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Abstract

Railway systems require regular manual maintenance, a large part of which is dedicated
to inspecting track deformation. Such deformation might severely impact trains’ runtime
security, whereas such inspections remain costly for both finance and human resources.
Therefore, a more precise and efficient approach to detect railway track deformation is in
urgent need. In this paper, we showcase an application framework for predicting vertical
track irregularity, based on a real-world, large-scale dataset produced by several operating
railways in China. We have conducted extensive experiments on various machine learning &
ensemble learning algorithms in an effort to maximize the model’s capability in capturing
any irregularity. We also proposed a novel approach for handling imbalanced data in
multivariate time series prediction tasks with adaptive data sampling and penalized loss.
Such an approach has proven to reduce models’ sensitivity to the imbalanced target domain,
thus improving its performance in predicting rare extreme values.

Keywords: Railway, Time Series Prediction, Imbalanced Regression, Neural Networks,
Ensemble Learning

1. Introduction

With the recent development in sensor technology, it has become easier to monitor railway
infrastructures by deploying sensors on the track and trains. The installation of a massive
amount of sensors in railway facilities has created an influx of data, which in turn spurs the
development of more complicated information systems for monitoring railway conditions.
Such systems could utilize the collected data for sophisticated maintenance scheduling and
deterioration prevention, thus easing the burdens on finance and human resources.

In this paper, we focus on a crucial aspect of railway conditions – vertical track irregular-
ity. Vertical track irregularity has a decisive impact on trains’ runtime security and stability.
A slight, even imperceptible arch or depression in the track could lead to catastrophic re-
sults for a train running at high speed. However, massive, repeated manual gauging is still
required to detect and fix emerging track irregularities to date.

Therefore, we proposed an application framework by using time series prediction tech-
niques to detect vertical track irregularity. The prediction is carried out in two dimensions:
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• Spatial dimension: we utilize data from adjacent track points to predict the condition
of the current track point;

• Temporal dimension: we utilized historical data of the current track point to predict
its condition at this moment.

The condition of a point on the track is primarily measured by its track height. Abnormally
high track heights might indicate an arching deformation in adjacent areas, while low track
heights might indicate a depressed deformation. Such a framework could be applied in
real-life engineering cases, such as preventive maintenance.

We have seen relevant works on applying machine learning techniques to railway main-
tenance. Tsunashima (2019) uses a support vector machine to classify car-body vibration
signals in order to determine track conditions. Gibert et al. (2016) uses deep convolutional
neural networks (Krizhevsky et al. (2012)) to inspect railway track conditions through pho-
tos. Krummenacher et al. (2017) uses time series prediction to determine wheel defects,
and Fink et al. (2013) uses time series prediction to predict railway speed restrictions.

Our contribution is this paper could be phrased as follows:

• To the authors’ knowledge, we are among the first to apply time series prediction
techniques, especially recurrent neural networks, to track irregularity monitoring. Our
experience and solution could be a viable reference for the community;

• We proposed a novel approach, combining adaptive data sampling and penalized loss,
to fight data imbalance in multivariate time series regression tasks. This approach is
proved to be effective and should be a complement to existing imbalanced learning
algorithms;

• We have conducted exhaustive experiments on various time series prediction algo-
rithms, including ARIMAX (Williams (2001)), LSTM (Hochreiter and Schmidhuber
(1997)), GRU (Chung et al. (2014)), and CNN (Krizhevsky et al. (2012)). We have
also adopted multiple ensemble learning methods (Zhou (2009)), including Bagging,
Boosting, and Stacking, for optimizing the model’s performance.

2. Methodology

In this section, we will discuss the algorithms vital to the development of this paper.

2.1. Time Series Prediction

2.1.1. ARIMAX

ARIMAX is an extension of the autoregressive integrated moving average (ARIMA) model
proposed by Williams (2001). ARIMAX accepts exogenous variables, which enables multi-
variate time series regression.

2.1.2. LSTM

LSTM, short for Long Short-Term Memory, is a variation of the recurrent neural network
proposed by Hochreiter and Schmidhuber (1997). It introduces a memory cell, as shown in
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Fig.1, with an update gate and an output gate. These gates hold the memory cell’s internal
states and help improve the network’s memory over long sequences.

Figure 1: The internal structure of an LSTM memory unit.

2.1.3. GRU

GRU, short for Gated Recurrent Unit, is a simplification over LSTM proposed by Chung
et al. (2014). It removes the output gate in an effort to reduce parameters and accelerate
computation. Experiments have demonstrated that GRU can achieve similar or better
performance compared to that of LSTM, even with fewer parameters.

