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Abstract

With the rapid development of web services, various kinds of context data become avail-
able in recommender systems to handler the data sparsity problem, called context-aware
recommendation (CAR). It is challenging to develop effective approaches to model and
exploit these various and heterogeneous data. Recently, heterogeneous information net-
work (HIN) has been adopted to model the context data due to its flexibility in modelling
data heterogeneity. However, most of the HIN-based methods, which rely on meta paths
or graph embedding to extract features from HINs, cannot fully mine the network struc-
ture and semantic features of users and items. Besides, these methods, utilizing the global
dataset to learn personalized latent factors, usually suffer individuality loss problem. In
this paper, we propose a neural graph filtering method for context-aware recommendation,
called NGF. First, we use an unified HIN to model both the users’ feedback information
and the context data. Then, we adopt graph filtering to predict aspect-level ratings on a
series of independent subgraphs of the unified HIN and feed a deep neural network (DNN)
to fuse the predictions for CAR. Concretely, graph filtering is a case-by-case algorithm
for personalized recommendation on HINs, which predicts the further behavior by all its
similar historical behaviors. We split the unified HIN into many single-aspect networks
according to the semantic relations and utilize graph filtering to predict user’s behavior
on each subgraphs. The following deep neural network is to fuse the personalized predic-
tions in aspect-level. Extensive experiments on two real-world datasets demonstrate the
effectiveness of our neural graph filtering for CAR.

Keywords: Context-aware recommendation; Graph filtering; Deep neural network; Het-
erogeneous information network

1. Introduction

Main contents here. In recent years, recommender systems, which help users discover items
of interest from a large resource collection, have been playing an increasingly important
role in various online services. Traditional recommendation methods (e.g., matrix factor-
ization) mainly aim to learn an effective prediction function for characterizing user-item
feedback records (e.g., user-item rating matrix). Comparing with a mass of users and near-
infinite items of a recommender system, the users’ feedback data are too much sparse,
which seriously restricts the effectiveness of the traditional recommendation methods [Hu
et al. (2019)]. With the rapid development of web services, various kinds of context data
(a.k.a., side information) become available in recommender systems. As shown in Fig.1,
these context data contain but not limit attributes of users and items, social relationships,
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date time and locations. Exploiting the context data in recommender system be a promis-
ing direction to handler the data sparsity problem, called context-aware recommendation
(CAR) [Xin et al. (2019)]. Although context data is likely to contain useful information
for recommendation, it is difficult to model and utilize these heterogeneous and complex
information in recommender systems. Furthermore, it is more challenging to develop a
relatively general approach to model these varying data in different systems or platforms.

Generally, CAR methods fall into two categories according to the way of data modeling:
(1) Factorization machine (FM); (2) HIN-based methods. FM is a general predictor working
with any real valued feature vectors [Liang et al. (2020)]. To exploit the context data,
FMs first adopt one/multi-hot encoding technology to model users’ feedback records with
their corresponding context data into high-dimensional generic feature vectors, and then
estimate the target by modelling all interactions between each pair of features via factorized
interaction parameters. The following variants of FM improve in two ways: embedding
the high-dimensional feature vectors and utilizing deep neural network (DNN) to explore
higher-order feature interactions [He and Chua (2017),Xin et al. (2019)]. Although FMs
have achieved remarkable performances for CAR, they are still limited by their modeling
capability. One/multi-hot encoding can easily model attribute information in the context
data, but cannot model the structure information, e.g., social relationships. Due to the
flexibility of HIN in modeling data heterogeneity, HIN has been adopted in recommender
systems to characterize rich context data, called HIN-based recommendation [Shi et al.
(2019)]. Recently, HIN-based recommendation methods have received much attention in
the literature and achieved performance improvement to some extent. In Fig. 1, we present
an example for movie recommendation characterized by HINs. We can see that the HIN
contains multiple types of entities connected by different types of relations. Compared with
one/multi-hot encoding, HINs can easily model both attribute information and structure
information.

