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Abstract
The convergence rates for convex and non-convex optimization methods depend on the choice of a
host of constants, including step-sizes, Lyapunov function constants and momentum constants. In
this work we propose the use of factorial powers as a flexible tool for defining constants that appear
in convergence proofs. We list a number of remarkable properties that these sequences enjoy, and
show how they can be applied to convergence proofs to simplify or improve the convergence rates of
the momentum method, accelerated gradient and the stochastic variance reduced method (SVRG).
Keywords: List of keywords

1. Introduction

Consider the stochastic optimization problem

x∗ ∈ arg min
x∈C

f(x) = Eξ [f (x, ξ)] , (1)

where each f (x, ξ) is convex but potentially non-smooth in x and C ⊂ Rd is a bounded convex set.
To solve (1) we use an iterative method that at the kth iteration samples a stochastic (sub-)gradient
∇f(xk, ξ) and uses this gradient to compute a new, and hopefully improved, xk+1 iterate. The
simplest of such methods is Stochastic Gradient Descent (SGD) with projection:

xk+1 = ΠC (xk − ηk∇f(xk, ξ)) , (2)

where ΠC is the projection onto C and ηk is a sequence of step-sizes. Both the variance from the
sampling procedure, as well as the non-smoothness of f prevent the sequence of xk iterates from
converging. The two most commonly used tools to deal with this variance are iterate averaging
techniques (Polyak, 1964) and decreasing step-sizes (Robbins and Monro, 1951). By carefully
choosing a sequence of averaging parameters and decreasing step-sizes we can guarantee that the
variance of SGD will be kept under control and the method will converge. In this work we focus
on an alternative to averaging: momentum. Momentum can be used as a replacement for averaging
for non-smooth problems, both in the stochastic and non-stochastic setting. Projected SGD with
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Method Alg # Smooth Str. Conv Polytopic Rate Std. Rate Reference
SGDM Eq (18) No No (n+ 2)−1/2 (n+ 1)−1/2 Tao et al. (2020)
SGDM Eq (18) No Yes (n+ 2)−1 (n+ 1)−1 Tao et al. (2020)

SVRGM Alg 1 Yes No 1/n 1/n Allen Zhu & Yuan [2016]
SVRGM Alg 1 Yes Yes (3/5)n/κ (3/4)n/κ Allen Zhu & Yuan [2016]
Nesterov Eq (27) Yes No 1/n2 1/n2 Nesterov (2013)

Table 1: List of convergence results together with previously known results. We say that the func-
tion is smooth if (7) holds with constant L, otherwise we assume that the function is G–
Lipschitz (6). Finally when assuming the function if µ–strongly convex we use κ := L/µ.
The SVRGM is in fact a new method which is closely related to the SVRG++ Allen Zhu
and Yuan (2016) method.

momentum can be written as

mk+1 = βmk + (1− β)∇f(xk, ξk),
xk+1 = ΠC (xk − αkmk+1) , (3)

where αk and β are step-size and momentum parameters respectively. Using averaging and momen-
tum to handle variance introduces a new problem: choosing and tuning the additional sequence of
parameters. In this work we introduce the use of factorial powers for the averaging, momentum, and
step-size parameters. As we will show, the use of factorial powers simplifies and strengthens the
convergence rate proofs.

Contributions

1. We introduce factorial powers as a tool for providing tighter or more elegant proofs for
the convergence rates of methods using averaging, including dual averaging and Nesterov’s
accelerated gradient method, see row 5 in Table 1.

2. We leverage factorial powers to prove tighter any-time convergence rates for SGD with
momentum in the non-smooth convex and strongly-convex cases, see rows 1 and 2 in Table 1.

3. We describe a novel SVRG variant with inner-loop factorial power momentum, which improves
upon the SVRG++ (Allen Zhu and Yuan, 2016) method in both the convex and strongly convex
case, see rows 3 and 4 in Table 1.

4. We identify and unify a number of existing results in the literature that make use of factorial
power averaging, momentum or step-sizes.

2. Factorial Powers

The (rising) factorial powers (Graham et al., 1994) are typically defined using a positive integer r
and a non-negative integer k as

kr = k(k + 1) · · · (k + r − 1) =
r∏
i=1

(k + i− 1). (4)
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Figure 1: (left) Contour plots of the simple powers and the factorial powers. (right) The half-factorial
power and associated upper and lower bounds.

Their behavior is similar to the simple powers kr as kr = O(kr), and as we will show, they can
typically replace the use of simple powers in proofs. They are closely related to the simplicial
polytopic numbers Pr(k) such as the triangular numbers k(k + 1), and tetrahedral numbers 1

6k(k +
1)(k+2), by the relation Pr(k) = 1

r! k
r. See the left of Figure 1 for contour plots comparing factorial

and simple powers.
The advantage of kr over kr is that in many cases that arise in proofs, additive, rather than

multiplicative operations, are applied to the constants. As we show in Section 3, summation and
difference operations applied to kr result in other factorial powers, that is, factorial powers are closed
under summation and differencing. In contrast, when summing or subtracting simple powers of the
form kr, the resulting quantities are polynomials rather than simple powers. It is this closure under
summation and differencing that allows us to derive improved convergence rates when choosing
step-sizes and momentum parameters based on factorial powers.

Our theory will use a generalization of the factorial powers to non-integers r ∈ R and integers
k ≥ 1 such that k + r > 0 using the Gamma function Γ(k) :=

∫∞
0 xk−1e−xdx so that

kr := Γ(k + r)
Γ(k) (5)

We also use the convention that 0r = 0 except for 00 = 1. This is a proper extension because, when
k is integer we have that Γ(k) = (k − 1)! and consequently (5) is equal to (4). This generalized
sequence is particularly useful for the values r = 1/2 and r = −1/2, as they may replace the use of√
k and 1/

√
k respectively in proofs.

The factorial powers can be computed efficiently using the log-gamma function to prevent
overflow. Using the factorial powers as step-sizes or momentum constants adds no computational
overhead as they may be computed recursively using simple algebraic operations as we show below.
The base values for the recursion may be precomputed as constants to avoid the overhead of gamma
function evaluations entirely.



D E F A Z I O G O W E R

2.1. Notation and Assumptions

We assume throughout that f(x, ξ) is convex in x. Let ∇f(x, ξk) denote the subgradient of f(x, ξk)
given to the optimization algorithm at step k. Let C ⊂ Rd be a convex set and let R > 0 be the
radius of the smallest Euclidean-norm ball around the origin that contains the set C. We define the
projection onto C as ΠC(x) := arg minz∈C ‖z − x‖. In addition to assuming that f(x, ξ) is convex,
we will use one of the following two sets of assumptions depending on the setting.

