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Abstract
Missing values with mixed data types is a common problem in a large number of machine
learning applications such as processing of surveys and in different medical applications.
Recently, Gaussian copula models have been suggested as a means of performing imputation
of missing values using a probabilistic framework. While the present Gaussian copula
models have shown to yield state of the art performance, they have two limitations: they
are based on an approximation that is fast but may be imprecise and they do not support
unordered multinomial variables. We address the first limitation using direct and arbitrarily
precise approximations both for model estimation and imputation by using randomized
quasi-Monte Carlo procedures. The method we provide has lower errors for the estimated
model parameters and the imputed values, compared to previously proposed methods. We
also extend the previous Gaussian copula models to include unordered multinomial variables
in addition to the present support of ordinal, binary, and continuous variables.
Keywords: Imputation; Gaussian Copulas; Quasi-Monte Carlo

1. Introduction

Data sets in medical applications, surveys, user ratings, etc. are becoming larger which
brings possibilities for machine learning applications. However, these larger data sets often
have missing values. Therefore, imputation of missing values becomes increasingly important
as a preprocessing step to many applications. Zhao and Udell (2020a,b); Landgrebe et al.
(2020) describe a method for imputation for continuous, binary, and ordinal variables using
Gaussian copulas which yields state of the art performance. They address the important
issue of performing imputation for data sets containing variables such as ratings in reviews,
integer scales of how severe the spread of a tumor is (medical data), and rank variables
in surveys, which need to be analyzed in combination with continuous variables such as
age, income, etc. using a Gaussian copula. This is straightforward since it is often easy to
describe the marginal distribution of each variable, few assumptions are made about the
marginals, and use of such a probabilistic framework allows for construction of confidence
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intervals for the imputed values similar to the measure developed by Zhao and Udell (2020b).
Lastly, the Gaussian copulas have computational advantages.

However, there are three open issues. Firstly, Zhao and Udell (2020a) use an approximate
expectation maximization (AEM) algorithm in a way that is related to the work by Guo
et al. (2015). While the approximation is fast, the approximation may yield inefficient and
possibly even biased results. Secondly, like inference functions for margins (IFM) for fully
parametric models, they use a two-stage estimation method that may be inefficient in some
cases. Finally, their model does not support multinomial variables.1 Thus, for many data
sets, their method cannot be used.

This paper makes two main contributions:

1. The method we provide gives an asymptotically exact and fast approximation of the log
marginal likelihood, the derivatives, and the quantities needed to perform imputation.
Moreover, we estimate some of the parameters in the marginal distributions jointly
with the copula parameters, instead of using an IFM like method, which increases the
efficiency.
Our method provides conditional probabilities for missing binary, ordinal, and multi-
nomial variables with arbitrary precision. The AEM method cannot provide such
approximations which are key for multiple imputation. This contribution is mainly
described in Section 4 and partly in Section 5.

2. Our Gaussian copula model supports multinomial variables in addition to binary,
ordinal, and continuous variables. Thus, our method is applicable to a large number
of data sets with mixed data types. This is further described in Section 5.

We will cover the Gaussian copula model in Section 3 but start with a review of related
work in Section 2. Our alternative imputation and estimation method are shown Section 4
along with experimental results where we can compare with the AEM by Zhao and Udell
(2020a). The extension to multinomial variables along with experimental results are shown
in Section 5. Two technical and experimental sections are used to emphasize the two main
and distinct contributions of this paper. Our implementation is publicly available as the
mdgc package which is available on the Comprehensive R Archive Network (CRAN) and is
provided along with the script to produce the results in the supplementary material.

2. Related Work

Zhao and Udell (2020a) method was based on earlier work on Gaussian copula models
(D. Hoff, 2007; Liu et al., 2009; Murray et al., 2013; Fan et al., 2017; Feng and Ning, 2019;
Cui et al., 2019). These models can be seen as a generalization of the linear mixed model
in the sense that we no longer assume that the marginals for the continuous variables are
normal distributed. Instead we assume that they have been transformed with bijective
transformations and, thus, allow for greater flexibility for the marginal distributions. Secondly,
there are binary and ordinal variables that are created by cutting the latent variables into

1. We will write multinomial when we refer to unordered multinomial and ordinal when we refer to ordered
multinomial.
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bins. The resulting model can be estimated with semiparametric methods. However, unlike
in the linear mixed model, there is no closed form solution for the likelihood.

Previous work on related models has focused on model estimation rather than imputation.
Moreover, some methods are only able to estimate the model with complete data. The
Markov chain Monte Carlo (MCMC) method suggested by D. Hoff (2007) is an exception but
it can be very slow. Thus, Zhao and Udell (2020a) propose to estimate the model parameters
with a frequentist approach. Their estimation method and imputation method is based on
an expectation maximization (EM) algorithm which requires evaluation of moments of the
truncated multivariate normal distribution (TMVN). They approximate the moments using
an approximation similar to the one suggested by Guo et al. (2015). This approximation is
fast and, as Zhao and Udell (2020a) show, it yields superior single imputation performance, in
their examples, compared with state of the art non-parametric methods such as the random
forest based missForest (Stekhoven and Buehlmann, 2012) and the principal components
based imputeFAMD (Audigier et al., 2014; Josse and Husson, 2016).