For the HIN-based methods, there are two way to extract latent features from HINs and
exploit them for recommendation. The basic idea of most existing HIN-based recommenda-
tion methods is to leverage path based semantic relatedness between users and items over
HINs, e.g., meta path based similarities [Sun et al. (2011)], and integrate the similarities into
complex matrix factorization (MF) or DNN models for recommendation [Luo et al. (2014),
Han et al. (2018)]. Given a HIN, meta path based similarities, e.g., PathSim [Sun et al.
(2011)], can be easily calculated. However, these similarity measures rely on specified meta
path, may not be reliable to used for recommendation when path connections are sparse.
In other words, meta-path based similarity, as a kind of local distance measure on HIN,
cannot fully min the latent relevance between nodes. Further, the derived similarities have
no explicit impact on the recommendation in some case, and may not be directly applicable
to recommender systems [Shi et al. (2019)]. Although the graph embedding approach itself
is more resistant to sparse data than meta-path similarity, it also suffers information loss
problem. Generally, the learned embedding vectors are more compact, the more information
lost. In fact, graph embedding is to translate the nodes of HINs into low-dimension space
according to their structural relevance [Maheshwari et al. (2021)]. As the same to meta
path based similarity, the structural relevance may not be valuable to the recommendation
performance in some case. Finally, we investigate the learning models, including complex
MF and DNN, and find that all the models of CAR systems are to learn personalized pre-
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dictors based on the global datasets. We call them global learning models. Specifically, MF
is to learn the latent feature vectors for each user and item; DNN models take the identifi-
cation vector of user and item as input to train a perceptron. Although the global learning
models may achieve a global optimal solution under a specific objective function, they will
suffer individuality loss problem. An obvious example is that most of existing recommender
systems tend to recommend popular items to any user since most users choose them [Li
et al. (2021)]. The personal interests that are different from public will be downplayed or
neglected in the global learning process, and the final predictor mainly persist universal
characteristics. Above problems essentially reflect two fundamental issues, namely valuable
information extraction from HINs and prediction without individuality loss.

In this paper, we challenge the problems of HIN-based recommendation and propose a
novel solution for CAR, called neural graph filtering (NGF). we first use an unified HIN to
model both the user feedback information and the context information. Then, we adopt
graph filtering to predict type-level ratings on a series of independent subgraphs of the
unified HIN and feed a deep neural network to fuse the predictions for CAR. Concretely,
graph filtering is a case-by-case algorithm for personalized recommendation on HINs, which
predicts the further behavior by all its similar historical behaviors. We use rating pair to
represent user’s behavior on HINs and measure the rating pair similarity based on General
SimRank (GSR), which is extended from SimRank and can fully exploit the structure and
semantic information for a global similarity computation on HINs [Zhang et al. (2020)].
Distinct from traditional HIN based recommendation methods, graph filtering directly cal-
culates the prediction results for recommendation, rather than extracting similarities or
learning embedding vectors which may have no explicit impact to recommendation. To
weight the contributions of different typed data in HINs, we split it into many independent
single-aspect networks according to the semantic relations and utilize graph filtering to pre-
dict user’s behavior on each subgraphs. The following deep neural network is to fuse the
personalized predictions in type-level. We conduct extensive experiments to evaluate our
proposed algorithms, as well as other state-of-the-art recommendation techniques, using
two real datasets. The experimental results demonstrate the superiority of our methods in
various measurements.

The rest of this paper is organized as follows. We give the preliminaries of NGF in
Section 2. In Section 3, we present an overview of graph filtering. In Section 4, we give
the neural graph filtering algorithm for CAR. Extensive experiments on two real datasets
are presented in Section 5. We review the related work in Section 6. Finally, we offer our
concluding remarks in the last section.

2. Preliminary

In this section, we introduce the basic preliminaries of HIN and a straightforward way to
model the recommendation data. Then, we define Rating Pair to represent user’s behavior
on HIN. In Final, we formulates our problem.

Definition 1 (Information Network): An information network is defined as a di-
rected graph G(V,E) where each object v ∈ V belongs to one particular object type
φ(v) ∈ A , and each edge e ∈ E belongs to one particular relation ϕ(e) ∈ R . If the
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Figure 1: Example of creating the unified HIN for movie recommendation based on rating
matrix, user relationships and the movie genres.

size of A or E is bigger than 1, the network G is called heterogeneous information network ;
otherwise, it is a homogeneous information network.

