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Figure 1: Illustration of the relationship between an ordinal and a continuous variable. The
left plot shows contours of the joint distribution of the latent variables along
with breakpoints for the ordinal variable X1. The plot in the middle shows the
conditional density of the latent variable Z2 given the ordinal variable X1. The
right plot shows the conditional density of the continuous variable X2 = f2(Z2)
given the ordinal variable X1.

S1. Model Details and Derivation

The model will be explained in greater detail in this section. An ordinal variable Xij with
mj categories and marginal probabilities pj1, . . . , pjmj can be viewed as a normal distributed
variable which is cut into mj bins with breakpoints at αj0 = −∞ and Φ(αjk) =

∑k
l=1 pjl

for k > 0. Let Zij denote the latent normal distributed variable such that Xij = k ⇔ Zij ∈
(α1,k−1, α1k). We assume that an ordinal variable Xij is related to a continuous variable
Xij′ by assuming that Xij′ = fj′(Zij′) where fj′ is some bijective function and (Zij′ , Zij) are
jointly normal distributed. Such a relationship is illustrated in Figure 1.

Extensions to multiple ordinal variables are done by assuming that their latent variables
are jointly normal distributed. Binary variables are a special case of ordinal variables where
mj = 2. Few assumptions are made about the fjs for the continuous variables yielding
a very flexible model for the marginal distributions of the continuous variables. However,
assumptions are made on the dependence between the variables through the particular
copula we use.

Next, we derive the marginal likelihood which is partly shown in Equation (3). With-
out loss of generality, let the continuous variables have the last indices. Let f−1

C (x) =
(f−1

j (xj))j∈C be the inverse fC(z) = (fj(zj))j∈C . Then the density of Xi at x is

exp l̃i(Σ,µ) = φ(|C|)(f−1
C (xC); 0,ΣCC)|det(∇f−1

C )(xC)| (1)

· P
(
ZB∪O ∈ V(xB∪O)

∣∣∣ZC = f−1
C (xC)

)
where

V(u) =
{
v ∈ R|B∪O| : uj = k ⇒ αj,k−1 < vj ≤ αjk

}
and det(∇·) is the Jacobian determinant. Equation (3) follows by removing the determinant
factor, |det(∇f−1

C )(xC)|, which does not depend on µ or Σ and by using the special case of
the conditional probability of ZB∪O ∈ V(xB∪O).
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Figure 2: Conditional densities of a continuous variable and its latent variable given the
value of a four level multinomial outcome. Two of the conditional densities coincide
because the correlation with the latent variable for the continuous outcome and
mean is the same for the corresponding latent variable for two of the multinomial
categories. The transformation, f2, is the same as in Figure 1.

Each ordinal variable has mj − 1 free parameters to be estimated. As shown in Section
3, the free parameter for each binary variable is easily estimated jointly with the correlation
matrix by parameterizing it in terms of the mean. The mj − 1 free parameters for the
ordinal variables with mj > 2 can also be estimated jointly with the correlation matrix
but this is not done in this paper. One can use a parametric form of fj for the continuous
variable which will allow for joint estimation of the transformation as mentioned in Section
6.1. Though, this will require that one keeps the determinant factor in Equation (1).

We end with an illustrative example of multinomial variables. Figure 2 shows the
conditional distribution of a continuous variable given the value of a multinomial variable.
As explained in Section 5, the first latent variable for a multinomial variable is fixed to zero
and the remaining variables are allowed to have non-zero means and be correlated with other
latent variables. Thus, the continuous variables can be associated with a multinomial variable
and have the same conditional density for some outcomes of a multinomial variable as shown
in Figure 2. This is not possible with the parameterization of an ordinal variable because
of the assumed normal distribution of the latent variables and the monotone relationship
between the latent variable of an ordinal variable and the observed category.

S2. Multivariate Normal CDF Identity

In this section, we show an identity which we will use repeatably. Let(
V1
V2

)
∼ N (k1+k2)

((
ξ1
ξ2

)
,

(
Ξ11 Ξ12
Ξ21 Ξ22

))

where V1 ∈ Rk1 and V2 ∈ Rk2 , ξ1 and ξ2 are mean vectors for V1 and V2, respectively, and
Ξ is a covariance matrix where the sub matrices have k1 or k2 rows and columns. Then the



Christoffersen Clements Humphreys Kjellström

joint density of V1 = v1 and a < V2 < b (a box constraint on V2) is

φ(k1)(v1; ξ1,Ξ11) P (a < V2 < b |V1 = v1)

= φ(k1)(v1; ξ1,Ξ11)Φ(k2)
(
a, b;

(
ξ2 + Ξ21Ξ−1

11 (v1 − ξ1)
)
,
(
Ξ22 −Ξ21Ξ−1

11 Ξ12
))

and the marginal for P(a < V2 < b) is

P(a < V2 < b)
= Φ(k2)(a, b; ξ2,Ξ22)

=
∫
φ(k1)(v1; ξ1,Ξ11) P (a < V2 < b |V1 = v1) dv1.

