dependency is not optimal; we introduce
in Theorem 1 a generic construction whose dependency on the total sensitivity ¢ is only O(tlogt)
rather than O(#2) (Feldman and Langberg, 2011). Because the dependency is already black-boxed
into the design of many coreset constructions, our results automatically improve many existing
coreset algorithms simply by lowering the number of required samples, without modifying any
other property of the algorithm; we are only showing that the worst-case theoretical guarantee
of these algorithms is significantly and universally better than previously thought.
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1.1. Our Contributions

We show that the common sensitivity sampling framework only needs to sample O(tlogt) points,
where t is the total sensitivity.

Theorem 1 Let d be the dimension of a query space (P,w,Q,f). For each point p, let m(p)
be an upper bound on the sensitivity of point p. Let t:Zpe pm(p), and €, € (0,1). Then by
sampling O(E%(dlogt—l-log(%))) i.i.d. points from P and rescaling each sampled point by ——

m(p)’
the resulting sample is an e-coreset for P.

In contrast, previous analysis showed that the sensitivity sampling framework required O(#?)
points Feldman and Langberg (2011). We emphasize that our results are purely theoretical; we
show that any worst-case guarantee that could previously be achieved with O(¢?) samples can
actually be achieved with only O(tlogt) samples. Hence our results can be universally plugged
into any existing coreset construction algorithm simply by requiring a lower number of samples.
Moreover, our results are optimal, since it can be shown by standard coupon-collector arguments
that Q(tlogt) samples are necessary in some cases.

Our analysis is simple and uses results from the sample complexity of learning functions from
unknown distributions Li et al. (2001). Namely, let X be a domain with an unknown underlying
probability distribution P and let F be a possibly infinite set of real-valued functionswith domain
X. Suppose an algorithm is given independent samples z=(x1,...,xy,) from P and oracle access to
any f €F. Then how many samples must an algorithm observe before the sample average Ew( f)=
LS f(w;) is a rough approximation to Ep(f) :gEP f(x)? Note that since E,(f) is an unbiased

estimator for Ep(f), then standard concentration inequalities or variance bounding techniques
demonstrate that the empirical average is roughly equal to the actual expectation. Surprisingly, Li
et al. (2001) proved that if F has pseudo-dimension d, then O(%log%) samples can simultaneously
obtain a good estimate to the expectation of all functions in F with constant probability.

We show that the results of Li et al. (2001) also succeed if the VC-dimension of F is d, rather
than the pseudo-dimension. This implies that the algorithm outputs a (p,e)-approximation of
all functions in F, which means if the function is too small, then the resulting data structure
can only provide an additive error guarantee rather than a multiplicative relative error guarantee,
but if the function is adequately large, then the resulting data structure provides a multiplicative
error guarantee.

Fortunately, we show this guarantee suffices to obtain an e-coreset. We break the query
space into partitions, based on how much a point contributes to a query, compared to the total
contribution to a query across all the points. If the contribution of a partition is large, then our
(p,e)-approximation guarantees a good approximation to this partition. Now if the contribution
of a partition is small, then two things can happen. Either it is possible that the sum of the
contributions of all of the “small” partitions is large, in which case our (p,e)-approximation again
guarantees a good approximation, or the sum of the contributions remains insignificant. In this
case, we only have an additive approximation of the contributions for these points, but because
the sum of the contributions is insignificant, an additive error on these points translates to a
small relative error on the entire objective function.

Applications, Generalizations, and Empirical Evaluations. Theorem 1 has applications to
many problems in machine learning. In Section 3, we describe applications to model fitting prob-
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lems. Specifically, we consider the (j,k)-projective clustering problems such as k-median/k-means,
k-line clustering, j-subspace approximation, and the integer (j,k)-projective clustering problem.