We can model various recommendation data via an unified HIN in the following way.
First, we create a HIN GR(V,E) with A = {user, item}. The edge between user and item
represents user’s behavior information and two weights (t, r) are set for each edge. Suppose
e(u, i) ∈ E, u ∈ user, i ∈ item and the weights are (tui, rui) . The weight tui indicates
when the behavior happened and rui is the rating score. For example, the movie-rating
matrix, as the users’ behavior information, represents the rating which user assign to movie
they have watched. As shown in Fig.1, u1 has watched m1 in timestamp 6 and gives a
rating 4. Thus, we have an edge e(u1,m1) with weights (1, 4). If not otherwise specified,
the edges of HIN in this paper are all bidirectional and the weights are symmetric. Then,
we will integrate the context data into GR(V,E). Generally, the context data fall into two
categories: structural and attribute information. Structural information, representing the
relations of objects, e.g., social friendships, can be modelled as edge in GR(V,E). For the
attribute information, a kind of appended data to corresponding objects, we create new
attribute nodes and edges to model them. Given an attribute ai, if its value domain is
discrete, e.g., the “genre” of movie in Fig.1, we model each attribute value ai,j (i.e., the j -th
value of ai) as a node and create an attribute edge ea(v, ai,j) if the node v has an attribute
ai with value ai,j ; if the value domain is continuous, e.g., “price” of product, we segment
the value domain into discrete fragments. For each fragment, we can create corresponding
node and edges in the same way. Finally, we get an unified HIN, denoted as GU (V,E),
which integrates both the user feedback data and context data in graph model.

Given GU , we use Rating pair to represent user’s behavior.
Definition 2 (Rating Pair): Rating pair is a two-tuples about user and item of

GU (V,E), describing a behavior of u, u ∈ user, related to a specific item i, i ∈ item,
denoted as r(u, i). If there is an edge between u and i, r(u, i) is called Feedback Rating Pair
with the corresponding rating rui; otherwise, it’s Predicting Rating Pair, and the predicted
score is denoted as r̂ui.



Neural Graph Filtering

Now we define our task as follows.
Problem 1. Given GU (V,E) that integrates both the user feedback data and the

context data, the context-aware recommendation is to compute r̂ for every predicting rating
pair based on the feedback rating pairs though exploiting GU (V,E).

3. Overview of Graph Filtering

3.1. General SimRank

The intuition of graph filtering is that ”a behavior can be predicted by its similar historical
behaviors.” Given an information network, various link-based measures are useful for com-
putation of similarity. However, most of them are designed for homogeneous information
network, likely random walk with restart, personalized PageRank and SimRank [Jeh and
Widom (2002)]. Without the capability of semantic recognition, they cannot work well on
HINs which contain rich semantics behind different edges. PathSim first studies the seman-
tic problem and proposes a peer similarity measure on HIN. Since it compute similarity
based on specific meta path, PathSim is a kind of local measure. That is to say it cannot
fully exploit the structure and semantic information of HINs [Sun et al. (2011)]. Recently,
General SimRank (GSR), as the general form of the famous SimRank is proposed. GSR can
distinguish the various semantics and computer similarities based on the global structure
of HINs [Zhang et al. (2020)].

SimRank first formally introduced the famous intuition that “two objects are similar if
they are related to similar objects.” Given an information network G(V,E), SimRank score
of a node pair (u, v), denoted as s(u, v), specifies how soon two random surfers are expected
to meet at the same node,

(u, v) =


1, u = v

c
|I(u)||I(v)|

|I(u)|∑
i=1

|I(v)|∑
j=1

s(Ii(u), Ij(v)), u 6= v
(1)

where c is a decay factor, 0 < c < 1, I(∗) is the in-neighbor set of ∗, Ii(∗) is the i -th
in-neighbor and |I(∗)| is the size of I(∗). Further, General SimRank (GSR) proposes the
general form of SimRank via the intuition that ”two objects are similar if they are related
to similar objects of the same type.” Formally, GSR calculates s(u, v) by

s(u, v) =


1, u = v

c
|I(u)||I(v)|

|A(u,v)|∑
k=1

|Ik(u)|∑
i=1

|Ik(v)|∑
j=1

s(Ik,i(u), Ik,j(v)), u 6= v
(2)

where A(u, v) it the type set of in-neighbors of u and v, Ik(∗) is the in-neighbor set of node
∗ with φ(∗) = Ak and Ik,i is the i -th node of the set Ik(∗).