Although Zhao and Udell (2020b) state that direct maximum likelihood is hard to optimize
because the likelihood involves Gaussian integrals, moderately precise and, importantly, fast
randomized quasi-Monte Carlo (RQMC) procedures have been developed by Genz (1992);
Hajivassiliou et al. (1996); Genz and Bretz (2002). These methods are also easy to generalize
to related quantities like derivatives and conditional means or probabilities for missing
values. Having arbitrarily precise procedures are important as they can yield more efficient
estimators of the model parameters, which the researcher may be interested in per se, and
can potentially improve the imputation.

3. Gaussian Copula Models

We will cover the model that Zhao and Udell (2020a) use, and thereafter provide our extension
to include multinomial variables and alternative methods for estimation and imputation. Xi

denotes the vector with K variables for observation i = 1, . . . , n where some entries may be
missing. The Xij ’s for j ∈ C ⊆ {1, . . .K} are continuous, the entries with j ∈ O ⊆ {1, . . .K},
with O ∩ C = ∅, are ordinal, and the entries with j ∈ B = {1, . . .K} \ O ∪ C are binary. For
now, we assume that all entries are observed with value x1, . . . ,xn.

Let Φ(k)(a, b;µ,Σ) be the k-dimensional multivariate normal distribution cumulative
density function (CDF) with mean µ and covariance matrix Σ over the box with limits at a
and b given by

Φ(k)(a, b;µ,Σ) =
∫ b1

a1
· · ·
∫ bk

ak

φ(k)(u;µ,Σ) du

where φ(k) is the corresponding density function. We omit the mean vector and covari-
ance matrix in the standard case, omit the superscript in the univariate case, and write
Φ(k)(b;µ,Σ) when a = (−∞, . . . ,−∞)>. Zhao and Udell (2020a,b) use a Gaussian copula
model where it is assumed that there is a K-dimensional latent variable Zi ∈ RK such that
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Zi ∼ N (K) (0K ,Σ) where 0k is a vector with k zeros and

Σ =


1 σ12 · · · σ1K

σ21 1 . . . ...
... . . . . . . σK−1,K

σK2 . . . σK,K−1 1

 .

The relation to the observed outcomes is

Xij = fj(Zij), j ∈ C

Xij =
{

1 Zij > −Φ−1(pj)
0 otherwise

, j ∈ B (1)

Xij = k ⇔ αjk < Zij ≤ αj,k+1, j ∈ O (2)

where k = 0, . . .mj − 1 in Equation (2), fj is a given unknown bijective function if the jth
variable is continuous, pj is the unknown marginal probability of Xij = 1 if the jth variable
is binary, mj is the number of categories of the jth variable if it is ordinal, and αj0, . . . , αjmj

are bounds for the jth variable if it is ordinal with αj0 = −∞ and αjmj =∞.
The interpretation of the models is that the continuous variables are transformed normal

distributed variables, the binary variables are thresholded normal distributed variables, and
the ordinal variables are normal distributed variables which are cut into bins. The flexibility
of the copula model is due to the few assumptions about the fj ’s for the continuous variables.
Thus, the marginal distribution for each variable can be very complex. The parametric
assumption is the particular copula we use. Other copulas can be used but the Gaussian
copula has computational advantages which we extensively use in Sections 4 and 5.

Zhao and Udell (2020a,b) fit the model by first estimating the marginals, i.e. estimating
the fj ’s for the continuous variables using rescaled empirical CDFs, estimating the pj ’s for
the binary variables, and estimating the borders αj1, . . . , αj,mj−1 for the ordinal variables.
They then estimate Σ conditional on the marginal distributions. This two-stage method is
often referred to as IFM in the fully parametric case without the continuous variables.

Joe (2005) shows that IFM has a high relative efficiency compared with the maximum
likelihood estimate (MLE) of all parameters (that is, joint estimation of the marginals and
Σ) in related models. However, the efficiency tends to decrease as the number of variables
increase or when the dependence is high. Therefore, we perform joint estimation of some of
the marginal distribution parameters which Zhao and Udell (2020a,b) fix in the second step
of IFM. In particular, we can let Zij for a binary variable have a non-zero mean given by
µj = Φ−1(pj) and assume that Xij = 1 if Zij > 0. We then jointly estimate µj and Σ for
j ∈ B. We still use a two-step procedure where we fix the borders for the ordinal variables
(the αs) and estimate the fj ’s non-parametrically.2

Let XiI = (xl1 , . . . , xlk)> where I = {l1, . . . , lk} and let f̂j be the estimate of fj . Let
ẑiC be a vector with ẑij = f̂−1

j (xij). Then the log marginal likelihood conditional on

2. It is also possible to jointly estimate the borders for the ordinal variables and the fj ’s if we parameterize
them. We discuss this further in the discussion in Section 6.
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the estimated marginals and disregarding the determinant of the Jacobian matrix of the
transformation which does not depend on Σ and µ is l(Σ,µ) =