Informally, the goal is to find a model F' in a restricted family F of set of k-tuples of affine j-
subspaces that minimizes Zpe pd(p,F), where P is a set of input points. Here, F" is the union of k
j-flats so that if j =0, then each j-flat reduces to a point and the (j,k)-projective clustering problem
becomes the k-median problem with the appropriate metric. On the other hand, with an alternate
distance function (the squared Euclidean distance), d(-,-), the (j,k)-projective clustering objective
becomes the k-means problem. When j=1 and k is fixed, the objective becomes the k-line
clustering problem but if j is fixed and k=1, then the objective instead becomes the subspace ap-
proximation problem. Finally, in the integer (j,k)-projective clustering problem, all points in P are
assumed to have integer coordinates from some predetermined range. Our results subsume earlier
versions online that have not received independent verification and are summarized in Figure 1.

Problem Coreset Size (Theorem 17) Previous Coreset Size Reference

Integer (j,k)-projective clustering | O( 2g(d] k) (logn)? @R | O(Z ¢(d,j.k)(logn)*9“M) Feldman and Langberg (2011); Varadarajan and Xiao (2012a) [ Thm. 20
k-line center O(4 (k) ®logn) O(;%L:Z'f(*')log n) Feldman and Langberg (2011); Varadarajan and Xiao (2012b) Thm. 23
k-median O( L klogk) O(ZF %) Feldman and Langberg (2011); Varadarajan and Xiao (2012b) Thm. 25

k-means O(%klogk) O( kz) ldman and Langberg (2011); Varadarajan and Xiao (2012b) Thm. 25

j-subspace fitting O(M) O( ("’“) ldman and Langberg (2011); Varadarajan and Xiao (2012b) Thm. 27

Figure 1: Coreset sizes achieved by Theorem 17 for various unsupervised learning problems.
/.g,s are functions independent of the input size n, specific to the problem setting.
O(:) omits lower order terms.

Although our primary contribution is theoretical, we complement our worst-case guarantees
with empirical evaluations on both small and large-scale datasets, which we describe in Section 4.
Finally, we give a number of tighter bounds for k-clustering in the appendix, which may be
skipped for general applications.

Subsequent work. Following our work, a number of subsequent coreset constructions have
been proposed. For k-median, Sohler and Woodruff (2018) showed a coreset construction with
size O(e~*k%logk). Their techniques used a new dimensionality reduction result in combination
with existing coreset constructions to show that the optimal coreset size of k-median can be
independent of the dimension d. Similarly, Becchetti et al. (2019) gave coreset constructions
with size O(e~*k?logk) for k-means clustering using by introducing a data-dependent random
projection and showing that the random projection is a terminal embedding. Finally, Huang and
Vishnoi (2020) showed that importance sampling is essentially optimal, by giving coresets with
size O(min{e=%72,22°c =4k} -klogklog(k /<)) for (k,z)-clustering, where z=1 for k-median and
z=2 for k-means. It should be noted that since these methods focus on reducing the dimension
d of the input space, their methods can be used in combination with our constructions to obtain
coresets with size independent of d.

1.2. Preliminaries

For an integer d>1, we denote by R?=R%*! the set of column vectors in R and [d]={1,d}.
For £ >0, we denote by 1+¢ the interval [1—¢,1+¢]. A multiplication of a real number c€R
by a set X CR? is denoted by cX = {c:c\xG]Rd}. A sum or minimum over an empty set is
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defined to be 0 in this paper. We say a set of random variables are i.i.d. if the random variables
are independent and identically distributed. We use O(-) to suppress lower order terms, e.g.
O(E%logn) omits polylog(%) and polyloglogn terms.

Definition 2 (Weighted Set) Let X be called a ground set. Let PC X be a (possibly ordered)
multi-set and w: P—[0,00) be a function that maps every p€ P to a weight w(p)>0. The pair
(Pyw) is called a weighted set in X. If w(p)=1 for every p€ P then the (un)weighted set (Pw)
may be denoted by P for short.