2.1.4. CNN

CNN (Krizhevsky et al. (2012)), short of convolutional neural networks, is typically seen in
computer vision tasks. However, it could also be adapted for time series processing (Zhao
et al. (2017)) by viewing the multivariate time series as a matrix, as we do with the pictures.
For example, given an input multivariate time series of shape n×m (where m is the number
of features and n is the length of the time series ), a convolutional kernel of k ×m (where
k is the size of kernel and k < l) is applied along the feature axis and returns an output
vector of (n− k + 1)× 1. More kernels can be used in order to extract more features from
the input time series.

2.2. Ensemble Learning

Apart from multivariate time series regression, we use ensemble learning methods for further
optimizing the model’s performance.

2.2.1. Bagging

Bagging (Zhou (2009)), short for boostrap aggregating, is an ensemble learning method in
which we train m base learners parallelly on m different datasets. The m datasets, given
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a original dataset D of size n, is sampled from D uniformly and with replacement. All m
datasets share the same size n′, where n′ < n.

2.2.2. Boosting

Boosting (Zhou (2009)) is not algorithmically constrained, but most boosting algorithms
consist of iteratively learning weak learners with respect to a distribution and adding them
to a final strong learner. The Adaboost algorithm is probably the most popular derivation
in the boosting family. Unlike bagging, the base learners in boosting are required to be
trained sequentially as the next base learner is logically dependent on the performance of
the previous base learner.

2.2.3. Stacking

With ensemble learning methods like Bagging and Boosting, we train a set of base learners.
These base learners are later aggregated usually using majority voting (for classification)
or weighted averaging (for regression). Stacking (Zhou (2009)) allows more complex aggre-
gation by introducing another learner, which could be linear regression or even multi-layer
perceptron, on top of the base learners. The stacked learner takes the outputs of base
learners as inputs and then produces a final output. The stacked learner could be trained
and fine-tuned independently.

2.3. Imbalanced Regression

In a normally operating railway, vertical track irregularities are rarely seen – otherwise the
railway won’t be operating normally. In our case, such irregularities take up less than 0.1%
of all the data. In this case, traditional regression algorithms with MSE/RMSE losses would
barely work, hence we need algorithms and metrics specificly designed for machine learning
with imbalanced data.

2.3.1. Utility-based Regression

In utility-based regression (Torgo and Ribeiro (2007)), each target variable y is assigned
with a relevance value Φ(y), indicating its importance. Rarer target values have higher
relevance. When calculating the loss, these relevance values are taken into account by
multiplying Φ(y)× Φ(ŷ)× loss, so that the model will be penalized with a higher loss if it
made a wrong prediction on rarer values.

2.3.2. SmoteR

SmoteR, short for Smote for Regression, is proposed by Torgo et al. (2013). Smote is
originally an algorithm for handling classification problems with imbalanced data. SmoteR
uses under-sampling for the majority so that common data will be reduced, while using over-
sampling for the minority by generating synthetic cases so that rare data will be amplified.

2.3.3. Precision, Recall, and F-Score

As extreme target values are so rarely seen, loss functions like MSE/RMSE won’t be able to
reflect the model’s capability in predicting extreme values. Instead, we should use precision,
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recall, and the F-score.

precision =
tp

tp+fp

recall =
tp

tp+fn

F1 = 2× precision× recall

precision + recall

Here, tp denotes numbers of true positive cases, fp denotes number of false positive cases,
and fn denotes number of false negative cases.

3. Task and Data

Our dataset is collected from the Beijing-Tianjin railway line in China every month from
2011 to 2017. The dataset is separated by month and distributed in multiple CSV files.
Each CSV file contains approximately 420,000 lines.

Each line represents the condition of a specific point on the track at the time of data
collection, and could be uniquely identified by two variables: mileage and meters. The
former specifies one kilometer of track along the railway line, while the latter specifies a
unique point within the kilometer. Since the sampling data points distribute uniformly
along the line with a constant interval of 0.25m, the value of meters variable ranges from
0.0, 0.25, 0.5, 0.75 to 999.75.

The data initially contains 32 columns, apart from the two identifier columns: mileage
and meters. Two of these columns, namely left/right track height, are the target variables
we want to predict. The other 30 columns are therefore feature columns, including track
gauge, vertical/horizontal acceleration, etc. Most of these feature columns could be removed
at train time, however, because:

• Some of these feature columns (flags, event, speed, etc.) are invalid as all cells in
the column share the same value, for instance, zero. These columns are reserved for
sensors yet to be installed.

• Others of these feature columns have very little correlation with the target we want
to predict, namely left/right track height.