∑n
i=1 li(Σ,µ) where

li(Σ,µ) = log φ(|C|)(ẑiC ; 0,ΣCC) + log Φ(|B∪O|)
(
ai, bi;µB∪O,C + ΣB∪O,CΣ−1

CC ẑiC , (3)

ΣB∪O,B∪O −ΣB∪O,CΣ−1
C,CΣC,B∪O

)
.

ai and bi depend on the estimated borders for the ordinal variables along with the observed
variables, xB∪O, as explained by Zhao and Udell (2020a) and in supplementary material
S1, and µB∪O,C contains the possibly non-zero means for the binary variables. The ai
and bi entries for the binary (and later multinomial variables) are −∞ and 0 or 0 and ∞,
respectively. See supplementary material S1 for further details and derivations.

4. New Estimation and Imputation Method

The main computational burden in evaluating the log marginal likelihood in Equation (3)
is to approximate the |B ∪ O| dimensional CDF. Zhao and Udell (2020b) state that direct
optimization is hard because of the CDF and, therefore, use an approximation of the type
suggested by Guo et al. (2015) in an AEM algorithm. However, Genz (1992); Genz and
Bretz (2002, 2009) show that the CDF Φ(k)(a, b;ω,Ω) can be approximated quickly using
importance sampling using the importance distribution with density h given by

h(u) =
k∏
j=1

{
φ(uj)/wj(u) âj(u1:(j−1)) < uj < b̂j(u1:(j−1))
0 otherwise

(4)

wj(u) = Φ(b̂j(u1:(j−1)))− Φ(âj(u1:(j−1)))

b̂j(x) =

o
−1
11 (b1 − ω1) j = 1
o−1
jj (bj − ωj − o>1:(j−1),jx) j > 1

âj(x) =

o
−1
11 (a1 − ω1) j = 1
o−1
jj (aj − ωj − o>1:(j−1),jx) j > 1

where O is a Cholesky decomposition of Ω such that O>O = Ω. Thus, we use a method,
which is a Monte Carlo (MC) approximation of

Φ(k)(a, b;ω,Ω) =
∫
h(u)

k∏
j=1

wj(u) du.

Genz (1992); Genz and Bretz (2002) use a heuristic variable reordering to reduce the variance
of the estimator at a fixed number of samples and use RQMC to get a better bound on the
error. The advantage of using RQMC is that the error is bounded by O

(
s−1+ε), or more

precisely O
(
s−1(log s)l

)
for some l ≤ k, where s is the number of samples (Caflisch, 1998).

This is in contrast to the O
(
s−1/2

)
bound of MC methods.
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Gradient approximations with respect to the mean and covariance matrix of the log of
the CDF can be written as∫

g(O>u+ ω;ω,Ω)h(u)
∏k
j=1wj(u) du

Φ(k)(a, b;ω,Ω)
(5)

for a given function g as described by Hajivassiliou et al. (1996) for the Geweke, Hajivassiliou,
and Keane (GHK) simulator they use. This is the expectation of g(X) where X follows a
TMVN with location parameter ω, scale parameter Ω, and truncated such that aj < Xj < bj
for j = 1, . . . , k. We have rewritten the Fortran code by Genz and Bretz (2002); Genz et al.
(2020) in C++ to also provide an approximation to the numerator in Equation (5). Details
of the method are provided in supplementary material S5. Standard applications of the
chain rule can then be used to get an approximation of the gradient of the log marginal
likelihood in Equation (3), once a gradient approximation of the CDF is implemented.
Details are provided in supplementary material S4. The computational complexity of all our
approximations are O

(
nK3) at a fixed number of RQMC samples like the AEM method.

Masarotto and Varin (2012) and Nikoloulopoulos (2016) use MC or RQMC forms of
the importance sampler developed by Genz and Bretz (2002) to estimate Gaussian copula
models.3 However, they all compute the derivatives with finite difference which scales
very poorly in the number of variables. To see this, both our approximation of Φ(k) and
the gradient with respect to the mean and covariance matrix have O

(
k3) computational

complexity as shown in supplementary material S5. There are k(k + 3)/2 parameters so
computing the gradient with finite difference has O

(
k5) complexity in addition to being less

precise. Thus, implementation of the gradient is crucial for fast estimation.
The model can be estimated by using a log Cholesky decomposition (Pinheiro and

Bates, 1996) of Σ. Stochastic gradient descent methods are easy to apply, because of the
n independent log marginal likelihood terms, if one re-scales Σ to be a correlation matrix
between each iteration, as Zhao and Udell (2020a) do. We have tried ADAM (Kingma and
Ba, 2015) and stochastic variance reduced gradient (SVRG) (Johnson and Zhang, 2013).
The latter seems to work well with an appropriate learning rate. We have also implemented
an augmented Lagrangian method to avoid the ad hoc re-scaling. On average, the augmented
Lagrangian method tends to provide slightly better estimates of Σ than SVRG. We however
omit this from our comparisons because it is slower.