The order of the points in P can be arbitrary in this paper. However, even if P contains only a
single copy of each point, the corresponding coreset may contain multiple instances of some points.
Hence, we consider coresets as multi-sets, although duplicated points can usually be replaced
by a single weighted point without changing the claimed results. The union and intersection are
also implied to be over multi-sets in this paper.

Definition 3 (Query and Range Space) Let X be a ground set and (Pw) be a weighted set
in X called the input set. Let Q) be a query function that maps every set SC X to a corresponding
Q(S), such that Q(T) CQ(S) for every TCS. Let f: X xQ(X)—R be called a loss function.
The tuple (Pw,Q,f) is called a query space. For a collection R of subsets of X, we call (X,R)
a range space. For every weighted set C'=(Cyu) in X, and every q € Q we define the overall

fitting error of C" to q by f(C',q)=3_,ecu(p)f(p:9)-

For example, in the k-means clustering problem on R"”, the ground set X is the domain R™ that
contains is the set P of input points. The query function for k-means clustering restricts queries
of R™ to k points and the loss function is the squared Euclidean distances, so that when the
arguments of the loss function are a point from P and a point from the query function, the loss
function is the squared distance from the input point to the closest center.

Usually the loss function has specific properties such as being a pseudo distance function D,
as will be defined later. However, it may also be more complicated such as a subtraction between
pseudo distance functions, which will also be used in this paper. This is also why it may return
a negative number. In general, we will be interested in approximating Zpe pw(p)f(p,q) for every
query ¢ in the query space up to an additive error of e.

For a set X, a query function @, and a cost function f, we define the VC-dimension of the
range space that it induced, as defined below. The classic VC-dimension was defined for sets
and subset and here we generalize it to query spaces, following Feldman and Langberg (2011).

Definition 4 (VC-dimension) Vapnik and Chervonenkis (1971); Feldman and Langberg (2011)
For a ground set X and a set ranges of subsets of X, the VC-dimension of (X ranges) is the size
|C| of the largest subset C C X such that |{CNrange |range € ranges}| =2/°l. Let Q be a query
function and f: X xQ(X)—R. For every g€ Q(X), and r €R we define the sets

rangep ¢(q,r):=={p€ P| f(p,q) <7},
ranges(P.Q,f) = {Crwangep, 1(47) | C C Pg€Q(C).r €R}.
The dimension of (P,Q,f) is the VC-dimension of (Pranges(P,Q,f)).

The following definition of sensitivity is central to our paper, as we shall show that the coreset
size of our algorithm is proportional to the total sensitivity of the input set.
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Definition 5 (Sensitivity) Let (P,w,Q, f) be a query space over a ground set X, where
w: P —[0,00) and f: P xQ(P)— [0,00). Then we define the sensitivity of a point p € P
by s(p) =supcequ(p)| f(p,C)|-

Then the total sensitivity of an input set is the natural definition:

Definition 6 (Total Sensitivity) Let (Pw,Q,f) be a query space over a ground set X, where
w: P —[0,00) and f: PxQ(P)—[0,00). We define the total sensitivity of P by >_ ,cps(p),
where s(p) is the sensitiwity of p.

We next define two related concepts, the (v,«)-samples and relative (p,e)-approximations.

Definition 7 ((v,a)-Sample) (Li et al., 2001) Let o,v > 0. For every a,b>0, we define the

distance function d,(a,b)= a'i;ﬂy. Let (Pw,Q,f) be a query space over a ground set X, where

w:P—[0,00) and f: PxQ(P)—[0,00). Then the weighted set (S,u) is called a (v,a)-sample

where f(Puw,q)= %,

Definition 8 ((p,c)-Approximation) (Har-Peled and Sharir, 2011) Let 0 < p,e < 1. Let
(Pw,Q,f) be a query space over a ground set X, where w: P —[0,00) and f:PxQ(P)—[0,00).
Then the weighted set (S,u) is called a (v,)-sample for (Pw,Q,f) if (Syu,Q,f) is a query space,
and for every ¢CQ(S5),