Next, we can define

Z = Ξ21Ξ−1
11

c = ξ2 −Ξ21Ξ−1
11 ξ1 = ξ2 − Zξ1

Ω = Ξ22 −Ξ21Ξ−1
11 Ξ12 = Ξ22 − ZΞ11Z>

which we can use to show that∫
φ(k1)(x;µ,Σ)Φ(k2)(a, b; c+ Zx,Ω) dx = Φ(k2)(a, b; c+ Zµ,Ω + ZΣZ>). (2)

S3. Parameterization for the General Model with More than One
Multinomial Variable

Following the notation in Section 5.1, we can generalize the covariance matrix for Z in
Section 5 to include all variable types including multiple multinomial variables by letting Ψ
be:

Ψ =


Ψ(11) · · · Ψ(1l)

... . . . ...
Ψ(l1) . . . Ψ(ll)



Ψ(kk) =



ξ 0 0 · · · 0
0 1 ψ

(kk)
23 · · · ψ

(kk)
2mk

0 ψ
(kk)
32 ψ

(kk)
33

. . . ψ
(kk)
3mk...

... . . . . . . ...
0 ψ

(kk)
mk2 ψ

(kk)
mk3 . . . ψ

(kk)
mkmk



Ψ(kk′) =


0 0 · · · 0
0 ψ

(kk′)
22 · · · ψ

(kk′)
2mk′

...
... . . . ...

0 ψ
(kk′)
mk2 . . . ψ

(kk′)
mkmk′


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Ψ(kl) =


0 · · · 0

ψ
(kl)
21 · · · ψ

(kl)
2c\M

... . . . ...
ψ

(kl)
mk1 · · · ψ

(kl)
mkc\M


Ψ(ll) =

1 ψ
(ll)
12 · · · ψ

(ll)
1c\M

ψ
(ll)
21 1 . . . ...
... . . . . . . ψ

(ll)
c\M−1,c\M

ψ
(ll)
c\M1 . . . ψ

(ll)
c\M,c\M−1 1


for k, k′ ∈ {1, . . . , cM} ∧ k′ 6= k and l = cM + 1. The kth Ψ(kk) in the diagonal for
k = 1, . . . , cM is for the latent variables for the kth multinomial variable. The last Ψ(ll)

block is for the latent variables for the binary, continuous, and ordinal variables.

S4. Derivative Approximations

We show the gradient of the log marginal likelihood with respect to the covariance matrix, Ψ,
in this section. Without loss of generality, suppose that covariance matrix Ψ is permutated
such that the first indices are for the latent variables for the continuous variables, the next |M|
indices are the latent variables corresponding to the observed categories of the multinomial
variables, and the final indices are the remaining latent variables for the multinomial, ordinal,
and binary variables. That is,

Ri = M̃ ∪ Õ ∪ B̃ \ Ii

Ψ =

ΨCC ΨCIi ΨCRi

ΨIiC ΨIiIi ΨIiRi

ΨRiC ΨRiIi ΨRiRi


µ̄ = (µ̄1:cM , µ̄(−1:cM))>

S̄ =
(

S̄1:cM1:cM S̄1:cM(−1:cM)
S̄(−1:cM)1:cM S̄(−1:cM)(−1:cM)

)

where µ̄ and S̄ are given in Equation (9) and (10). It follows that the log marginal likelihood
in Equation (11) is

li = log φ(|C|)(ẑiC ; 0,ΨCC) + log Φ(c\M+
∑cM

j=1(mj−1)) (ai, bi;m,M)
m = µ̄(−1:cM) −Dµ̄1:cM

M = S̄(−1:cM)(−1:cM) + DS̄1:cM1:cMD> −DS̄1:cM(−1:cM) − S̄(−1:cM)1:cMD>.

For a matrix A ∈ Rg×g, we let

A′ =

∂li/∂a11 · · · ∂li/∂a1g
... . . . ...

∂li/∂ag1 . . . ∂li/∂agg

 .
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It then follows that

S̄′ =
(

D>M′D −D>M′

−M′D M′

)
Ψ′Ii∪Ri,Ii∪Ri

= S̄′

µ̄′ =
(

D>m′
m′

)

Ψ′CC = Ψ−1
CCΨC,Ii∪RiS̄′ΨIi∪Ri,CΨ

−1
CC −

1
2Ψ−1
CCΨC,Ii∪Riµ̄

′ẑ>iCΨ−1
CC

− 1
2Ψ−1
CC ẑiCµ̄

′>ΨIi∪Ri,CΨ
−1
CC −

1
2Ψ−1
CC + 1

2Ψ−1
CC ẑiC ẑ

>
iCΨ−1

CC

Ψ′Ii∪Ri,C = −S̄′ΨIi∪Ri,CΨ
−1
CC + 1

2 µ̄
′ẑ>iCΨ−1

CC .

Thus, we can get an approximation of all the derivatives we need if we have an approxi-
mation of m′ and M′. Details of our approximation of the latter quantities are provided in
Section 4 and in the next section.