For the imputations, we use the conditional means for the latent variables (the Zij ’s)
corresponding to missing continuous variables (a missing variable with j ∈ C) and map back
using f̂j ’s. This is similar to Zhao and Udell (2020a), but our method can yield an arbitrarily
precise approximation of the conditional means. We use either conditional probabilities or
medians for each of the binary, ordinal, and later multinomial variables. These quantities
are given by a suitable choice of g in Equation (5).4

3. Masarotto and Varin (2012) state that the GHK simulator is different from the approximation developed
by Genz and Bretz (2002). They are equivalent although Genz and Bretz (2002) use RQMC and a
heuristic variable reordering which drastically reduces the variance in some cases (Genz and Bretz, 2009).
Both are improvements in most cases.

4. The means can be computed by using the identity function and the conditional probabilities can be
computed with a function which returns an one-hot vector which has a one in the category that the
sampled zi implies. The conditional median for the ordinal variables can be computed from the conditional
probabilities.
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Table 1: Mean classification error, RMSE, and SMAE each with plus or minus two standard
errors for the first simulation study. The error rows are the mean classification
errors for the ordinal variables and the mean RMSEs of the continuous variables.
The last two columns show the mean computation times in seconds and relative
errors for the correlation matrix estimates. The best result in each comparison is
in bold.

Metric Method Binary Ordinal Continuous Time Relative Σ error

Error RQMC (our) 0.2429 ± 0.0009 0.582 ± 0.001 0.741 ± 0.002 184 ± 4 0.0812 ± 0.0004
Median (our) 0.602± 0.001
AEM (ZU) 0.2502± 0.0009 0.615± 0.001 0.750± 0.002 412± 2 0.1172± 0.0006

SMAE RQMC (our) 0.4861 ± 0.0018 0.694± 0.003 0.705 ± 0.002
Median (our) 0.650 ± 0.002
AEM (ZU) 0.5008± 0.0018 0.659± 0.002 0.710± 0.002

Thus, we are also able to approximate the quantities needed for imputations with the new
C++ code for CDF approximation. Zhao and Udell (2020a) transform back their approximate
conditional means for the binary and ordinal variables. Their method cannot directly be
used to provide conditional probabilities. Finally, as Zhao and Udell (2020a,b) do, we assume
that data is missing completely at random and leave handling of data which is missing at
random for future work.

As Equation (5) is the expectation of g(X) where X follows a TMVN, one could
directly sample from the TMVN to avoid the separate computation of the denominator
and numerator. However, sampling from a TMVN is hard. Interestingly, Botev (2017)
has recently extended the work by Genz (1992); Genz and Bretz (2002) to sample from a
TMVN using an accept-reject sampling schema based on a minimax tilting method with
a tilted version of Equation (4). It will be interesting to apply the importance sampler or
accept-reject sampling schema by Botev (2017) in our application but this is beyond the
scope of the present paper.

4.1. Application of the New Method

We now address how our new estimation method and imputation method compare with the
AEM based method of Zhao and Udell (2020a), when (i) the model is correctly specified, and
(ii) when the methods are applied to observational data. We start with (i). An argument for
using the AEM method is that it is fast even when there are moderately many variables
(moderately large K) and many observations (large n). We draw n = 10000 observations
with K = 60 variables of which 20 each are continuous, binary, and ordinal. As in Zhao and
Udell (2020a), we use five equally likely categories for the ordinal variables and generate 100
data sets where we mask each variable independently at random with a 30 percent chance.
For each data set, we sample Σ from a Wishart distribution with K degrees of freedom
with an identity matrix as the scale matrix and scale the sampled matrix such that it is
a correlation matrix. Thus, the methods are compared on different correlation matrices.
As in Zhao and Udell (2020a), we let the continuous variables have standard exponential
(marginal) distributions. Throughout the paper, we use a batch size 100, make at most 50
passes through the data, and use a learning rate of 0.001 with our SVRG implementation.
However, it is perceivable that the configuration can be tuned to each data set.
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Figure 1: The left plot shows the relative error of the covariance matrix versus the sample
size on the log-log scale. The gray boxes are the RQMC method and the white
boxes are the AEM method. Regression lines are added on the log-log scale. The
right plot shows the difference in mean RMSE and classification error for the three
types of data for increasing sample sizes (increasing from left to right). We use
the median method for the ordinal outcomes with RQMC as this is the closest to
the AEM method.

We use three different metrics to measure the performance of the methods. The first
two are also used by Zhao and Udell (2020a). The user may be interested in Σ per se and,
thus, we use the relative error ‖Σ̂−Σ‖F /‖Σ‖F , where Σ̂ is an estimated correlation matrix
and ‖·‖F is the Frobenius norm. We use the scaled mean absolute error (SMAE) given by∑
i∈Hj
‖X̂ij −Xij‖1/

∑
i∈Hj
‖X̃j −Xij‖1 where Hj is the set of indices with missing entries

for variable j, X̂ij is an imputed value, and X̃j is the median estimate based on the observed
values. Finally, we use the classification error for the binary and ordinal variables and the
root mean square error (RMSE) for the continuous variables.