GSR has some good properties, likely symmetric, self-maximum and semantic aware.
With these good properties, General SimRank can give reasonable global similarity scores
on HINs. However, GSR does not consider the weights of HINs. Based on our definition
of GU (V,E), there are two types of weight in the unified HIN: time weight t and rating
weight r, which only exist in the edges between users and items. We denote these edges as
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R(user, item). The weights will impact the transition probability from node pair (u, v) to its
neighbor pair (Ik,i(u), Ik,j(v)) at the same time if e(u, Ik,i(u)) ∈ R(user, item). Obviously,
if two edges have similar timestamps and rating scores, the transition probability will be
bigger; on the contrary, it will be smaller. Based on this intuition, we design a decay
function of weights for the GSR random surfers, denoted as f(u, v, k, i, j),

f(u, v, k, i, j) =

 exp(−α
(tu,Ik,i(u)−tv,Ik,j(v))

2

σ2
t

− β
(ru,Ik,i(u)−rv,Ik,j(v))

2

σ2
r

), ∃ t, r
1, otherwise

(3)

where α and β are the decay factors for time weight and rating weight respectively, 0 ≤
α, β ≤ 1, and σ2t and σ2r are their variances.

Further, we rewrite the transition probability for node pair (u, v) to its neighbor pair
(Ik,i(u), Ik,j(v)) , denoted as p(u, v, k, i, j),

p(u, v, k, i, j) =
cf(u, v, k, i, j)

|I(u)| |I(v)|
(4)

Finally, the weight-aware General SimRank on HINs is computed by

s(u, v) =


1, u = v
|A(u,v)|∑
k=1

|Ik(u)|∑
i=1

|Ik(v)|∑
j=1

p(u, v, k, i, j)s(Ik,i(u), Ik,j(v)), u 6= v
(5)

3.2. Graph Filtering

Graph Filtering predicts user’s further behavior based on its similar historical behaviors.
Since we use rating pair to represent user’s behavior on the unified HIN, we should define
the rating pair similarity firstly. Given two rating pairs r(u, i) and r(v, j), the similarity
between them, denoted as s[(u, i), (v, j)], is computed by

s[(u, i), (v, j)] = s(u, v)s(i, j) (6)

where s(∗, ∗) is calculated by Eq. 5.
Since rating pair is a two-tuples, we calculate rating pair similarity in Eq. 6 via mea-

suring the similarities of the corresponding objects, i.e., user similarity and item similarity.
Given GU , we can computer s(u, v) and s(i, j) through weight-aware GSR of Eq. 5, and
then get s[(u, i), (v, j)]. Let study some special cases. If u = v, the two rating pairs have
the same user and the difference between them only relies on the items. Meanwhile, the
corresponding equation s[(u, i), (v, j)] = s(i, j) since s(u, v) = 1. Hence, our rating pair
similarity of Eq. 6 satisfies the basic cognition about similarity measure. In the same way,
if i = j, we have s[(u, i), (v, j)] = s(u, v). That is also reasonable.

The rating pair similarity also have some good properties:

• Symmetric: s[(u, i), (v, j)] = s[(v, j), (u, i)];

• Self-maximum: s[(u, i), (v, j)] ∈ [0, 1]; s[(u, i), (v, j)] = 1 only if (u, i) = (v, j);



Neural Graph Filtering

• Semantic aware: Eq. 6 have the capability of semantic recognition and can calculate
similarities on HINs;

• Weight aware: Eq. 6 considers the time and rating score for similarity computation.

Proof.

1. Since s[(u, i), (v, j)] = s(u, v)s(i, j), s[(v, j), (u, i)] = s(v, u)s(j, i), and GSR score is
symmetric, we have s[(u, i), (v, j)] = s[(v, j), (u, i)].

2. Since the value field of GSR score is [0, 1], we can get s[(u, i), (v, j)] ∈ [0, 1] due to
Eq. 6. If (u, i) = (v, j), s(u, v) and s(i, j) take the maximum value 1. Otherwise,
s(∗, ∗) < 1. Thus, s[(u, i), (v, j)] is self-maximum.

3. The GSR score in Eq. 5 is risen by the similarities of same-typed neighbor pairs.
Based on the iterative definition in Eq. 5, we can infer that every step in any pairwise
meeting path from (u, v) to (x, x) has the same semantic. Hence, the GSR is semantic
aware. Based on Eq. 6, we can further infer that the rating pair similarity is also
semantic aware.