S5. Quasi-Monte Carlo Procedure

Algorithm 1 shows pseudocode for the method we use to approximate the intractable integrals
in the log likelihood, the gradient of the log likelihood, and the quantities used to perform
the imputation. The algorithm is O

(
k3) because of the Choleksy decomposition but the

primary bottleneck for practical problems is the loop. For small to moderate k (say k < 50),
the computation time spent evaluating Φ and Φ−1 is substantial. For moderate to large k,
the dot product in âj and b̂j takes a relatively larger part of the computation time.

The dot product in âj and b̂j does not take full advantage of single instruction, multiple
data (SIMD) instructions on modern CPUs. Thus, we found substantial reductions in
computation time by simultaneously processing multiple draws. An adaptive randomized
quasi-Monte Carlo (RQMC) method can be used if we run algorithm 1 using multiple
randomized quasi-random sequences in parallel as Genz and Bretz (2002). This allows
us to get an estimate of the error which can be used to stop early if the error is less
than a user specified threshold. We use the Fortran code written by Genz and Bretz
(2002) to simultaneously compute the Cholesky decomposition and find the permutation
of the variables. The permutation is based on a heuristic to reduce the variance when we
approximate the likelihood with g(x) = 1.

As for the gradient, let

L̃(ω,Ω) =
∫ b1

a1
· · ·
∫ bk

ak

φ(k)(u;ω,Ω) du.



Fast Gaussian Copula Models for Imputation of Mixed Data Types

Input: Lower and upper bounds, a ∈ Rk and b ∈ Rk, mean vector ω ∈ Rk, covariance
matrix Ω ∈ Rk×k, number of samples S, function g : Rk → RH , and procedure
to generate a k dimensional quasi-random sequence or pseudorandom numbers in
(0, 1)k

Output: Approximation of
∫ b1

a1
· · ·
∫ bk

ak
g(u)φ(k)(u;ω,Ψ) du

Compute the Cholesky decomposition O>O = Σ and set r = 0H

for j = 1 to k do
Set aj ← o−1

jj (aj − ωj), bj ← o−1
jj (bj − ωj), and o1:j,j ← o−1

jj o1:j,j

end
for s = 1 to S do

Draw the next u ∈ (0, 1)k and set w = 1
for j = 1 to k do

Compute

âj =

a1 j = 1
aj − o>1:(j−1),jx1:(j−1) j > 1

b̂j =

b1 j = 1
bj − o>1:(j−1),jx1:(j−1) j > 1

Set w ← w · (Φ(b̂j)− Φ(âj)) and xj = Φ−1(Φ(âj) + uj(Φ(b̂j)− Φ(âj)))
end
Update the mean estimator, r ← r + s−1(wg(O>x+ ω)− r)

end
return r
Algorithm 1: (Quasi) Monte Carlo (MC) procedure to approximate integrals that are
needed to estimate the model and impute the missing values.

Then the gradient of the likelihood is given

∇ωL̃(ω,Ω) = Ω−1
∫ b1

a1
· · ·
∫ bk

ak

(u− ω)φ(k)(u;ω,Ω) du

= O−1
∫
uh(u)

k∏
j=1

wj(u) du

∇ΩL̃(ω,Ω) =
1
2

(
Ω−1

(∫ b1

a1
· · ·
∫ bk

ak

(u− ω)(u− ω)>φ(k)(u;ω,Ω) du
)

Ω−1 −Ω−1L̃(ω,Ω)
)

= 1
2

O−1

∫ uu>h(u)
k∏

j=1
wj(u) du

O−> −Ω−1L̃(ω,Ω)


with ∇Ω = (∂/∂Ωij)i,j=1,...,k and h is the importance distribution’s density function in
Equation (4). The needed choice of g can be seen from the two integrals above but it can
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Table 1: Summary statistics for each observational data set. The first column is the number
observations. The other columns indicates the number of variables of each type
except for the “levels” columns which show the maximum number of categories for
the ordinal and multinomial variables, respectively.

# Observations Binary Continuous Ordinal Levels Multinomial Levels

Medcare 4406 2 2 4 19 0 0
Rent 2053 7 3 1 6 1 25
ESL 488 0 0 5 10 0 0
LEV 1000 0 0 5 5 0 0
GBSG 686 3 6 1 3 0 0
TIPS 244 3 2 2 6 0 0
Cholesterol 7846 2 0 1 4 1 4
Colon 1776 5 2 2 4 1 3

also be seen that one can simplify the expressions by working with g(O>x+ω) in Algorithm
1.

S6. Data Sets

We will briefly describe the data sets we have used in this section. We have removed
incomplete observations from each data set. We removed the potentially right censored
survival time along with the censoring status from the colon data set. Such variables can
be properly handled by extending our imputation method to support censored variables,
which at present are not supported. This data set is not used by Zhao and Udell (2020) and,
therefore, there are not any results to compare with.

In contrast, we keep the potentially right censored survival time and the censoring status
for the German breast cancer study group (GBSG) data set as do Zhao and Udell (2020).
Thus, our results can be compared with their results.

Table 1 summarises the number of variables of each type, the maximum number of
categories for the ordinal and multinomial variables, and the numbers of observations in the
complete data sets.
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