Table 1 summaries the results of the simulation study. The RQMC rows are our method
which performs imputation by assigning the category with the highest conditional probability.
The “Median” rows also use our estimation method but selects the conditional median
category similar to the AEM algorithm which back transforms an approximate mean. Our new
method performs better on all metrics. Selecting the category with the highest conditional
probability leads to a lower classification error but higher SMAE. The computation time
of our method is competitive although we stress that the AEM implementation does not
support computation in parallel.5 Importantly, the average relative error for the correlation
matrix is much lower.

For our second evaluation, we compare the methods on six data sets. We use four of the
data sets where Zhao and Udell (2020a) show that the AEM method yields superior single
imputation performance compared to state of the art non-parametric methods. These are

5. Our simulations are run on a Laptop with a Intel® Core™ i7-8750H CPU, our code is compiled with
GCC 10.1.0, and we use four threads. We use between 500 and 10000 samples per log marginal likelihood
term evaluation and 2000 to 20000 samples for the imputations in all examples in this article. This gave
reliable estimate for similar sized data sets in preliminary experiments. The RQMC approximations are
stopped early if the relative error is small. The method by Zhao and Udell (2020a) is installed from
https://github.com/udellgroup/mixedgcImp.

https://github.com/udellgroup/mixedgcImp
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Table 2: Error estimates (see Table 1) with four different data sets used by Zhao and Udell
(2020a) and the two largest data sets from the catdata package. The average
computation times in seconds are shown in the last column.

Data set Metric Method Binary Ordinal Continuous Time

Rent Error RQMC (our) 0.1212 ± 0.0008 0.3702 ± 0.0039 0.747± 0.004 31.67 ± 0.20
Median (our) 0.3710± 0.0041
AEM (ZU) 0.1237± 0.0008 0.3716± 0.0039 0.746 ± 0.004 35.41± 0.65

SMAE RQMC (our) 0.9721 ± 0.0048 0.5102± 0.0053 0.701 ± 0.003
Median (our) 0.5095 ± 0.0054
AEM (ZU) 0.9974± 0.0016 0.5107± 0.0052 0.706± 0.002

Medcare Error RQMC (our) 0.3418 ± 0.0016 0.4398 ± 0.0010 0.984 ± 0.006 6.74 ± 0.27
Median (our) 0.4661± 0.0010
AEM (ZU) 0.3466± 0.0017 0.4647± 0.0010 0.987± 0.006 22.63± 0.11

SMAE RQMC (our) 0.8020 ± 0.0046 0.9823± 0.0011 0.951 ± 0.001
Median (our) 0.9639 ± 0.0013
AEM (ZU) 0.8138± 0.0038 0.9641± 0.0010 0.952± 0.001

ESL Error RQMC (our) 0.4911± 0.0036 1.80 ± 0.31
Median (our) 0.4908 ± 0.0036
AEM (ZU) 0.4919± 0.0035 2.05± 0.04

SMAE RQMC (our) 0.5309± 0.0053
Median (our) 0.5238 ± 0.0053
AEM (ZU) 0.5254± 0.0052

LEV Error RQMC (our) 0.6337 ± 0.0023 2.20 ± 0.33
Median (our) 0.6476± 0.0021
AEM (ZU) 0.6484± 0.0021 5.40± 0.07

SMAE RQMC (our) 0.9637± 0.0067
Median (our) 0.8696 ± 0.0028
AEM (ZU) 0.8714± 0.0027

GBSG Error RQMC (our) 0.2895± 0.0031 0.3610± 0.0044 0.921 ± 0.008 2.64 ± 0.35
Median (our) 0.3604± 0.0044
AEM (ZU) 0.2889 ± 0.0031 0.3572 ± 0.0046 0.925± 0.008 7.13± 0.15

SMAE RQMC (our) 0.7276± 0.0084 1.0207± 0.0060 0.879± 0.003
Median (our) 1.0189± 0.0061
AEM (ZU) 0.7257 ± 0.0082 1.0085 ± 0.0041 0.878 ± 0.002

TIPS Error RQMC (our) 0.2857 ± 0.0058 0.4133 ± 0.0072 0.786± 0.016 1.67± 0.17
Median (our) 0.4414± 0.0088
AEM (ZU) 0.2874± 0.0062 0.4489± 0.0091 0.784 ± 0.016 1.56 ± 0.04

SMAE RQMC (our) 0.8241 ± 0.0142 0.8007± 0.0174 0.763± 0.008
Median (our) 0.7786 ± 0.0154
AEM (ZU) 0.8284± 0.0139 0.7881± 0.0155 0.761 ± 0.008

the lecturers evaluation (LEV) data set, employee selection (ESL) data set, German breast
cancer study group (GBSG) data set, and restaurant tips (TIPS). We also add the two
largest data sets from the catdata package (Fox et al., 2020). This is the medcare data set
containing the number of physician office visits and the rent in Munich data set.6 Both data
sets have variables of all types (binary, ordinal, and continuous). We generate 100 data sets
for each of the six where we independently at random mask each variable with a 30 percent
chance and standardize all continuous variables such that the RMSE is not dominated by a
few variables. The first four data sets have between 244 and 1000 observations while the
latter two have 2053 and 4406 observations. Further details about all data sets in this paper
can be found in supplementary material S6.