4. There are two weight factor for each rating pair, i.e., time and rating. Let ∆t and ∆r
be the absolute difference values of time weights and rating weights respectively. For
the user pair (u, v), they must have neighbors of item type. We can infer that s(v, u)
is monotone decreasing about ∆t and ∆r since f(u, v, k, i, j) is a monotone decreasing
function about ∆t and ∆r when ∃t, r. In the same way, we can infer that s(v, u) is
monotone decreasing about ∆t and ∆r. Hence, we get that the rating pair similarity
measure of Eq. 6 is monotone decreasing about ∆t and ∆r. That is to say, given
two rating pair, if the differences of time weight and rating weights are bigger, the
similarity between rating pairs will be smaller. On the contrary, the similarity score
will be bigger. Hence, we can infer that Eq. 6 is weight aware. �

With these good properties, Eq. 6 can give a reasonable rating pair similarity in term
of global structure, semantic and weights of HINs. Based on Eq. 6, we can predict user’s
behavior through its similar historical behaviors. Formally, graph filtering calculates r̂ui for
a given predicting rating pair r(u, i) by

r̂ui = r̄u +

∑
r(v,j)∈FRP

s[(u, i), (v, j)](rvj − r̄v)∑
r(v,j)∈FRP

s[(u, i), (v, j)]
(7)

where FRP is the feedback rating pair set of GU (V,E), and r̄u is the average rating score
of user u.

Graph filtering gives an basic solution to predict user’s further behavior based on HIN.
Distinct from the global learning models, graph filtering does not min the latent feature for
individual objects or personalized perceptron through the global dataset, but predict each
rating pair only by its similar rating pairs, which maximizes the individuality. To overcome
the data sparsity problem, graph filtering use link-based similarity measure, rather than
vector-based similarity of CF, to find more similar historical behaviors. Further, weight-
aware GSR can fully exploit the unified HIN in term of global structure, semantics and
weights.
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4. Neural Graph Filtering for Recommendation

The unified HIN models various data, which have different contributions for recommenda-
tion. In this section, we propose a novel approach to weight the contributions of different
typed data in HIN, called neural graph filtering (NGF). Formally, the NGF algorithm for
CAR is as follow:

1. Given GU (V,E), split it into multiple independent single-aspect networks according to
the type of information, denoted as {Gx};

2. For every rating pair r(u, i), compute r̂ri on each Gx via graph filtering, denoted as
r̂x(u, i);

3. Build aspect-level vector for r(u, i), denoted as Xui, Xui = {r̂1(u, i), · · · , r̂x(u, i), · · · };

4. Taking the FRP as training dataset, learn a DNN model ŷui = f(Xui);

5. Calculate r̂ for predicting rating pair, r̂vj = f(Xvj).

4.1. Single-aspect network

To split the unified HIN into independent single-aspect networks, we should investigate its
template firstly. The meta template of HIN is a type of abstract concept graph, representing
the basic structure, known as network schema.
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Definition 3 (Network Schema): A meat template for G(V,E) with the object
mapping φ : V → A and the edge mapping ϕ : E → R, is a directed graph defined over
object types A and semantic relations R, denoted as TG(A,R).

Although the HINs are various according to different recommendation scenarios, they
all have the same network schema, as shown in Fig. 2 (b). That is to say the various HINs
are different network instances of a same network schema. Generally, the TG of GU contains
5 types of semantic relations, and each semantic relation represents a kind of information
that impacts the performance of recommendation. For example, the semantic relation
R(user, item) represents the rating information; R(user, uai) means all the users have an
attribute uai, and its edge instance e(u, uai,j) in G means u has a value uai,j in attribute
uai; R(user, user) represents the social relationships and so on. In term of the relations of
TG(A,R), we can get 5 types of sub-schemas, as shown in Fig. 2. Given a sub-schema, we
can get the corresponding subgraph of GU (V,E), called single-aspect network.

Definition 3 (Single-aspect network): The single-aspect network is a subgraph of
GU (V,E), whose network schema only contains rating relation and no more than 1 other
semantic relation.

Except the subgraph of rating sub-schema (Fig. 2 (c)(3)), there are two semantic re-
lations in other single-aspect networks. That is because we cannot calculate r̂ for the
predicting rating pairs without rating information. In fact, single semantic relation has no
sense to recommendation until it is related to the rating relation. On the one hand, graph
filtering can fully exploit the HIN with weight-aware GSR; on the other hand, the extracted
information must be related to recommendation since itself is the prediction.