1. (1—e) f(Pw,q) < f(Su,q) < (A+¢) f(Pw,q), for f(Pw,q)>p

2. f(Pw,q)—ep< f(Su,q) < f(Pw.q)+ep, for f(Pw,q)<p,

> peplw(®) f(pa)l

where f(P,UJ,Q) = > pepw(®)

We assume throughout, without loss of generality, that Zpe pw(p)=1 and recall the equivalence
between (v, )-samples and relative (p,e)-approximations:

Theorem 9 (Har-Peled and Sharir, 2011) Let (X,R) be a range space. If (Z,R) is a (v,«)-
sample for (X,R) with 0<a <3 and v>0, then Z is a relative (v,Ac)-approzimation for (X,R).
Moreover, if dy(ab) <% and v<1, then [a—b| <e.

Definition 10 (e-coreset) Let P'=(Pw) be a weighted set in X, and € >0 be an approzimation
error. The weighted set C'=(Cu) in X is an e-coreset for a query space (P',Q,f) if for every

q€Q(C) we have (1=¢)3_,ccu(p)f(p,a) <2 pepw(p)f(pg) < (146)) 2 e culp) f(p:g)-

2. Sensitivity Sampling

In this section, we show that provable worst-case guarantees for constant factor approximation can
be achieved using the sensitivity sampling framework to construct coresets of size O(tlogt), where t
is the total sensitivity' This improves on previous analysis that the sensitivity sampling framework

1. We also achieve optimal dependence on % for a (1+¢€)-approximation, but we omit these factors for ease of
discussion.
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to sample O(t2) points to construct coresets that guaranteed constant factor approximation (Feld-
man and Langberg, 2011). We remark that our result is purely theoretical and does not require
novel algorithmic implementation. Instead, our result shows that the parameters in existing
coreset construction algorithms can be improved while still guaranteeing worst-case performance.

Recall that the sensitivity of a point p€ P is defined by s(p) =supceqpyw(p)|f(p,C)|, where
w: P — [0,00) is a weight function p and f: P x Q(P) — [0,00) is a loss function between
an input point and a query set. However, determining the exact sensitivity of a point can be
time-consuming, so we instead define m(p) > s(p) to be an upper bound on the sensitivity. It
turns out that upper bounds m(p) that are within a constant factor approximation of the exact
sensitivity of a point are often efficiently computable. Then ¢:=¢(P) :Zpe pm(p) is an upper
bound on the total sensitivity, which is the sum of the sensitivities of all points in P.

We now formalize the sensitivity sampling framework broadly used in algorithmic design.
We form a sample S by picking the first point of S to be p € P with probability % and
reweighting the sampled point with the inverse of the sampling probability. We show that
repeatedly sampling points from P with replacement until .S has E% (dlogt—klog(%)) points suffices
to obtain an e-coreset for P with probability 1—4 if the underlying query space has VC dimension
d. The sensitivity sampling framework appears in full in Algorithm 0.

Algorithm 0: BASIC_CORESET(P,d,¢,0)
Input: Set of n points P in a query space with VC dimension d, approximation parameter € >0,
failure probability d >0, oracle access to upper bound m(-) on sensitivities.
Output: e-coreset of P. t<0
for every pe P do
Let m(p) be an upper bound on the sensitivity s(p) of p.
t<t+m(p)
end
S0
N+ E% (dlogt+log(%)) for sufficiently large constant ¢> 0 that can be determined from the proof.
for =1 to N do
With probability @, set x=p for p€ P with weight %.
S+ Su{z}
end
return S

2.1. Sample Complexity of Learning

We first consider the problem of relating the sample complexity of learning a class of functions to
its VC dimension. We then show this implies an e-coreset construction under certain parameters.
Let X be a domain with probability distribution p and let F be a possibly infinite set of real-
valued functions defined on X. Given access to samples = (z1,...,xy) independently drawn from
u and oracle access to any f €F, the sample average Em( f)= %Zf\il f(x;) serves as an unbiased
estimator to the expectation of f, denoted E,(f) :m@u f(z). For sufficiently large N, standard

concentration inequalities can show that the sample average I@x( f) is an a-approximation to the
expectation E,,(f), where 0 <a <1. However, it is not obvious whether there exists a value of
N that allows simultaneous estimation of the expectation of all functions in F.