Table 2 summarises the results. With respect to the standard errors there are only
noticeable differences in the average errors for the two larger data sets where our method is
preferred. A reason for there seemingly being no differences for the smaller data sets can
be that the AEM method tends to select a correlation matrix close to a diagonal matrix.
The average differences between the Frobenius norm of the estimated correlation matrix

6. We remove the rent per square meter because of the deterministic relationship with rent and the living
space and we remove the municipality code as it is a multinomial variable.
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of the two methods ranged from 0.0123 to 0.691 over the six data sets. This might lead to
bias-variance trade-off.

To explore this further, we have conducted a new simulation study with K = 15
variables and 5 of each type of outcome to reduce the computation time. We use n =
512, 1024, . . . , 65536 observations with 50 data sets for each n. The results are summarized
in Figure 1 which shows that the AEM method does not improve in terms of the relative
error of the estimated covariance matrix (or at best very slowly) for large sample sizes.
This makes it hard to believe that the AEM method will converge, which implies that it
must be biased for some sample sizes. This is troubling if the researcher is interested in
the covariance matrix, as in Figure 6 in Zhao and Udell (2020a). In contrast, our proposed
method has a regression slope of -0.5006 consistent with the typical

√
n convergence rate

of maximum likelihood estimators. Figure 1 also shows that the gap in imputation error
increases as a function of the sample size.

To summarize, we find large improvements when the model is correctly specified and
only improvements or identical results with observational data sets. There is a big difference
in the average error for the estimated correlation matrix for the correctly specified model
which is very important for researchers who are interested in the correlation matrix per
se. Importantly, the differences in the error of the two methods increases as the number of
samples increase which is consistent with the observational data. This suggests that the
RQMC is preferable when there are many observations unlike the data sets presented here
which have at most 4406 observations.

5. Adding Multinomial Variables

We extend the model in this section to also support multinomial variables. To build up
the intuition, we first show the formulation with a simple model with one binary variable
X1 ∈ {0, 1} and one continuous variable X2. Suppose that

Z ∼ N (3)


 0
µ2
0

 ,
ξ 0 0

0 1 σ23
0 σ32 1


 (6)

X1 = j − 1⇔ Zj ≥ max(Z1, Z2) j ∈ {1, 2} (7)
X2 = f(Z3)

for a bijective function f and µ2 = Φ−1(p1). Using that Z1:2 | Z3 = z ∼ N(m,S) with
m = (0, µ2 + σ23z)> and

S =
(
ξ 0
0 1− σ2

23

)
,

we get

P(X1 = 1 | Z3 = z) = Φ(0;−m2, ξ + s22) = Φ

 µ2 + σ23z√
1 + ξ − σ2

23


where the result is attained using the identity in supplementary material S2. This is the
Gaussian copula model we have been working with if we let ξ → 0+ which effectively means
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that Z1 = 0.7 In practice, we derive the formulas we need and work with ξ = 0 and we only
work with one latent variable for binary variables as Zhao and Udell (2020a).

Now, consider the extension to the scenario with one multinomial variable X1 ∈
{0, · · · , G− 1}, and L continuous variables. Assume that Z ∼ N (L+G)(µ,Ψ) where

Ψ =

 ξ 0>G−1 0>L
0G−1 Ψ2:G2:G Ψ2:G(−1:G)
0L Ψ(−1:G)2:G Ψ(−1:G)(−1:G)



Ψ2:G2:G =


1 σ23 · · · σ2K

σ32 σ33
. . . σ3G

... . . . . . . ...
σG2 σG3 . . . σGG


X1 = j − 1⇔ Zj ≥ max(Z1, . . . , ZG)

X(−1) = f−1(Z(−1:G)), j ∈ {1, . . . , G}, µ = (0,µ>2:G,0>L )>, Ψ(−1:G)2:G ∈ RL×(G−1) is a
dense matrix, and Ψ(−1:G)(−1:G) ∈ RL×L is restricted to have ones in the diagonal.8 This
parameterization is used by Bunch (1991), without the continuous variables. We have G
conditional probabilities given by

P(X1 = j − 1 | Z(−1:G) = z) =
∫
φ(u;mj , sjj)Φ(G−1)

(
1G−1u;

(
m(−j) + S(−j)j

u−mj

sjj

)
,
(
S(−j)(−j) − s−1

jj S(−j)jSj(−j)
))

du

which equals

Φ(G−1)
(

0G−1;m(−j) − 1G−1mj ,S(−j)(−j) + sjj1G−11>G−1 − 1G−1Sj(−j) − S(−j)j1>G−1

)
where Z1:G | Z(−1:G) = z ∼ N(m,S),

m = µ1:G + Σ1:G(−1:G)Σ−1
(−1:G)(−1:G)z

S = Σ1:G,1:G −Σ1:G(−1:G)Σ−1
(−1:G)(−1:G)Σ(−1:G)1:G,

1k is a vector with k ones, and (−j) or (−J ) in a subscript implies all elements but the jth
or those indices in J for vectors or all but those indices in the rows or columns for matrices.