Non-smooth functions. The function f(·, ξ) is Lipschitz with constant G > 0 for all ξ, that is

|f(x, ξ)− f(y, ξ)| ≤ G ‖x− y‖, ∀x, y ∈ Rd. (6)

Smooth functions The gradient∇f(·, ξ) is Lipschitz with constant L > 0 for all ξ, that is

‖∇f(x, ξ)−∇f(y, ξ)‖ ≤ L ‖x− y‖, ∀x, y ∈ Rd. (7)

We assume that σ2 <∞ where σ2 = Eξ ‖∇f (x∗, ξ)‖2 .

Strongly convex functions We say that f(x) is µ–strongly convex if f(x)− µ
2‖x‖

2 is convex.

We use the shorthand notation Eξ ‖·‖2 = Eξ
[
‖·‖2

]
and will write E instead of Eξ when the

conditional context is clear. We defer all proofs to the supplementary material.

3. Properties of Factorial Powers

The factorial powers obey a number of properties, see Table 2. These properties allow for a type
of "finite" or "umbral" calculus that uses sums instead of integrals (Graham et al., 1994). A few of
these properties, such as the summation and differencing, are given in Chapter 2.6 for integers values
in (Graham et al., 1994). We carefully extend these properties to the non-integer setting. All the
proofs of these properties can be found in Section A in the supplementary material.

These properties are key for deriving simple and tight convergence proofs. For instance, often
when using telescoping in a proof of convergence, we often need a summation property. For the
factorial powers we have the simple formula (10). This shows that the factorial powers are closed
under summation because on both sides of (10) we have factorial powers. This formula is a discrete
analogue of the definite integral

∫ b
a x

rdx = 1
r+1b

r+1 − 1
r+1a

r+1. In contrast, when summing power
sequences, we rely on Faulhaber’s formula:

k∑
i=1

ir = kr+1

r + 1 + 1
2k

r +
r∑
i=2

Bi
i!

r!
(r − k + 1)!k

r−i+1, (14)

which involves the Bernoulli numbers Bj :=
∑j
i=0

∑i
ν=0(−1)v

( i
ν

) (ν+1)j

i+1 . This is certainly not as
simple as (10). Furthermore, to extend (14) to non-integer r complicates matters further (McGown
and Parks, 2007). In contrast the summation property (10) holds for non-integer values.

Another common property used in telescoping arguments is the difference property (11). Once
again we have that factorial powers are closed under differencing. In contrast, the simple powers
instead require the use of inequalities such as

rxr−1 ≤ (x+ 1)r − xr ≤ r (x+ 1)r−1 ,

r (x+ 1)r−1 ≤ (x+ 1)r − xr ≤ rxr−1,
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Recursion (k + 1)r = k + r

k
kr (8)

(k + 1)r = (k + r) (k + 1)r−1 (9)

Summation
b∑
i=a

ir = 1
r + 1b

r+1 − 1
r + 1a

r+1 (10)

Differences (k + 1)r − kr = r (k + 1)r−1 (11)

Ratios
kr+q

kr
= (k + r)q (12)

Inversion k−r = 1
(k − r)r

(13)

Table 2: Fundamental Properties of the factorial powers. Properties (8), (9), (11) and (12) hold for
k + r > 0 and k ≥ 1. The Summation property (10) holds for a+ r > 0 and a ≥ 1. The
Inversion property (13) holds for k > r and k ≥ 1. We are not aware of an existing source
for these properties for the rising factorial powers, however similar relations for the falling
factorial powers are established in Graham et al. (1994).

where the first row of bounds hold for r < 0 or r > 1 and the second row holds for r ∈ (0, 1).
Using the above bounds adds slack into the convergence proof and ultimately leads to suboptimal
convergence rates.

3.1. Half-Powers

The factorial half –powers k1/2 and k−1/2 are particularly interesting since they can be used to set
the learning rate of the momentum method in lieu of the standard O(1/

√
k) learning rate, as we will

show in Theorem 2. The factorial half–powers are similar to the standard half-powers, in that, their
growth is sandwiched by the standard half-powers as illustrated in Figure 1, in fact:√

(k − 1/2) ≤ k1/2 ≤
√
k, (15)

1√
k − 1/2

< k−1/2 <
1√
k − 1

. (16)

We also believe this is the first time factorial half–powers have been used in the stochastic optimization
literature.

4. From Averaging to Momentum

Here we show that averaging techniques and momentum techniques have a deep connection. We use
this connection to motivate the use of factorial power momentum. Our starting point for this is SGD
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with averaging which can be written using the online updating form

xk+1 = ΠC (xk − ηk∇f(xk, ξk)) ,
x̄k+1 = (1− ck+1) x̄k + ck+1xk+1. (17)

At first glance (17) is unrelated to SGD with momentum (3). But surprisingly, SGD with momen-
tum can be re-written in the strikingly similar iterate averaging form given by

zk+1 = ΠC (zk − ηk∇f(xk, ξk)) ,
xk+1 = (1− ck+1)xk + ck+1zk+1. (18)

This equivalence only holds without the projection operation in Equation 3. We are not aware of any
analysis of Equation 3’s convergence with the projection operation included, and we believe that
incorporating projection as we do in Equation 18 is better given it’s much more amenable to analysis.
The following theorem rephrases this equivalence, established by Sebbouh et al. (2020), in terms of
the constants α and β:

Theorem 1 If C = Rd then the xk iterates of (3) and (18) are the same so long as z0 = x0,
c1 ∈ (0, 1) and

ηk = αk
ck+1

(1− β), ck+1 = β
αk
αk−1

ck
1− ck

. (19)

Proof The proof is by induction.

Base case k = 0. From (3) we have that

x1 = x0 − α0m1
(3)= x0 − α0(1− β)∇f(x0, ξ0), (20)

where we used that m0 = 0. Similarly for (18) we have that

x1 = (1− c1)x0 + c1z1

= (1− c1)x0 + c1(x0 − η0∇f(x0, ξ0))
= x0 − c1η0∇f(x0, ξ0), (21)

where we used that z0 = x0. Now (21) and (20) are equivalent since c1η0
(19)= α0(1− β).

Induction step. Suppose that the xk iterates in (17) and (18) are equivalent for k and let us consider
the k + 1 step. Let

zk+1 = xk −
αk
ck+1

mk+1. (22)
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Consequently

zk+1 = xk −
αk
ck+1

mk+1

(18)+(3)= (xk−1 − αk−1mk)
− αk
ck+1

(βmk + (1− β)∇f(xk, ξk))

= xk−1 −
(
αk−1 + β

αk
ck+1

)
mk

− αk
ck+1

(1− β)∇f(xk, ξk)

(19)= xk−1 −
αk−1
ck

mk − ηk∇f(xk, ξk)

(22)= zk − ηk∇f(xk, ξk),

where in the last but one step we used that ck+1 = β αk
αk−1

ck
1−ck

which when re-arranged gives

αk−1 + β
αk
ck+1

= αk−1
ck

.

Finally

xk+1 = xk − αkmk+1
(22)= xk − ck+1(xk − zk+1)
= (1− ck+1)xk + ck+1zk+1.