Except the rating relation, other semantic relations are independent. Given a single-
aspect network, the prediction indicates the impact of a single information to recommen-
dation. Finally, for any rating pair r(u, i) on GU (V,E), we can calculate its predictions
on different single-aspect networks by Eq. 5-7. All the predictions compose a vector Xui,
Xui = {r̂1(u, i), · · · , r̂x(u, i), · · · }.

4.2. Recommendation Based on Neural Graph Filtering

In this section, we present the neural graph filtering model that utilize DNN to fuse the
different predictions by learning aspect-level weights. NGF is a general machine learner
working with any real valued feature vector. Given a vector X ∈ Rn as input, NGF
estimates the target as:

ŷ(X) = w0 +
n∑
i=1

wixi + g(X) (8)

where the first and second terms are the linear regression part, which models global bias of
data and weight of X. The third term g(X) is the core component of NGF for modelling
feature interactions, which is a multi-layered feed-forward neural network.

We model the CAR as a regression problem which predicts the rating scores from users
to items in the future. In the following, we elaborate the design of g(x) layer by layer.

Input Layer. Given a rating pair r(u, i) on GU (V,E), NGF takes the prediction vector
Xui as input. Formally, H0 = X.

Hidden Layer. Above the input layer is a stack of fully connected layers, which are
capable of learning higher-order interactions between aspect-level features, i.e. predictions.
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Formally, the definition of fully connected hidden layers is as follows:

Hl = h1(W
T
1 ·H0 + b1)

H2 = h2(W
T
2 ·H1 + b2)

· · ·
HL = hL(W T

L ·HL−1 + bL)

(9)

where L denotes the number of hidden layers, Wl, bl and hl denote the weight matrix,
bias vector and activation function for the l -th layer, respectively. Since the CAR task is
modeled as a regression problem, NGF uses Rectifier (ReLU) as the activation function of
the hidden layers, i.e., hl(x) = max{0, x}.

Prediction Layer. At last, the output vector of the last hidden layer HL is transformed
to the final prediction score:

g(X) = W T
OHL (10)

where vector WO denotes the neuron weights of the prediction layer.
To summarize, we give the formulation NGF’s predictive model as:

ŷ(X) = w0 +

n∑
i=1

wixi +W T
OhL(W T

L (· · ·h1(W T
1 H0 + b1) · · · ) + bL) (11)

with all model parameters Θ = {w0, {wi},WO, {Wl, bl}}.
Learning. To estimate model parameters of NGF, we need to specify an objective

function to optimize. The CAR task, as a regression problem, commonly uses the squared
loss as the objective function:

Lrecm =
∑

Xui∈D
(ŷ(Xui)− rui)2 (12)

where D denotes the set of predictive vectors calculated for feedback rating pairs on GU , and
rui is the feedback rating score from user u to item i. The regularization terms are optional
and omitted here, since some techniques in neural network modelling such as dropout can
well prevent NGF from overfitting.

At last, we use stochastic gradient descent (SGD) to optimize the objective function of
Eq. 11. SGD is a universal solver for optimizing DNN models, which iteratively updates
the parameters until convergence. In each time, it randomly selects a training instance X,
updating each model parameters towards the direction of its negative gradient:

θ = θ − η · 2(ŷ(X)− r)dŷ(X)

dθ
(13)

where θ ∈ Θ is a trainable model parameter, and η > 0 is the learning rate that controls
the step size of gradient descent. As the NGF is a multi-layered neural network model, the
gradient of ŷ(X) to each model parameter can be derived using the chain rule, which has
been widely implemented in ML toolkits like TensorFlow and Keras [He and Chua (2017)].



Neural Graph Filtering

5. Experimental Studies

5.1. Evaluation Datasets

We experimented with two publicly accessible datasets: Amazon 1 and IMDb 2.
Amazon. We use book set of the real traces from Amazon dataset. The book dataset

consists of 3.52M ratings from 798,431 users for 482,879 books. And the attributes include
231,452 authors, 51,812 publisher, and 156 time-nodes. The ratings vary from 1 to 5 with
an increment of 1. The sparsity is about 99.47%

IMDb. This dataset is about movies, collected from the famous imdb.com. In this
website, detailed descriptions are given for each movie, gross (integer, in millions), rating,
reviewer number (integer, in thousands) and length. In detail, the IMDb network consists
of 1482 movies, 112 genres, 529 directors, 4795 actors and 239 time-nodes. The rating range
is in (0, 10). There are 25,154 links and the sparsity is about 95.16%.