5.1. New Log Marginal Likelihood

We can now turn to the general case with all types including multiple multinomial variables
and show the log marginal likelihood term for each observation. Suppose that the entries
Xij ∈ {0, 1, . . .mj − 1} with j ∈ M ⊆ {1, . . . ,K} are multinomial variables with mj

7. To see this, compare Equation (7) with Z1 = 0 with Equation (1) and use µ2 = Φ−1(p1).
8. We arbitrarily select the first category to be the reference and the corresponding Z entry is uncorrelated

with all other Z entries.



Christoffersen Clements Humphreys Kjellström

categories withM∩ C = ∅,M∩O = ∅, and B = {1, . . . ,K} \ C ∪ O ∪M. The observed
variables, the Xi’s, are ordered such that the multinomial variables are first without loss of
generality and let cM = |M| and c\M = K−cM. The model is then Zi ∼ N (W ) (µ,Ψ) where
W = c\M +

∑cM
j=1mj , Ψ is given in supplementary material S3, and |B|+

∑cM
j=1mj − cM

entries of µ are non-zero. One can permute Ψ with a permutation matrix P such that:

PΨP> =
(

ξIcM 0cM×(W−cM)
0(W−cM)×cM Σ

)
(8)

where Ik is the k dimensional identity matrix, 0k×l is a k × l matrix with zeros, and Σ is a
symmetric positive definite matrix where all elements are free except for K of the diagonal
entries which are restricted to be one. Thus, we parameterize Ψ in terms of a log Cholesky
decomposition of Σ. As before, the restriction in the diagonal of Σ is either applied after
each stochastic gradient iteration by scaling the rows and columns, similar to what Zhao
and Udell (2020a) do, or by using a constrained nonlinear optimization method.

We now turn to the new expression of the log marginal likelihood. Let

D =



1m1−1 0m1−1 · · · 0m1−1

0m2−1 1m2−1
. . . ...

... . . . . . . 0mcM−1−1
0mcM−1 . . . 0mcM−1 1mcM−1
0|O∪B| · 0|O∪B| 0|O∪B|


.

Furthermore, we let Ii be the set with the indices of the latent variables belonging to
each of the observed categories for the multinomial variables for observation i. That is
Ii = {k = 1, . . . , cM : Xik + 1 +

∑k−1
l=1 ml} where

∑0
l=1ml = 0 by definition.

Let C̃ be the indices of the latent variables corresponding to the observed continuous
variables and similarly define Õ, B̃, and M̃. Using

µ̄ = µB̃∪Õ∪M̃ + ΨB̃∪Õ∪M̃,C̃Ψ
−1
C̃C̃ ẑiC̃ (9)

S̄ = ΨB̃∪Õ∪M̃,B̃∪Õ∪M̃ −ΨB̃∪Õ∪M̃,C̃Ψ
−1
C̃,C̃ΨC̃,B̃∪Õ∪M̃, (10)

and applying the identity in supplementary material S2 yields the log marginal likelihood

li(Ψ,µ) = log φ(|C|)(ẑiC̃ ; 0,ΨC̃C̃) + log
∫
φ(cM)(u; µ̄Ii , S̄IiIi)Φ(W )

(
ai, bi; (11)(

µ̄(−Ii) −Du+ S(−Ii)Ii
S̄−1
IiIi

(u− µ̄Ii)
)
,
(
S̄(−Ii)(−Ii) − S̄(−Ii)Ii

S̄−1
IiIi

S̄Ii(−Ii)
))

du

= log φ(|C|)(ẑiC ; 0,ΨC̃C̃) + log Φ(W )
(

ai, bi;
(
µ̄(−Ii) −Dµ̄Ii

)
,
(
S̄(−Ii)(−Ii) + DS̄IiIiD> −DS̄Ii(−Ii) − S̄(−Ii)Ii

D>
))
.

A missing Xij implies that the corresponding Zi entry or entries are unrestricted. Thus,
they do not contribute anything to the log marginal likelihood in Equation (3) and (11) after
integrating them out and can be omitted. Notice that the non-zero mean terms, some of the
terms of µB̃∪Õ∪M̃, enter linearly in Equation (9). This makes it easy to jointly optimize the
mean and covariance matrix, rather than fixing the mean as suggested by Zhao and Udell
(2020a), as we have a gradient approximation of the mean of the CDF. Thus, we can easily
estimate the mean vector for the binary and multinomial variables together with Σ.
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Table 3: Average RMSEs and classification errors on simulated data sets and three observa-
tional data sets. The average computation times in seconds are given in the last
column.