Which concludes the induction step and the proof.

Due to this equivalence, we refer to (18) as the projected SGDM method. The xk update (18) is
similar to the moving average in (17), but now the averaging occurs directly on the xk sequence
that the gradient is evaluated on. As we will show, convergence rates of the SGDM method can be
shown for the xk sequence, with no additional averaging necessary. This method is also known as
primal-averaging, and under this name it was explored by Sebbouh et al. (2020) in the context of
smooth optimization and by Tao et al. (2020) and Taylor and Bach (2019) without drawing an explicit
link to stochastic momentum methods.

Factorial powers play a key role in the choice of the momentum parameters ck+1, and the resulting
convergence rate of (17). Standard (equal-weighted) averaging given by

x̄k := 1
k + 1

k∑
i=0

xi or equivalently

x̄k :=
(

1− 1
k + 1

)
x̄k−1 + 1

k + 1xk. (23)

results in a sequence that “forgets the past” at a rate of 1/k. Indeed, if we choose an arbitrary initial
point x0 (or at least without any special insight), to converge to the solution we must “forget” x0. To
forget x0 faster, we can use a weighted average that puts more weight on recent iterates. We propose
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the use of the factorial powers to define a family of such weights that allows us to tune how fast
we forget the past. In particular, we propose the use of momentum constants as described in the
following proposition.

Proposition 1 Let xk ∈ Rn for k = 1, . . . be a sequence of iterates, and let r > −1 be a real
number. For k ≥ 0, the factorial power average

x̄k = r + 1
(k + 1)r+1

k∑
i=0

(i+ 1)rxi (24)

is equal to the moving average

x̄k+1 = (1− ck) x̄k + ckxk+1, (25)

where ck := r + 1
k + r + 1 .

Shamir and Zhang (2013) introduced the polynomial-decay averaging (25) for averaged SGD under
the restriction that integer r > 0. Proposition 1 extends the result to non-integer values with a range
of r > −1. Next we use factorial power averaging to get state-of-the-art convergence results for
SGDM .

4.1. Applying factorial powers

The any-time convergence of SGDM is a good case study for the application of the half-factorial
powers.

Theorem 2 Let f(x, ξ) be G-Lipschitz and convex in x. The projected SGDM method (18) with
ηk = η(k + 1)−1/2 for η > 0 and ck+1 = 1/(k + 1) converges according to

E [f(xn)− f(x∗)] ≤
1
2
(
η−1R2 + 2ηG2

)
(n+ 2)−1/2 .

Furthermore, optimizing over η gives η =
√

1/2RG and the resulting convergence

E [f(xn)− f(x∗)] ≤
√

2RG (n+ 2)−1/2 .

This result is strictly tighter than the
√

2RG/
√
n+ 1 convergence rate that arises from the use

of square-root sequences (see Theorem 10 in the appendix) as used by Tao et al. (2020). The use of
half-factorial powers also yields more direct proofs, as inequalities are replaced with equalities in
many places. For instance, when ηk = η/

√
k + 1, a bound of the following form arises in the proof:

√
k + 1−

√
k ≤ 1

2
√
k
.

If factorial power step sizes ηk = η(k + 1)−1/2 are used instead, then this bounding operation is
replaced with an equality that we call the inverse difference property:

1

(k + 1)−1/2
− 1
k−1/2

= 1
2

1
k1/2

.
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The standard proof also requires summing the step-sizes, requiring another bounding operation

k∑
i=0

1√
i+ 1

≤ 2
√
k + 1.

Again when the factorial power step-sizes are used instead, this inequality is replaced by the equality∑k
i=0(i+ 1)−1/2 = 2 (k + 1)1/2.

We can also use factorial power momentum with r = 3 to show that SGDM converges at a rate of
O(1/n) for strongly-convex non-smooth problems in the following theorem.

Theorem 3 Let f(x, ξ) be G-Lipschitz and µ−strongly convex in x for every ξ. The projected SGDM
method (18) with ηk = 1

µ(k+1) and ck+1 = 4
k+4 (i.e. r = 3) satisfies

E [f(xn)− f(x∗)] ≤
2G2

µ
(n+ 2)−1 = 2G2

µ(n+ 1) .

This O(1/n) rate of convergence is the fastest possible in this setting (Agarwal et al., 2009). This
rate of convergence has better constants than that established by using a different momentum scheme
in Tao et al. (2020). Higher order averaging is also necessary to obtain this rate for the averaged SGD
method, as established by Lacoste-Julien et al. (2012) and Shamir and Zhang (2013), however in that
case only r = 1 averaging is necessary to obtain the same rate. The r = 3 front weighted average
corresponds to a much heavier front weighting sequence:

xk = 4
(k + 1)(k + 2)(k + 3)(k + 4)

k∑
i=0

(i+ 1)(i+ 2)(i+ 3)zi (26)

5. From Momentum to Acceleration

A higher order r for the factorial powers is useful when the goal is to achieve convergence rates of
the order O(1/nr+1). Methods using equal weighted r = 0 momentum cannot achieve convergence
rates faster than O(1/n), since that is the rate that they “forget” the initial conditions. To see this,
note that in a sum 1/(n + 1)

∑n
i=0 zi, the z0 value decays at a rate of O(1/n). When using the

order r factorial power for averaging (24), the initial conditions are forgotten at a rate of O(1/nr+1).
The need for r = 1 averaging arises in a natural way when developing accelerated optimization
methods for non-strongly convex optimization, where the best known rates are of the order O(1/n2)
obtained by Nesterov’s method. As with the SGDM method, Nesterov’s method can also be written in
an equivalent iterate averaging form (Auslender and Teboulle, 2006):

yk = (1− ck+1)xk + ck+1zk,

zk+1 = zk − ρk∇f(yk),
xk+1 = (1− ck+1)xk + ck+1zk+1, (27)

where ρk are the step-sizes, and initially z0 = x0. In this formulation of Nesterov’s method we can
see that the xk sequence uses iterate averaging of the form (18). To achieve accelerated rates with
this method, the standard approach is to use ρk = 1/(Lck+1) and to choose momentum constants ck
that satisfy the inequality

c−2
k − c

−1
k ≤ c

−2
k−1.
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Algorithm 1 Our proposed SVRGM method
z0
m0−1 = x0

m0−1 = x0
for s = 1, 2, . . . , S do

x̃s−1 = xs−1
ms−1−1, x

s
0 = xs−1

ms−1−1, z
s
0 = zs−1

ms−1

∇f(x̃s−1) = 1
n

∑n
i=1∇fi(x̃s−1)

for t = 0, 1, . . . ,ms − 1 do
Sample j uniformly at random
gst = ∇fj(xst )−

[
∇fj

(
x̃s−1)−∇f(x̃s−1)

]
zst+1 = zst − ηgst
xst+1 = (1− ct+1)xst + ct+1z

s
t+1

end
end

This inequality is satisfied with equality when using the following recursive formula:

c−1
k+1 = 1

2

(
1 +

√
1 + 4c−1

k−1

)
,

but the opaque nature and lack of closed form for this sequence is unsatisfying. Remarkably, the
sequence ck+1 = 2/(k + 2) also satisfies this inequality, as pointed out by Tseng (2008), which is
a simple application of r = 1 factorial power momentum. We show in the supplementary material
how using factorial powers together with the iterate averaging form of momentum gives an elegant
proof of convergence for this method, which uses the same proof technique and Lyapunov function
as the proof of convergence of the regular momentum method SGDM . By leveraging the properties
of factorial powers, the proof follows straightforwardly with no “magic” steps.