BRAVERMAN FELDMAN LANG STATMAN ZHOU

We first recall the following definition of pseudo-dimension:

Definition 11 (Pseudo-dimension) The pseudo-dimension of a class F of functions from a
domain X to [0,1] is defined to be the largest d such that there exists a sequence x1,...,xq€ X and
a sequence 11,...,rg € R of thresholds such that for all 2% combinations of by,...,bg € {0,1}, there
exists an f €F such that for all i€[d], f(z;)>7r; if and only if b;=1.

Li et al. (2001) show that if F has pseudo-dimension d, then O( ! log ) samples suffices
to simultaneously obtain an (v,«)-sample to expectation of all functlons in F with constant
probability. Namely, [i et al. (2001) show the following two lemmas:

Lemma 12 (Lemma 6 in Li et al. (2001)) Let F be a set of functions from X to [0,1], u

be a probability distribution over X and v>0, 0<a<1, and N> %~ 2. For any integer N > 0
let T'xy denote the set of all permutations of {1,....2N} so that for each i< N, either i and N+1i
are fived, or i and N+i are swapped. Let U be the uniform distribution over I'y,. Then

f;vr[g;:afef,dy(ﬁx(f),xau(f))>a} <2 sup U{a

J?EX2N

er]-“,d( Zf (%) Zf NW)) %}

Lemma 13 (Lemma 10 in Li et al. (2001)) Let d be the pseudo-dimension of F'C[0,1]?V

where N > % for any a,y>0. Let U be the uniform distribution over I'yy. Then

N N
1 1 2624\ _o%N
U{O'EleF,dV<NE f(CCU(z)),NE f(xa(N—l-z))) }<6< v > e 90
i=1 =1

Observe that combining Lemma 12 and Lemma 13 and solving for N recovers the bound from
Li et al. (2001) of O( (dlog +log 5)). We need an analog of their sampling result for VC-
dimension rather than pseudo—dmlensmn. As it turns out, the only place Li et al. (2001) uses
pseudo-dimension in Lemma 13 is a black-box reduction from the following lemma to bound the

size of F:

Lemma 14 (Haussler, 1995; Li et al., 2001) For vaw€RF, let £1(v,w) =4 |v;—wj|. Let k>0 be
an integer and 0<a <1. Suppose each pair of distinct elements f,g€ F C[0,1]% has ¢1(f,g) <a
Then |F| < (%)d, where d is the pseudo-dimension of F.

Moreover, Haussler (1995) proved the exact same statement when d is the VC-dimension of F
rather than the pseudo-dimension.

Lemma 15 (Haussler, 1995) For vow€RF, let f1(vw)= kZz 1vi— wz\ Let k>0 be an integer
and 0 < a < 1. Suppose each pair of distinct elements f,g € F C[0,1]* has ¢1(f,g) <. Then

|F| < (%)d, where d is the VC-dimension of F.
Specifically, Lemma 15 follows from Corollary 1 in Haussler (1995) because e(d+1)(2e/e)? <

(23 /)4 < (41/2)4.

Thus by using Lemma 15 rather than Lemma 14, we can recover Lemma 13 using VC-
dimension rather than pseudo-dimension in the following formulation of Theorem 16. Hence, we
can relate the sampling complexity of learning a class of functions to their VC-dimension:
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Theorem 16 Let € (0,1) be a failure probability and F:X —[0,1] be a family of functions with
VC' dimension d. Then with probability ot least 1—§, N :O(aéy (dlog%—f—log%)) samples suffice

to simultaneously obtain an (v,a)-sample to any fE€F, i.e., dV(IEm(f),EH(f)) <a.