We use the widely used mean absolute error (MAE) and root mean square error (RMSE)
to measure the quality of recommendation of different models. The metrics MAE and RMSE
are defined as follows:

MAE =
1

|Dtest|
∑

r(i,j)∈Dtest

|rij − r̂ij | (14)

RMSE =

√√√√ 1

|Dtest|
∑

r(i,j)∈Dtest

(rij − r̂ij)2 (15)

where Dtest denotes the test set of rating records.

5.2. Methods to Compare

We consider the following methods to compare:

• ItemKNN. It is a classical memory-based approach that computes the cosine item
similarity to provide recommendation .

• BPR [Koren et al. (2009)]. The Bayesian Personalized Ranking approach optimizes
the MF model with a pairwise ranking loss.

• NFM [He and Chua (2017)]. It combines the linearity of FM and the non-linearity of
neural network for modeling higher-order feature interactions.

• HERec [Shi et al. (2019)]. It exploits auxiliary information based on graph embedding
and then utilizes non-linear fusion function to integrate the embedded information into
MF model.

• NeuACF [Han et al. (2018)]. It is a neural network based aspect-level CF which
exploits the HINs via meta paths.

• MetaHIN [Lu et al. (2020)]. It exploits meta-learning on HINs for cold-start recom-
mendation via multifaceted semantic contexts and a co-adaption meta-learner.

1. http://jmcauley.ucsd.edu/data/amazon/
2. https://www.imdb.com/
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• GF. Graph filtering is our basic solution for HIN-based recommendation.

• NGF. Neural graph filtering is our enhancement algorithm, which fuses the graph
filtering predictions via DNN model.

In above baselines, HERec, NeuACF and MetaHIN use the same meta paths for simi-
larities or embedding in our experiments. The embedding dimension number d = 64, and
other baseline parameters adopt the original optimal setting.

5.3. Experimental Results and Analysis

5.3.1. Effectiveness Experiments

For each dataset, we split the entire rating information into a training set and a test set,
with the training ratios as in {80%, 60%, 40%,20%}. Obviously, smaller ratio means much
sparser data for recommendation, and the context data will play more important role in
handling the data sparsity problem. The result is shown in Table 1.
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Abstract

In this paper, we propose a neural graph filtering method for context-aware recommenda-
tion, called NGF.

1. Introduction

Main contents here.

Table 1: Results of effectiveness experiments on two datasets.

Dataset Training Metrics ItemKNN BPR NFM HERec NeuACF MetaHIN GF NGF

Amazon

20%
MAE 1.2354 1.0125 0.9827 0.9581 0.9198 0.8904 0.9815 0.8635
RMSE 1.3895 1.1418 1.1283 1.0957 1.0513 1.0418 0.1226 1.0163

40%
MAE 1.1018 0.9585 0.8862 0.8327 0.8195 0.7862 0.8874 0.7635
RMSE 1.2351 1.0129 0.9873 0.9652 0.9421 0.9346 0.9862 0.9063

60%
MAE 1.0275 0.8324 0.7854 0.7547 0.7684 0.7521 0.7938 0.7328
RMSE 1.1849 0.9705 0.9246 0.9079 0.8812 0.8775 0.9327 0.8502

80%
MAE 0.9818 0.8071 0.7362 0.7027 0.6827 0.6954 0.7932 0.6804
RMSE 1.1451 0.9429 0.9035 0.8652 0.8432 0.8526 0.9221 0.8226

IMDb

20%
MAE 1.1275 0.9811 0.9327 0.9114 0.8553 0.8226 0.9124 0.8028
RMSE 1.3742 1.1226 1.0972 1.0321 1.0167 0.9862 1.0481 0.9601

40%
MAE 1.0197 0.8245 0.8093 0.7672 0.7528 0.7465 0.7945 0.7426
RMSE 1.1685 0.9813 0.9558 0.9587 0.9329 0.9318 0.9482 0.9105

60%
MAE 0.9632 0.7985 0.7216 0.7042 0.7012 0.7149 0.7949 0.6512
RMSE 1.1104 0.9331 0.9061 0.8618 0.8542 0.8605 0.9273 0.8169

80%
MAE 0.9297 0.7624 0.6593 0.6427 0.6421 0.6465 0.7049 0.6082
RMSE 1.0895 0.9018 0.8755 0.8242 0.8172 0.8268 0.9171 0.7885

© 2021 A. Name1.