Theorem 4 Let xk be given by (27). Let f(x, ξ) be L–smooth and convex. If we set ck = 2/(k + 2)
and ρk = (k + 1)/(2L) then

f(xn)− f(x∗) ≤
2L
n2
‖x0 − x∗‖2 . (28)

This matches the rate given by Beck and Teboulle (2009) asymptotically, and is faster than the rate
given by Nesterov’s estimate sequence approach Nesterov (2013) by a constant factor.

6. Variance Reduction with Momentum

Since factorial power momentum has clear advantages in situations where averaging of the iterates
is otherwise used, we further explore a problem where averaging is necessary and significantly
complicates matters: the stochastic variance-reduced gradient method (SVRG). The SVRG method
(Johnson and Zhang, 2013) is a double loop method, where the iterations in the inner loop resemble
SGD steps, but with an additional additive variance reducing correction. In each outer loop, the
average of the iterates from the inner loop are used to form a new “snapshot” point. We propose the
SVRGM method (Algorithm 1). This method modifies the improved SVRG++ formulation of Allen
Zhu and Yuan (2016) to further include the use of iterate averaging style momentum in the inner
loop. See Algorithm 1.



FA C T O R I A L P O W E R S F O R ( S T O C H A S T I C ) O P T I M I Z AT I O N

Our formulation has a number of advantages over existing schemes. In terms of simplicity, it
includes no resetting operations1, so the x and z sequences start each outer loop at the values from
the end of the previous one. Additionally, the snapshot x̃ is up-to-date, in the sense that it matches
the final output point x from the previous step, rather than being set to an average of points as in
SVRG/SVRG++.

The non-strongly convex case is an application of non-integer factorial power momentum. Using
a large step-size η = 1/6L we show in Theorem 5 that Algorithm 1 converges at a favourable rate if
we choose the momentum parameters ck corresponding to a (k + 1)1/2 factorial power averaging
of the iterates. The strongly convex case in Theorem 6 uses fixed momentum (i.e. an exponential
moving average), since no rising factorial sequence can give linear convergence rates. In both cases
we are able to give improved constants over the SVRG++ method.

Theorem 5 (non-strongly convex case) Let f(x) = 1
n

∑n
i=1 fi(x) where each fi is L-smooth and

convex. By setting ct = 1/2+1
t+1/2+1 , η = 1

6L , and ms = 2ms−1 in Algorithm 1 we have that

E
[
f(xSms−1)− f∗

]
≤ f (x0)− f∗

2S + 9L ‖x0 − x∗‖2

2Sm0
.

The non-strongly convex convergence rate is linear in the number of epochs, however each epoch is
twice as long as the previous one, resulting in an overall 1/t rate.

Theorem 6 (strongly convex case) Let f(x) = 1
n

∑n
i=1 fi(x) where each fi is L-smooth and µ-

strongly convex. Let κ = L/µ. By setting ms = 6κ, ck = 5
3

1
4κ+1 , and ηk = 1/(10L) in Algorithm 1

we have that

E
[
f(x̃S)− f∗

]
≤
(3

5

)S [
f(x0)− f(x∗) + 3

4µ δ0

]
,

where δ0 := ‖x0 − x∗‖2 .

7. Further Applications

Factorial powers have applications across many areas of optimization theory. We detail two further
instances of popular first order methods where factorial powers are particularly useful.

7.1. Dual Averaging

Classical (non-stochastic) dual averaging uses updates of the form (Nesterov, 2009):

sk+1 = sk +∇f (xk) ,

xk+1 = arg min
x

{
〈sk+1, x〉+ β̂k+1

γ

2 ‖x− x0‖2
}
, (29)

where the sequence β̂k is defined recursively with β̂0 = β̂1 = 1, and β̂k+1 = β̂k+1 + 1/β̂k+1. This
sequence grows approximately following the square root, as

√
2k − 1 ≤ β̂k+1 ≤ 1

1+
√

3 +
√

2k − 1
for k ≥ 1, and obeys a kind of summation property

∑k
i=0

1
β̂i

= β̂k+1. Nesterov’s sequence has the

1. This is also a feature of the variant known as free-SVRG (Sebbouh et al., 2019)
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Figure 2: Training loss sub-optimality on 4 LIBSVM test problems, comparing SGD, SGD with
r = 1 post-hoc averaging to SGD with factorial power momentum.

disadvantage of not having a simple closed form, but it otherwise provides tighter bounds than using
βk =

√
k + 1. In particular, the precise bound on the duality gap (as we show in Theorem 15 in the

supplementary material) is given by

max
x,‖x‖≤R

{
1

n+ 1

n∑
i=0
〈∇f (xi) , xi − x〉

}

≤

 √
2(

1 +
√

3
) 1

(n+ 1) + 2√
n+ 1

RG.
The factorial powers obey a similar summation relation, and they have the advantage of an explicit
closed form, which we exploit to give a strictly tighter convergence rate.

Theorem 7 After n steps of the dual averaging method (29) with β̂k = 1/ (k + 1)−1/2 and γ =
G/R we have that

max
x,‖x‖≤R

{
1

n+ 1

n∑
i=0
〈∇f (xi) , xi − x〉

}

≤ 2RG(n+ 2)−1/2 <
2RG√
n+ 1

.

Proof Nesterov (2009) establishes the following bound:

δk ≤ γβ̂k+1R
2 + 1

2G
2 1
γ

k∑
i=0

1
β̂i
.

We use β̂i = 1/ (i+ 1)−1/2 the sum is:

k∑
i=0

1
β̂i

= 1
1− 1/2 (k + 1)1/2 − 1

1− 1/2 (1)1/2 .
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Recall also that:
β̂k+1 = 1

(k + 2)−1/2
= (k + 3/2)1/2 .

So:
δk ≤ γR2 (k + 3/2)1/2 +G2

(
(k + 1)1/2 − 2 (1)1/2

)
.

Using step-size γ = G/R:

δk ≤ RG (k + 3/2)1/2 +RG

(
(k + 1)1/2 − 2 (1)1/2

)
= RG

(
(k + 3/2)1/2 + (k + 1)1/2 − 2 (1)1/2

)
≤ 2RG (k + 1)1/2 .