2.2. Reduction to e-Coresets

We now show that an (v,a)-sample to a class of functions F suffices to achieve an e-coreset
under the appropriate parameters. The proof partitions the points in an input set P by their
contribution to - - pw(p) f(p,X) for some X in the query space. A subset S; that contributes
a large fraction towards > pw(p)f(p,X) will be well-estimated by the (v,a)-sample. On
the other hand, if S; is not well-estimated by the (v,«)-sample, then its contribution towards
Zpe pw(p) f(p,X) must be small, so that intuitively, the additive error from the (v,o)-sample
is also small. Thus we can show that the sample is actually an e-coreset.

Theorem 17 (Theorem 1, Restated) Let d be the dimension of a query space (Pw,Q,f).
Suppose that m: P — [0,00) such that m(p) > supceqpyw(p)| f(p,C)|. Let t>3%" cpm(p), and
£,0€(0,1). Let c>1 be a sufficiently large constant, and let S be a sample of

ct 1
S| > = (dlogt+log<5)>

i.i.d. points from P, where for every pe P and s €S we have Prob(p=s)> @. Then, with
probability at least 1—0, then simultaneously for all C€Q(S),

Zw<p>f<p,c>—p€§;,5,§g(q)-f<p,c> <o) f0.0)|

peP peP

3. Applications

Our theoretical worst-case guarantee has a wide range of applications due to the prevalence
of the coreset technique and how well-studied the total sensitivity is of various optimization
problems. Note that for any problem whose sensitivity is known to be t, Theorem 1 gives an
improvement on dependency of ¢ from O(t?) to O(tlogt) for the number of sampled points.
Varadarajan and Xiao (2012b) considers sensitivity sampling for shape fitting problems, focusing
on (j,k)-projective clustering problems, such as k-median/k-means, k-line clustering, j-subspace
approximation, and the integer (j,k)-projective clustering problem. We show that our results
imply more efficient coreset constructions using the total sensitivity bounds on these problems
obtained by Varadarajan and Xiao (2012b).

Definition 18 ((j,k)-projective clustering problem) Given integers j,k>0, a distance func-
tion dist :R?xR? - R, and a set of points P CR?, the goal is to find a shape F in the family
of shapes F that minimizes Zpe pdist(p,F'), where the family of shapes F is the set of k-tuples
of affine j-subspaces. Hence, F is the union of k j-flats.

In particular if =0, then each j-flat is just a point, so the (j,k)-projective clustering problem with
the distance function dist(-,-) being the Euclidean distance reduces to the k-median problem, while
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if dist(,) is the squared Euclidean distance, then the objective becomes the k-means problem. If
j=1, then each j-flat becomes a line, so that the objective becomes the k-line clustering problem.
On the other hand, if j is fixed and k=1, the (j,k)-projective clustering problem becomes the
subspace approximation problem, which can be parametrized by the distance function. Finally,
in the integer (j,k)-projective clustering problem, all points in P are assumed to have integer
coordinates from the range [—n”,n?] for some constant > 0.

For the k-line center problem and the integer general (j,k)-projective clustering problem,
Varadarajan and Xiao (2012a) showed the following upper bounds on the total sensitivity:

Theorem 19 (Varadarajan and Xiao, 2012a) Let the distance function dist used in projective
clustering be the z-th power of the Euclidean distance for some fized z € (0,00). Then the
total sensitivity t satisfies t = O(k' (d:k) logn) for j =1, i.e., the k-line center problem and
t=0((logn)9®7%)) for the integer (j,k)-projective clustering problem, where f and g are fized
functions that only depend on d,k and d,j,k, respectively.

Then Theorem 19 and Theorem 1 together imply efficient coresets for both the k-line center
problem and the integer (j,k)-projective clustering problem.

Theorem 20 There exists an algorithm that outputs a set of O(;%g(d,j,k:)(logn)g(d’jvk)) weighted
points that is an e-coreset for the integer (j,k)-projective clustering problem with probability at
least 2.