The major findings are summarized as follows:
1. All these models are sensitive to data sparsity. With the increases of training ra-

tio, the metric results improve significantly. Among all these baselines, the methods that
exploit context data perform better than pure CF, i.e., ItemKNN and BPR. It indicates
that exploiting context data is a promising way to handle the data sparsity problem in
recommendation.

2. The proposed NGF method is consistently better than the baselines. Compared with
other CAR methods, NGF combines graph filtering and DNN model, to fully exploit HINs
and make personalized prediction. Graph filtering utilizes weight-aware GSR to compute
the global similarities of rating pairs and predicts rating scores case-by-case on the single-
aspect networks. DNN model is just to fuse the predictions in aspect level.
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3. NGF performs better than graph filtering (GF), which indicates that the various
data of HIN have different contributions for recommendation. It is meaningful to exploit
the weights of themselves and their high-order interactions.

5.3.2. Individuality Loss Experiments

In this section, we consider studying the performance w.r.t. special rating pairs, i.e., indi-
vidual behaviors different from public. Generally, since most of users like popular items, a
user chooses a niche item can be considered as an ”individual” behavior. Thus, the special
rating pairs can be found through the degrees of items on GU . We first categorize special
items into three groups according to the numbers of their rating records, i.e., (0, 5], (5, 10]
and (10, 20]. It is easy to see that the case in the first group is the most difficult since the
items from this group have fewest rating records and their predicted scores can be easily im-
pacted by the public. Here, we only select the baselines that have best performance in above
experiments, including HERec, NeuACF, MetaHIN and NGF. We present the performance
comparison of different methods in Fig. 3. Overall, NGF performs the best in all cases. We
also find that the performances of NGF and MetaHIN have different improvements. While
the performances of other baselines are below their averages in Table 1. That indicates less
individuality information lost in NGF.
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Figure 3: Experiments on individuality loss.

5.3.3. Impact of Time and Rating Weights

To analyze the impact of temporal and rating information, we check the performance change
w.r.t. the corresponding decay parameters, i.e., α and β. We vary it from 0 to 1 with a step
of 0.1, and the tuning results are shown in Fig. 4. Overall, the change trend is not smooth,
indicating that NGF is sensitive to time and rating data on HINs. We also find that rating
information is more important than time since RMSE turns to bigger when β = 0. At last,
we suggest α, β are set in range [0.75, 0.85] for better performance.

6. Related Work

Since CF methods usually suffer from data sparsity and cold-start problems, some works
attempt to leverage side information, such as social data , location information and content
information. The side information are also known as context data and these methods are
called context-aware recommendation (CAR) [Xin et al. (2019)]. Nowadays, there are many
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Figure 4: Impact of the time and rating information on HINs.

kinds of learning models to exploit context data for recommendation, likely FM, MF, feature
mapping, DNN and meta-learning.

FMs are a general predictor working with any real valued feature vectors, which esti-
mates the target by modelling all interactions between each pair of features via factorized
interaction parameters [He and Chua (2017), Liang et al. (2020)]. To improve the effec-
tiveness by exploiting context data, many works rewrite the objective function of MF via
adding similarity terms [Shi et al. (2019)]. With the surge of deep learning, deep neural
networks are also employed to deeply capture the latent features of users and items for rec-
ommendation, likely NeuACF, CFM [Han et al. (2018)]. The recent episodic meta-learning
paradigm has offered insights into model new users or items with context data. It focuses
on deriving prior knowledge across different leaning task, so as to rapidly adapt to a new
task [Lu et al. (2020)]. These learning methods all belong to global learning models that
suffer individuality loss problem.

7. Conclusion

In this paper, we challenge the problems in HIN-based recommendation, i.e., information
extraction and individuality loss and propose a neural graph filtering solution for CAR. We
first split the HIN into many independent single-aspect networks according to the semantic
relations. Then, we use graph filtering to calculate the predictions on subgraphs. The
following DNN is to fuse the personalized predictions in aspect-level. Extensive experiments
on real-world datasets demonstrate the effectiveness of NGF.
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