Now to normalize by 1/(k + 1) we use:

(k + 1)r+q

(k + 1)r
= (k + 1 + r)q ,

with r = 1 and q = −1/2, so that:

(k + 1)1/2

k + 1 = (k + 2)−1/2 .

We further use (k + 2)−1/2 < (k + 1)−1/2, giving:

1
k + 1δk <

2RG√
k + 1

.

7.2. Conditional Gradient Method

Factorial power step-size schemes have also arisen for the conditional gradient method

pk+1 = arg min
p∈C
〈p,∇f(xk)〉 ,

xk+1 = (1− ck+1)xk + ck+1pk+1.

For this method the most natural step-sizes satisfy the following recurrence (“open loop” step-sizes)
ck+1 = ck− 1

2c
2
k, which Dunn and Harshbarger (1978) note may be replaced with ck+1 = 1/(k+1).

Another approach that more closely approximates the open-loop steps is the factorial power weighting
ck+1 = 2/(k + 2) as used in Jaggi (2013) and Bach (2015).
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Figure 3: SVRGM training loss convergence

8. Experiments

For our experiments we compared the performance of factorial power momentum on a strongly-
convex but non-smooth machine learning problem: regularized multi-class support vector machines.
We consider two problems from the LIBSVM (Chang and Lin, 2011) repository: PROTEIN and
USPS, and two from the UCI (Dua and Graff, 2017) repository: GLASS and VOWEL. We used
batch-size 1 and the step-sizes recommended by the theory for both SGD with r = 1 averaging, as
well as SGD with factorial power momentum as we developed in Theorem 3. We induced strong
convexity by using weight decay of strength 0.001. The median as well as interquartile range bars
from 40 runs are shown. Since our theory suggests r = 3, we tested r = 0, 1, 3, 5 to verify that
r = 3 is the best choice. The results are shown in Figure 2. We see that when using factorial power
momentum, using r = 0, 1 is worse than r = 3, and using r = 5 is no better that r = 3, so the results
agree with our theory. The momentum method also performs a little better than SGD with post-hoc
averaging, however it does appear to be substantially more variable between runs, as the interquartile
range shows. We provide further experiments covering the SVRGM method in the supplementary
material.

8.1. SVRGM Experiments

We compared the SVRGM method against SVRG both with the r = 1/2 momentum suggested
by the theory as well as equal weighted momentum. We used the same test setup as for our SGDM
experiments, except without the addition of weight decay in order to test the non-strongly convex
convergence. Since the selection of step-size is less clear in the non-strongly convex case, here we
used a step-size sweep on a power-of-2 grid, and we reported the results of the best step-size for each
method. As shown in Figure 3, SVRGM is faster on two of the test problems and slower on two. The
flat momentum variant is a little slower than r = 1/2 momentum, however not significantly so.

9. Conclusion

Factorial powers are a flexible and broadly applicable tool for establishing tight convergence rates
as well as simplifying proofs. As we have shown, they have broad applicability both for stochastic
optimization and beyond.
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Appendix A. Proof of Properties of Factorial Powers

We recall that we define the factorial powers using the gamma function

kr := Γ(k + r)
Γ(k) , where Γ(k) :=

∫ −∞
0

xk−1e−xdx, for k + r > 0 and k ≥ 1. (30)

We also extend the definition and set 0r = 0 except for 00 = 1. We restrict k + r > 0 and k ≥ 1
in (30) because the gamma function Γ(z) is only well defined for z > 0.

We will use the following well known property of the gamma function

Γ(k + 1) = kΓ(k), (31)

that follows by integration by parts.
We now give the proof of all the properties in Table 2.

Proposition 2 For k ≥ 1 and k + r > 0 we have that following recursive properties:

(k + 1)r = k + r

k
kr, (32)

(k + 1)r = (k + r) (k + 1)r−1 . (33)

Proof Using the definition directly

(k + 1)r = Γ(k + r + 1)
Γ(k + 1)

(31)= Γ(k + r) (k + r)
Γ(k)k

= k + r

k
kr,

and

(k + 1)r = Γ(k + 1 + r)
Γ(k + 1)

(31)= Γ(k + r)(k + r)
Γ(k + 1) = (k + r) (k + 1)r−1 .

Proposition 3 For k ≥ 1 and k + r > 0 we have that following difference property

(k + 1)r − kr = r (k + 1)r−1 . (34)

Proof We apply the recursive property in k, then in r
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(k + 1)r − kr = k + r

k
kr − kr

= r

k
kr

= 1
k+r
k

r

k
(k + 1)r

= r
1

k + r
(k + 1)r

= r (k + 1)r−1 .

Proposition 4 For k ≥ 1, k + r > 0 and k + r + q > 0 we have that following ratio property

kr+q

kr
= (k + r)q ,

Proof

kr+q

kr
=

Γ(k+r+q)
Γ(k)

Γ(k+r)
Γ(k)

= Γ(k + r + q)
Γ(k + r)

= (k + r)q .

Proposition 5 For integers b ≥ a ≥ 1 such that a + r > 0 we have the following summation
property

b∑
i=a

ir = 1
r + 1b

r+1 − 1
r + 1a

r+1.

Proof This property is a direct consequence of telescoping the difference property.

Proposition 6 For k ≥ 1 we have that following inverse difference property

1

(k + 1)−1/2
− 1
k−1/2

= 1
2

1
k1/2

. (35)
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Proof We apply the inverse property followed by the difference property then the inverse property
again:

1

(k + 1)−1/2
− 1
k−1/2

=
(
k + 1− 1

2

)1/2
−
(
k − 1

2

)1/2

= 1
2 (k + 1/2)−1/2

= 1
2

1
k1/2

.

Lemma 1 Let k ≥ 1, r ≥ 0 and j ≥ 0. Consider the sequence

ck = r + 1
k + j + r

.

It follows that
1− ck
ck

(k + j)r = 1
ck−1

(k + j − 1)r.

Proof Simplifying:( 1
ck
− 1

)
(k + j)r =

(
k + j + r

r + 1 − 1
)

(k + j)r

=
(
k + j + r − r − 1

r + 1

)
(k + j)r

= k + j − 1
r + 1 (k + j)r

= k + j + r − 1
r + 1

k + j − 1
k + j + r − 1(k + j)r

= 1
ck−1

k + j − 1
k + j + r − 1(k + j)r.

Now applying the recursion property Eq. (8) gives:

k + j − 1
k + j + r − 1(k + j)r = (k + j − 1)r,

giving the result.

Proposition 7 Let zk ∈ Rn for k = 0, . . . be a sequence of points, and let r > −1 be a real number.
Define x̄−1 as the origin. The moving average:

x̄k = (1− ck) x̄k−1 + ckzk,
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ck = r + 1
k + r + 1 ,

is equivalent to the factorial power weighted average:

x̄k = r + 1
(k + 1)r+1

k∑
i=0

(i+ 1)r zi.

Proof We show by induction. For the base case, consider k = 0. Then:

x̄0 = (1− c0) x̄−1 + c0z0

=
(

1− r + 1
r + 1

)
x̄−1 + r + 1

r + 1z0

= z0.