By using the Spearman correlation coefficient, we could compute a correlation coefficient
matrix, as shown in Fig.2, representing the correlation between any two columns in the
dataset. Here we prefer the Spearman coefficient over the Pearson coefficient for evaluating
correlation, as the Spearman coefficient could capture non-linear correlations. We remove
columns that are less correlated with the target variables (left/right track height), and end
up with only 10 feature columns. Experiments have also proven that the model could attain
similar performance even with less than half of the original features.

The dataset is then transformed into spatial and temporal time series using a sliding win-
dow. For spatial time series generation, we sample along the track, spaced every 0.25m.The
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Figure 2: The Spearman correlation coefficient matrix.
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For temporal time series generation, we sample every year, at the same month and track
point. The window width is 4.
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The task now could be formulated as finding such a function f : R(n×m) → R, where n
is the length of input time series (8 for spatial time series, 4 for temporal time series) and m
is the number of features (10 after we apply the Spearman coefficient to remove features).
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4. Proposed Solution

4.1. Spatial Time Series Prediction

Spatial time series prediction is an activity where we utilize data from adjacent track points
to predict the condition of the current track point. For spatial time series prediction, five
algorithms are explored and compared in this paper:

• Linear Regression serves as a base line for other models with sequential prediction
capabilities. It ignores the temporal information and use the other nine exogenous
features as inputs to predict the target track height, with mean squared error as the
error function.

• ARIMAX is a machine learning approach for time series prediction. We tried several
parameter combinations including (p = 3, d = 0, q = 0), (p = 5, d = 1, q = 0), and
(p = 8, d = 2, q = 3). The one with the best performance is promoted to compete
with neural networks.

As for deep learning algorithms, LSTM, GRU, and CNN are involved:

• Long Short Term Memory is an outstanding variant of RNN for time series analysis.
In this paper, we use one layer of LSTM cells for inputs, along with one neuron densely
connected to the previous layer for output.

• Gated Recurrent Unit is similar to LSTM but without an output gate. In this paper,
we use one layer of GRU cells for inputs, along with one neuron densely connected to
the previous layer for output.

• Convolutional Neural Network can be used for time series forecasting as well. In this
paper, we use a convolution layer with five kernels of size 5 for inputs, along with one
neuron densely connected to the previous layer for output.

Note that for all neural networks, the Adam optimization algorithm, proposed by
Kingma and Ba (2014), is used. The batch size is 128 and the loss function is mean
squared error. Two mechanisms exist as prevention against overfitting:

• All input layers (LSTM, GRU, CNN) are restrained by a L2 regularizer;

• A validation set is used for early stopping with a three degree patience. If the loss on
the validation set has been rising for at least three epochs, the training process will
be stopped and the model’s parameters will be restored to that of three epochs ago.

Spatial time series prediction itself might seem unnecessary or less important, compared
to temporal time series prediction, as the current condition of a specific railway track point
could be directly read from the sensors. However, spatial time series prediction could still
be helpful for locating hardware failures in sensors, for example, when the some sensor emits
data that dramatically deviates from the model’s prediction.
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4.2. Temporal Time Series Prediction

Temporal time series prediction is an activity where we utilized historical data of the current
track point to predict its condition at this moment.

For temporal time series prediction, we employed ensemble learning methods with
LSTM, GRU, and CNN as base learning algorithms. We use:

• bagging to generate m train sets and parallelly produce m base learners on the m
train sets;

• boosting to train m base learners sequentially and adjust the train set accordingly
every iteration.

The algorithm for boosting is described in Algorithm 1. Finally, a logistics regression is
used for stacking the m base learners, produced by either bagging or boosting.

Algorithm 1: A simplified boosting algorithm.

Let X1 =< x1, x2, . . . , xn >, Y1 =< y1, y2, . . . , yn >
for i = 1 to m do

train a base learner Li on (Xi, Yi)
for j = 1 to i do

calculate the absolute bias E = |Y − Li(X)|
for k = 1 to n do

if Ek > threshold then
add xk to Xi+1

add yk to Yi+1

end

end

end

end

4.3. Fighting Data Imbalance

A serious issue yet to be resolved is that our dataset is extremely imbalanced. Fig.3 shows
that the majority of track heights reside within [−1, 1]. Such imbalance could invalidate
our previous effort to minimized the MSE loss. Hence, we proposed a novel approach for
handling imbalanced multivariate time series regression with adaptive data sampling and
penalized loss.

We first measure the variance of track heights within one time series. As shown in Fig.4,
most time series have very low variance, indicating the stability of this track segment. In
constrast, those time series with high variances are much more liable to produce vertical
track irregularities. We consider time series with a variance less than the threshold (for
instance 1.15) common and otherwise rare. Inspired by SmoteR (Torgo et al. (2013)), we
use random under-sampling to reduce common data, while over-sampling the rare data by
replicating samples from them with boostrapping.
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Figure 3: Track height. Figure 4: Spatial time series variance.