Data set Method Binary Ordinal Continuous Multinomial Time

Simulation RQMC (our) 0.3051 ± 0.0064 0.647 ± 0.006 0.883 ± 0.013 0.535 ± 0.005 47.05± 0.99
missForest 0.3451± 0.0065 0.692± 0.006 0.949± 0.011 0.603± 0.006 8.72 ± 0.25
imputeFAMD 0.3573± 0.0074 0.701± 0.006 0.929± 0.011 0.613± 0.007 81.19± 0.38

Cholesterol RQMC (our) 0.3009± 0.0012 0.679 ± 0.002 0.538 ± 0.002 10.64± 0.83
missForest 0.4022± 0.0046 0.696± 0.003 0.700± 0.008 2.88 ± 0.12
imputeFAMD 0.2994 ± 0.0011 0.691± 0.002 0.564± 0.003 5.61± 0.27

Rent RQMC (our) 0.1096 ± 0.0007 0.370 ± 0.004 0.731 ± 0.003 0.890 ± 0.002 173.55± 0.54
missForest 0.1408± 0.0009 0.389± 0.004 0.757± 0.004 0.903± 0.002 19.07 ± 0.70
imputeFAMD 0.1121± 0.0008 0.537± 0.005 0.777± 0.003 0.959± 0.002 102.97± 2.24

Colon RQMC (our) 0.2217 ± 0.0014 0.223 ± 0.002 1.029± 0.008 0.659± 0.004 28.73± 0.91
missForest 0.2666± 0.0025 0.394± 0.005 1.060± 0.007 0.614 ± 0.004 11.50 ± 0.44
imputeFAMD 0.2275± 0.0014 0.223± 0.002 1.017 ± 0.007 0.671± 0.004 51.42± 0.98

5.2. Application

We compare our method with other top performing single imputation methods in this
section. The methods we compare with are missForest and the PCA-like imputeFAMD. We
are particularly interested in (i) the improvements from using our method for a correctly
specified model and (ii) the performance of all three methods on observational data. We
start with (i) which will give an indication of the improvements we may expect when the
data generating process is approximately a Gaussian copula.

For (i) and (ii) we generate 100 data sets and within each there is a 30 percent chance
that a variable is missing (missing independently at random). The imputeFAMD has a
tuning parameter which is the number of components. We estimate this using five-fold cross
validation and include the cross validation time in the estimation time. The only tuning
parameter for missForest is there number trees where more trees is better. We use 100 trees
as Stekhoven and Buehlmann (2012). In our simulation study (i) we simulate data from a
Gaussian copula in a similar manner to that described in Section 4.1. That is, we simulate
Σ in Ψ in Equation (8) from a Wishart distribution like in the previous simulation. We
have 8 variables per observation with 2 of each type. The ordinal and multinomial variables
have five equally likely categories and there is a total 2000 observations.

The result of the simulation study is shown in the “Simulation” rows in Table 3.9 Our
method performs much better for all four types of variables. The average computation times
for the simulated and observational data show that our method is the slowest of the three.10
However, it is not orders of magnitude slower.

We include three observational data sets: the rent data set, used also in Section 4.1, but
this time with the multinomial area code, the cholesterol data from a US survey from the
survey package (Lumley, 2020), and data from one of the first successful trials of adjuvant
chemotherapy for colon cancer from the survival package (Therneau, 2020). Our method

9. We do not include the SMAE as there is no obvious way to compute this for the multinomial variables,
the integer values assigned to each category of the ordinal variables is arbitrary, and it favors the Gaussian
copula models for the ordinal variables as the other methods treat ordinal variables as multinomial
variables (especially if we use the conditional median similar to what Zhao and Udell (2020a) do as shown
in Table 1).

10. We use four threads with missForest and imputeFAMD does not support computation in parallel.
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often performs best or is close to the best performing method. It is expected that our
method is not always the best performing method as we do make a parametric assumption
with the particular copula we use. It is, however, encouraging that the data generating
processes seem well approximated with the Gaussian copula for all three data sets.

6. Conclusion and Discussion

We have shown that direct maximum likelihood estimation of the model used by Zhao and
Udell (2020a,b) using RQMC is feasible and provides improvements compared with the
approximation that they use. Our RQMC method yielded lower errors for the imputed
values, and estimated model parameters closer to the true values in our simulation study.
Importantly, the error of our method decreases faster as a function of the number of samples.
We have also extended the model to support multinomial variables which increases the
applicability of the method.

6.1. Future Work

Our RQMC method can be extended to provide e.g. an arbitrarily precise approximation
of the quantiles of the latent variables conditional on the observed data and estimated
model parameters. A major advantage of having precise quantile approximations is that the
user can get a quantile estimate at a given level which is close to the nominal level if the
data generating process is well approximated by the Gaussian copula. These may provide
substantial improvements over the lower bounds and approximate confidence intervals based
on Gaussian approximations, that Zhao and Udell (2020b) suggest using, since the conditional
distribution of the latent variables may be very non-Gaussian.

We could replace the non-parametric density estimator with a flexible parametric trans-
formation like those used in transformation models (Hothorn et al., 2018). The model
would be fully parametric model and it would be possible to do joint optimization over
all parameters. This could increase the efficiency and subsequently the performance. Our
RQMC could be extended to use the recently developed minimax tilting method by Botev
(2017) which could decrease the computation time at a fixed variance of the estimator.
Finally, our method can easily be used for multiple imputation (to, importantly, account for
imputation uncertainty), since it is a probabilistic framework.
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