Likewise, we have that

x̄0 = r + 1
1r+1

0∑
i=0

(i+ 1)r zi

= (r + 1) 1r

1r+1
z0

= z1.

We have used the recursive property (k + 1)r = (k + r) (k + 1)r−1 to simplify.
For the inductive case, consider k ≥ 1 and suppose that x̄k−1 = r+1

kr+1

∑k−1
i=0 (i+ 1)r zi. We may

write the update as

x̄k = r + 1
(k + 1)r+1

k∑
i=0

(i+ 1)r zi.

= r + 1
(k + 1)r+1

k−1∑
i=1

(i+ 1)r zi + (r + 1) (k + 1)r

(k + 1)r+1
zk

= kr+1

(k + 1)r+1
r + 1
kr+1

k−1∑
i=1

(i+ 1)r zi + (r + 1) (k + 1)r

(k + 1)r+1
zk

= kr+1

(k + 1)r+1
x̄k−1 + (r + 1) (k + 1)r

(k + 1)r+1
zk,

where in the last line we used the induction hypothesis. To show the equivalence to the moving
average form x̄k = (1− ck) x̄k−1 + ckzk, we just need to show that:

ck = (r + 1) (k + 1)r

(k + 1)r+1
and 1− ck = kr+1

(k + 1)r+1
,

where ck = r+1
k+r+1 . These two identities follow from applying the recursive properties, Eq. (9):

(r + 1) (k + 1)r

(k + 1)r+1
= (r + 1) (k + 1)r

(k + r + 1) (k + 1)r

= ck.
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For the other term we use Eq. (8):

kr+1

(k + 1)r+1
= kr+1

k+r+1
k kr+1

= k

k + r + 1

= 1− r + 1
k + r + 1

= 1− ck.

Appendix B. Convergence Theorems for the Projected SGDM

Theorem 8 Consider the projected SGDM method

xk = (1− ck)xk−1 + ckzk, (36)

zk+1 = ΠC (zk − ηk∇f(xk, ξk)) ,

where 0 < ck ≤ 1. If each f(·, ξ) is convex and G-Lipschitz then

‖zk+1 − x∗‖2 ≤ ‖zk − x∗‖2 + η2
kG

2

− 2 1
ck
ηk [f(xk, ξk)− f(x∗, ξk)] + 2

( 1
ck
− 1

)
ηk [f(xk−1, ξk)− f(x∗, ξk)] .

Proof We start with zk+1 instead of the usual expansion in terms of xk+1:

‖zk+1 − x∗‖2 = ‖ΠC (zk − ηk∇f(xk, ξk))−ΠC (x∗)‖2

≤ ‖zk − ηk∇f(xk, ξk)− x∗‖2

= ‖zk − x∗‖2 − 2ηk 〈∇f(xk, ξk), zk − x∗〉+ η2
kG

2

= ‖zk − x∗‖2 − 2ηk
〈
∇f(xk, ξk), xk −

( 1
ck
− 1

)
(xk−1 − xk)− x∗

〉
+ η2

kG
2

= ‖zk − x∗‖2 + η2
kG

2

− 2ηk 〈∇f(xk, ξk), xk − x∗〉 − 2ηk
( 1
ck
− 1

)
〈∇f(xk, ξk), xk − xk−1〉 .

Using the following two convexity inequalities

〈∇f (xk, ξk) , x∗ − xk〉 ≤ f(x∗, ξk)− f(xk, ξk),

〈∇f (xk, ξk) , xk−1 − xk〉 ≤ f(xk−1, ξk)− f(xk, ξk),
combined with (1/ck − 1) ≥ 0 gives

‖zk+1 − x∗‖2 ≤ ‖zk − x∗‖2 + η2
kG

2

− 2ηk [f(xk, ξk)− f(x∗, ξk)]− 2
( 1
ck
− 1

)
ηk [f(xk, ξk)− f(xk−1, ξk)] .
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Now rearranging further gives the result

‖zk+1 − x∗‖2 ≤ ‖zk − x∗‖2 + η2
kG

2

− 2 1
ck
ηk [f(xk, ξk)− f(x∗, ξk)] + 2

( 1
ck
− 1

)
ηk [f(xk−1, ξk)− f(x∗, ξk)] .

Corollary 1 Consider the Lyapunov function:

Ak = ‖zk − x∗‖2 + 2
ck−1

ηk−1 [f(xk−1)− f(x∗)] .

If for k ≥ 2, ( 1
ck
− 1

)
ηk ≤

1
ck−1

ηk−1, (37)

and for k = 1 we have
(

1
c1
− 1

)
η1 ≤ 0, then SGDM steps statisfy the following relation for k ≥ 1.

Eξk
[Ak+1] ≤ Ak + η2

kG
2,

when each f(·, ξ) is convex and G-Lipschitz.

Corollary 2 Let E[·] denote the expectation with respect to all ξi, with i ≤ n. Suppose that the
constraint set C is contained in an R-ball around the origin. Then telescoping and applying the law
of total expectation gives:

E ‖zn+1 − x∗‖2 + 2
cn
ηnE [f(xn)− f(x∗)] ≤ R2 +

n∑
i=0

η2
iG

2. (38)

B.1. Proof of Theorem 2: Any-time convergence with factorial power step-sizes

Theorem 9 Consider the projected SGDM method Eq. 18. When ηk =
√

1/2RG(k + 1)−1/2 and
ck = 1/(k + 1), when each f(x, ξ) is G-Lipschitz, convex and the constraint set C is contained
within an R-ball around x0, then:

E [f(xn)− f(x∗)] ≤
√

2RG (n+ 2)−1/2 ≤
√

2RG√
n+ 1

.

Proof Consider Theorem 8 in expectation conditioned on ξk:

E ‖zk+1 − x∗‖2 ≤ ‖zk − x∗‖2 + η2
kG

2

− 2 1
ck
ηk(f(xk)− f(x∗)) + 2

( 1
ck
− 1

)
ηk(f(xk−1)− f(x∗)).

We will use a step-size ηk = η(k + 1)−1/2 for some constant η, and multiply this expression by
1/(k + 1)−1/2:
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1
(k + 1)−1/2

E ‖zk+1 − x∗‖2 ≤
1

(k + 1)−1/2
‖zk − x∗‖2 + (k + 1)−1/2η2G2

− 2 1
ck
η (f(xk)− f(x∗)) + 2

( 1
ck
− 1

)
η (f(xk−1)− f(x∗)) .

(39)

Now we prove the result by induction. First consider the base case k = 0. Since 1−1/2 = Γ(1/2)
Γ(1) =

√
π which follows since Γ(1/2) =

√
π and Γ(1) = 1 we have that

1
1−1/2 ‖z0 − z∗‖2 = 1√

π
‖z0 − z∗‖2 ≤

1√
π
R2.