It could be tricky to determine an appropriate proportion for under-sampling and over-
sampling – how much common data should we discard and how much rare data should we
replicate? We decide upon an adaptive approach in which several predefined proportions
are engaged in a one-epoch training. The result of the one-epoch training are then evaluated
to help us determine a best sampling proportion.

We also adopted a form of penalized mean squared error as the loss function, inspired
by utility-based regression (Torgo and Ribeiro (2007)). Here is the penalty matrix, where
0 ≤ p4 < p1 < p3 < p2:

predicted
actual

common rare

common p1 p2
rare p3 p4

With this penalty matrix, the mean squared error could be rewritten as:

MSE =
1

n

n∑
i=1

[(yi − ŷi)
2 × Φ(yi, ŷi)]

where yi is the correct value, ŷi is the predicted value, and Φ(yi, ŷi) is their corresponding
term in the penalty matrix. The term p2 always holds the maximum value in the penalty
matrix, indicating that falsely predicting a rare value as common will be mostly harshly
penalized. In this way, we maximize that the model’s capability of capturing rare values,
thus vertical track irregularities.

In this paper, we use p1 = 1, p2 = 20, p3 = 5, p4 = 0.5.
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5. Performance Evaluation

5.1. Time Series Prediction

In Table 1, the performances of several machine learning algorithms are exhibited. ARIMAX
has slight performance improvement over that of linear regression.

Table 1: Performance of machine learning algorithms.

Model
Train Test

MSE MAE MSE MAE

Linear Regression 0.1826 0.3079 0.1754 0.3052
ARIMAX(3,0,0) 0.1601 0.3045 0.1419 0.2766
ARIMAX(5,1,0) 0.1427 0.2685 0.1406 0.2611
ARIMAX(8,2,3) 0.1379 0.2576 0.1317 0.2438

In Table 2, the performances of deep learning algorithms are exhibited. Experiments
have been repeated for 3 times with randomized parameter initialization and then averaged
to improve credibility. LSTM and GRU have achieved very similar results, whereas CNN
usually has higher MSE but lower MAE.

Not surprisingly though, neural networks generally outperform traditional time series
prediction techniques like ARIMAX.

Table 2: Performance of deep learning algorithms.

Mode
Train Val Test

MSE MAE MSE MAE MSE MAE

LSTM 0.0495 0.1651 0.0496 0.1659 0.0499 0.1652
GRU 0.0499 0.1658 0.0501 0.1667 0.0502 0.1659
CNN 0.0517 0.1628 0.0518 0.1635 0.0521 0.1629

5.2. Ensemble Learning

In Table 3, the performances of ensemble learning algorithms are exhibited. Bagging has
the best performance, followed by boosting and tailed by no ensemble learning.

Table 3: Performance of ensemble learning algorithms.

Model
None Bagging Boosting

MSE MAE MSE MAE MSE MAE

LSTM 0.0473 0.1648 0.0423 0.1607 0.0458 0.1623
GRU 0.0483 0.1647 0.0431 0.1611 0.0467 0.1628
CNN 0.0551 0.1621 0.0519 0.1597 0.0569 0.1603

5.3. Imbalanced Regression

For evaluating the model’s capability in capturing irregularity, we consider time series with
a target track height within [−1, 1] negative (common/regular) cases, otherwise positive
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(rare/irregular) cases. In this way, the regression task is reduced to a binary classifica-
tion problem, where we could apply precision, recall, and F-score to evaluate the model’s
capability in capturing irregularity.

Table 4: Performance of difference imbalanced learning algorithms
Algorithm MSE MAE Precision Recall F-Score

None 0.0471 0.1627 0.55 0.34 0.4202
Adaptive Sampling 0.0512 0.1873 0.59 0.57 0.5798

Penalized Loss 0.0484 0.1658 0.64 0.72 0.6776
Both 0.0536 0.1833 0.63 0.79 0.7010

As shown in Table 4, when both adaptive sampling and penalized loss are applied, 79%
of the vertical track irregularities can be captured.

The base model for time series regression used here is LSTM, with the same architecture
and setup as described in the previous section.

6. Conclusion

In this paper, we showcase a application framework for predicting vertical track irregular-
ity with a extremely imbalanced dataset, by using time series prediction techniques. We
compared various algorithms for time series prediction and reached at the conclusion that
neural networks generally outperforms traditional time series forecasting algorithms like
ARIMAX. We also proposed a novel approach to fight data imbalance in multivariate time
series regression problems by combining adaptive sampling and penalized loss.

In practice, it is recommended to use LSTM/GRU with bagging for best performance,
as well as adaptive data sampling and penalized loss for averting imbalanced regression
pitfalls.
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