3

Theorem 21 There exists an algorithm that outputs an e-coreset of O (gz f(dk)k! (d’k)logn)
weighted points for the k-line center problem with probability at least %

We remark that Theorem 21 is subsumed by Theorem 23 below, as Varadarajan and Xiao (2012b)
tighten the total sensitivity upper bound for the k-line center problem by showing that f(d,k)
in Theorem 19 is independent of d.

Theorem 22 (Varadarajan and Xiao, 2012b) Let the distance function dist used in projective
clustering be the z-th power of the Fuclidean distance for some fized z € (0,00). Then the total
sensitivity t satisfies t=0(k' (k)logn) for j=1, where f is a fixed function that only depends on
k, respectively.

From Theorem 22 and Theorem 1, we have

Theorem 23 There exists an algorithm that outputs a set of O(g% f (k)kf (k)logn) weighted points
that is an e-coreset for the k-line center problem with probability at least %

Varadarajan and Xiao (2012b) bounded the total sensitivity for the (0,k)-projective clustering
problem, which includes k-median and k-means.

Theorem 24 (Varadarajan and Xiao, 2012b) Let the distance function dist used in projective
clustering be the z-th power of the Fuclidean distance for some fixed z € (0,00). For z>1, the
total sensitivity t satisfies t <22*~1k+2*~1 whereas for € (0,1), we have t <2k+1.

Thus by Theorem 24 and Theorem 1:

Theorem 25 For either the k-median problem or the k-means problem, there exists an algorithm
that outputs a set of O(E%klogk:) weighted points that is an e-coreset, with probability at least %
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Varadarajan and Xiao (2012b) also bounded the total sensitivity for the j-subspace fitting problem.

Theorem 26 (Varadarajan and Xiao, 2012b) Let s=min(j,d) and let the distance function dist
used in projective clustering be the z-th power of the Euclidean distance for some fized z € (0,00).

Then total sensitivity of any set of n points in R? for the j-subspace fitting problem is O(SH_%)
for 1<z<2, O(s) for z=2, and O(s?) for z>2.

By Theorem 26 and Theorem 1, we conclude that:

Theorem 27 Let s=min(j,d) and let the distance function dist used in projective clustering be
the z-th power of the Euclidean distance for some fized z € (0,00). Let t:O(sH%) for 1<2<2,

O(s) for z=2, and O(s?) for z>2. Then there exists an algorithm that outputs a set of O(;’—g)
weighted points that is an e-coreset for the j-subspace fitting problem with probability at least %

4. Empirical Evaluations

This concludes our discussion of the general sensitivity sampling framework. Although our
contribution is primarily theoretical, we nevertheless performed empirical evaluations in Python
3.6 via the Numpy and Scipy.sparse libraries on a desktop machine with an Intel i7-6850K CPU
@ 3.60GHZ, 64GB RAM. We consider coreset constructions based on sensitivity sampling for
bicriteria algorithms (Algorithm 1), general loss functions that satisfy the weak triangle inequality
(Algorithm 2), and the conditional normalized distance (Algorithm 3). We compared Algorithms
1, 2, and 3 to uniform sampling on k-means clustering on both relatively small offline data and
large-scale streaming data that cannot fit into memory. Algorithms 1, 2, and 3 each require
a bicriteria algorithm to approximate the importance of each point; we use kmeans++ with
a=0(logk) and S=1 to approximate the importances, so that the runtime is linear.

4.1. Evaluations on Offline Data

For experiments on small offline datasets, we compared our coreset constructions for k-means
clustering in Algorithms 1-3 vs. uniform sampling on the datasets: (i) Gyroscope data and (ii)
Accelerometer data. Collected by Anguita et al. (2013b), and can be found in Anguita et al.
(2013a), the experiments have been carried out with a group of 30 volunteers within an age
bracket of 19-48 years. Each person performed six activities (walking, walking upstairs, walking
downstairs, sitting, standing, laying) while wearing a Samsung Galaxy S II smartphone on the
waist. Using its embedded gyroscope (resp. accelerometer), 3-axial angular velocity (resp. linear
acceleration) were captured at a constant rate of 50Hz. The experiments have been video-recorded
to label the data manually. Data was collected from n = 7352 measurements; each instance
consists of measurements from d=3 dimensions: z, y, z, each in a size of 128.