Consequently taking k = 0 in (39) gives

1
1−1/2

E ‖z1 − x∗‖2 ≤
1

1−1/2
‖z1 − z∗‖2 + (1)−1/2η2G2 − 2 1

c0
η (f(x0)− f(x∗))

+ 2
( 1
c0
− 1

)
η (f(x0−1)− f(x∗))

≤ 1√
π
R+ 1−1/2η2G2 − 2η (f(x0)− f(x∗)) .

(40)

Inductive case: consider the case k ≥ 1. To facilitate telescoping we want 1
k−1/2

‖zk − z∗‖2 on the
right, so to this end we rewrite

1
(k + 1)−1/2

‖zk − z∗‖2 = 1
k−1/2

‖zk − z∗‖2 +
(

1
(k + 1)−1/2

− 1
k−1/2

)
‖zk − z∗‖2

≤ 1
k−1/2

‖zk − z∗‖2 +
(

1
(k + 1)−1/2

− 1
k−1/2

)
R2. (41)

Now since k ≥ 1 we can apply the inverse difference property

1

(k + 1)−1/2
− 1
k−1/2

= 1
2

1
k1/2

,

which when used with (41) and then inserting the result in (39) gives

1

(k + 1)−1/2
E ‖zk+1 − x∗‖2 ≤

1
k−1/2

‖zk − z∗‖2 + 1
2

1
k1/2

R2 + (k + 1)−1/2η2G2

− 2 1
ck
η (f(xk)− f(x∗)) + 2

( 1
ck
− 1

)
η (f(xk−1)− f(x∗)) .

Since ck = 1/(k + 1) and 1
k1/2

=
(
k + 1

2

)−1/2
we have that

1

(k + 1)−1/2
E ‖zk+1 − x∗‖2 ≤

1
k−1/2

‖zk − z∗‖2 + 1
2

(
k + 1

2

)−1/2
R2 + (k + 1)−1/2η2G2

− 2(k + 1)η (f(xk)− f(x∗)) + 2kη (f(xk−1)− f(x∗)) . (42)
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Now taking expectation and adding up both sides of (42) from 1 to n and using telescopic cancellation
gives

1

(n+ 1)−1/2
E ‖zn+1 − x∗‖2 ≤

1
1−1/2

E ‖z1 − z∗‖2

+ 1
2R

2
n∑
i=1

(
i+ 1

2

)−1/2
+

n∑
i=1

(i+ 1)−1/2η2G2

+ 2η (f(x0)− f(x∗))− 2(n+ 1)ηE[f(xn)− f(x∗)].

Now using the base case (40) we have that

1

(n+ 1)−1/2
E ‖zn+1 − x∗‖2

≤ R2 + 1−1/2η2G2 − 2η (f(x0)− f(x∗))− 2(n+ 1)ηE[f(xn)− f(x∗)]

+ 1
2R

2
n∑
i=1

(
i+ 1

2

)−1/2
+

n∑
i=1

(i+ 1)−1/2η2G2 + 2η (f(x0)− f(x∗))

= 1√
π
R2 + 1

2R
2

n∑
i=1

(
i+ 1

2

)−1/2
+

n∑
i=0

(i+ 1)−1/2η2G2 − 2(n+ 1)ηE[f(xn)− f(x∗)].

(43)

Using the summation property Eq. (10) we have that
n∑
i=1

(i+ 1/2)−1/2 = 2 (n+ 1/2)1/2 − 2 (3/2)1/2

= 2 (n+ 1/2)1/2 − 4√
π

≤ 2 (n+ 1)1/2 − 4√
π
,

and furthermore
n∑
i=0

(i+ 1)−1/2 =
n+1∑
i=1

i−1/2 ≤ 2 (n+ 1)1/2 .

So after dividing by 2(n+ 1)η:

E [f(xn)− f(x∗)] ≤
1
2

(1
η
R2 + 2ηG2

) (n+ 1)1/2

n+ 1 .

We now use the ratio property on:

(n+ 1)1/2

n+ 1 = (n+ 1)1−1/2

(n+ 1)1
= (n+ 2)−1/2 ,

and solve for the best step-size η, which is η =
√

1/2RG giving:

E [f(xn)− f(x∗)] ≤
√

2RG (n+ 2)−1/2

<

√
2RG√
n+ 1

.
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B.2. Any-time convergence with standard step-sizes:

Theorem 10 Let f(x, ξ) beG-Lipschitz and convex for every ξ.When ηk = R

G
√

2(k+1)
and ck = 1

k+1

in the projected SGDM method (18) we have that

E [f(xn)− f(x∗)] ≤
√

2RG√
n+ 1

. (44)

Proof We use ηk = η/
√
k + 1 and ck = 1

k+1 in the result from Theorem 8, taking expectation and
multiplying both sides by

√
k + 1 gives

√
k + 1E ‖zk+1 − x∗‖2 ≤

√
k + 1 ‖zk − x∗‖2 + 1√

k + 1
η2G2

− 2(k + 1)ηE [f(xk)− f(x∗)] + 2kηE [f(xk−1)− f(x∗)] . (45)

For k = 0 the above gives

E ‖z1 − x∗‖2 ≤ R2 + η2G2 − 2ηE [f(x0)− f(x∗)] . (46)

For k ≥ 1, from concavity of the square root function

√
k + 1−

√
k ≤ 1

2
√
k
, (47)

we have that
√
k + 1 ‖zk − x∗‖2 ≤

(√
k + 1

2
√
k

)
‖zk − x∗‖2 ≤

√
k ‖zk − x∗‖2 + 1

2
√
k
R2.

Plugging the above into (45) gives

√
k + 1E ‖zk+1 − x∗‖2 ≤

√
k ‖zk − x∗‖2 +

( 1
2
√
k

)
R2 + 1√

k + 1
η2G2

− 2(k + 1)ηE [f(xk)− f(x∗)] + 2kηE [f(xk−1)− f(x∗)] .

Now we telescope for 1 to n giving:

√
n+ 1E ‖zn+1 − x∗‖2 ≤ ‖z1 − x∗‖2 +

n∑
i=1

( 1
2
√
i

)
R2 +

n∑
i=1

1√
i+ 1

η2G2

− 2(n+ 1)ηE [f(xn)− f(x∗)] + 2ηE [f(x0)− f(x∗)] .

Using the base case (46) we have that

√
n+ 1E ‖zn+1 − x∗‖2 ≤ R2 +

n∑
i=1

( 1
2
√
i

)
R2 +

n∑
i=0

1√
i+ 1

η2G2

− 2(n+ 1)ηE [f(xn)− f(x∗)] .
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Now using the integral bounds

n∑
i=1

1√
i
≤ 2(
√
n− 1),

n∑
i=0

1√
i+ 1

≤ 2
√
n+ 1,

and re-arranging gives

2(n+ 1)ηE [f(xn)− f(x∗)] ≤
√
nR2 + 2

√
n+ 1η2G2 −

√
n+ 1E ‖zn+1 − x∗‖2

≤
√
nR2 + 2

√
n+ 1η2G2.