We ran Algorithms 1-3 and uniform sampling on the above six datasets with different

sample/coreset size, between 1000 to 7000, with & = 100 and k£ = 200. The multiplicative

approximation error (empirical €) was calculated by e:= COST(%gg—?—?fgi—;—(A’QA)» where A is the

matrix whose rows correspond to the n input points, Q4 corresponds to the &k centers of the whole
data (two Lloyd’s iterations after kmeans++ initialization) and Q¢ is the clustering of the coreset.
Our results show a significant improvement of our algorithms over uniform sampling; we present
the gyroscope data evaluations in Figure 2 and the accelerometer data evaluations in Figure 3.
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Figure 2: Experimental results on gyroscope data for uniform sample compared to our 3 algorithms.
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Figure 3: Experimental results on accelerometer data for uniform sample compared to our 3 algorithms.

4.2. Evaluations on Streaming Data

To handle large-scale streaming data that cannot fit into memory, our system separates the n
points of the data into chunks of a desired size of coreset, called m. We use a merge-and-reduce
framework on a binary tree, e.g. Feldman et al. (2010b), where each node is a coreset of the union of
the data represented by its children nodes and the bottom layer of the tree consists of consecutive
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chunks of the data of size 4516. Thus the root of the tree is a coreset of the whole data. We build a
tree of height 10 for our data, dividing the n=4624611 input points across 1024 chunks of size 4516.

Wikipedia Dataset. We compared uniform sampling to Algorithms 1 and 3 for k-means cluster-
ing on a created document-term matrix of Wikipedia (parsed enwiki-latest-pages-articles.xml.bz2-
rss.xml from wicl9), i.e. sparse matrix with 4624611 rows and 100k columns where each cell (i,7)
equals the value of how many appearances the word number j has in article number 7. We use
a standard dictionary of the 100k most common words in Wikipedia (Dic12). We concatenated
the coreset received in each floor and compared the received error in each floor. The error we

determined was calculated by the formula COST(%gSC%ngi-;(A’QA), where A is the original data

matrix, )4 is the clustering of the whole data (Lloyd’s iterations until 1% convergence, after
++ initialization) and Q¢ is the clustering of the coreset. We used two values of k, 100 and
200. We present our results in Figure 4. We concatenated the coreset received in each floor and
compared the received error in each floor. The error we determined was calculated by the formula

COST(%gg%zigi;—(A’QA), where A is the original data matrix, @) 4 is the clustering of the whole

data (Lloyd’s iterations until 1% convergence, after ++ initialization) and Q¢ is the clustering
of the coreset. We present our results in Figure 4 for k=100 and £=200. Similar to the offline
evaluations, we obtain better results for our algorithms than uniform sampling. However, unlike
than the offline data, here the conditional normalized algorithm gets much better results than
the general sensitivity sampling algorithm.

Algorithms. The algorithms we compared are uniform sampling, and our Algorithm 1 and 3.

Results. We concatenated the coreset received in each floor and compared the received error

in each floor. The error we determined was calculated by the formula COST(’Z‘:’g‘S“%ngi-I)—(A’QC),

where A is the original data matrix, @4 is the clustering of the whole data (Lloyd’s iterations
until 1% convergence, after ++ initialization) and Q¢ is the clustering of the coreset. We used
two values of k£, 100 and 200. We present our results in Figure 4.

Discussion. Indeed also for this dataset we got better results for our algorithm than uniform
sampling. However, unlike than in Section 4, here Algorithm 2 gets much better results than
Algorithm 1.
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