Dividing through by 2(n+ 1)η gives

2(n+ 1)ηE [f(xn)− f(x∗)] ≤
√
n

2(n+ 1)ηR
2 + 1√

n+ 1
ηG2

≤ 1√
n+ 1

( 1
2ηR

2 + ηG2
)
.

Minimizing the above in η gives η = R/(
√

2G) which gives (44) and concludes the proof.

Appendix C. Strongly Convex Convergence

Consider again the SGDM method with a projection step given by

zk+1 = ΠC (zk − ηk∇f(xk, ξk)) ,
xk+1 = (1− ck+1)xk + ck+1zk+1.

Lemma 2 For λk+1 = k+2
2 and ck+1 = 4

k+4 we have that

Ak+1 := ‖xk+1 − x∗ + λk+1 (xk+1 − xk)‖2 = ‖2zk+1 − xk − x∗‖2

Proof The relation follows from substitution of the known relations:

Ak+1 = ‖xk+1 − x∗ + λk+1 (xk+1 − xk)‖2

= ‖(λk+1 + 1)xk+1 − λk+1xk − x∗‖2

= ‖(λk+1 + 1) ((1− ck+1)xk + ck+1zk+1)− λk+1xk − x∗‖2

= ‖(λk+1 + 1) ((1− ck+1)xk + ck+1zk+1) + [(λk+1 + 1) (1− ck+1)− λk+1]xk − x∗‖2

= ‖(λk+1 + 1) ck+1zk+1 + [(λk+1 − λk+1ck+1 + 1− ck+1)xk − λk+1xk]− x∗‖2

= ‖(λk+1 + 1) ck+1zk+1 + [(1− (λk+1 + 1) ck+1)xk]− x∗‖2 .

Now using

(λk+1 + 1) ck+1 =
(
k + 2

2 + 1
) 4
k + 4 = k + 4

2
4

k + 4 = 2,
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gives

Ak+1 = ‖2zk+1 − xk − x∗‖2 .

C.1. Proof of Theorem 3

Theorem 11 Let f(x, ξ) be G-Lipschitz and µ−strongly convex in x for every ξ. The projected
SGDM method (18) with ηk = 1

µ(k+1) and ck+1 = 4
k+4 satisfies

E [f(xn)− f(x∗)] ≤
2G2

µ(n+ 1) .

Proof We will define a few constants to reduce notational clutter. Let

ρk = k − 1
k + 1 , and λk+1 = k + 2

2 .

We will first apply the contraction property of the projection operator (using the fact that xk and x∗
are always within the constraint set) so that

Ak+1 = ‖2zk+1 − xk − x∗‖2

= 4
∥∥∥∥ΠC (zk − ηk∇f(xk, ξk))−

(1
2xk + 1

2x∗
)∥∥∥∥2

= 4
∥∥∥∥ΠC (zk − ηk∇f(xk, ξk))−ΠC

(1
2xk + 1

2x∗
)∥∥∥∥2

≤ ‖2zk − 2ηk∇f(xk, ξk)− xk − x∗‖2 .

Now we use zk = 1
ck
xk −

(
1
ck
− 1

)
xk−1:

Ak+1 ≤
∥∥∥∥ 2
ck
xk − 2

( 1
ck
− 1

)
xk−1 − 2ηk∇f(xk, ξk)− xk − x∗

∥∥∥∥2

=
∥∥∥∥2( 1

ck
− 1

)
xk − 2

( 1
ck
− 1

)
xk−1 + xk − 2ηk∇f(xk, ξk)− x∗

∥∥∥∥2

= ‖xk − 2ηk∇f(xk, ξk)− x∗‖2 + 4
( 1
ck
− 1

)2
‖xk − xk−1‖2

+ 4
( 1
ck
− 1

)
〈xk − xk−1, xk − x∗〉 − 4ηk

( 1
ck
− 1

)
〈∇f(xk, ξk), xk − x∗〉 .

Now from Lemma 2 we have Ak = ‖xk − x∗ + λk (xk − xk−1)‖2 thus

4
( 1
ck
− 1

)
〈xk − xk−1, xk − x∗〉 = 2

λk

( 1
ck
− 1

)
Ak

− 2
λk

( 1
ck
− 1

)
‖xk − x∗‖2 − 2λk

( 1
ck
− 1

)
‖(xk − xk−1)‖2 . (48)
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Notice that:

2 1
λk

( 1
ck
− 1

)
= 2 2

k + 1

(
k + 3

4 − 1
)

= 1
k + 1 (k + 3− 4)

= k − 1
k + 1 = ρk.

So we have:

Ak+1 = ‖xk − 2ηk∇f(xk, ξk)− x∗‖2 +
(

4
( 1
ck
− 1

)
− 2λk

)( 1
ck
− 1

)
‖xk − xk−1‖2

= ρkAk − ρk ‖xk − x∗‖2 − 8ηk
( 1
ck
− 1

)
〈∇f(xk, ξk), xk − xk−1〉 .

Now note that:

4
( 1
ck
− 1

)
− 2λk = 4

(
k + 3

4 − 1
)
− 2k + 1

2

= (k − 1)− 2k + 1
2

≤ 0.

Further expanding ‖xk − 2ηk∇f(xk, ξk)− x∗‖2 and rearranging then gives

Ak+1 = ρkAk + (1− ρk) ‖xk − x∗‖2 + 4η2
k ‖∇f(xk, ξk)‖2

= −4ηk 〈∇f(xk, ξk), xk − x∗〉 − 8ηk
( 1
ck
− 1

)
〈∇f(xk, ξk), xk − xk−1〉 .

We now apply the two inequalities:

−〈∇f (xk, ξk) , xk − x∗〉 ≤ − [f(xk, ξk)− f(x∗, ξk)]−
µ

2 ‖xk − x∗‖
2 ,

−〈∇f (xk, ξk) , xk − xk−1〉 ≤ f(xk−1, ξk)− f(xk, ξk),

which gives:

Ak+1 = ρkAk + (1− ρk − 2µηk) ‖xk − x∗‖2 + 4η2
k ‖∇f(xk, ξk)‖2

= −4ηk [f(xk, ξk)− f(x∗, ξk)] + 8ηk
( 1
ck
− 1

)
[f(xk−1, ξk)− f(xk, ξk)] .

Taking expectations and using Eξk
‖∇f (xk, ξk)‖2 ≤ G2 gives:

EAk+1 = ρkAk + (1− ρk − 2µηk) ‖xk − x∗‖2 + 4η2
kG

2

= −4ηk [f(xk)− f(x∗)] + 8ηk
( 1
ck
− 1

)
[f(xk−1)− f(xk)] .
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Further grouping of function value terms gives:

EAk+1 = ρkAk + (1− ρk − 2µηk) ‖xk − x∗‖2 + 4η2
kG

2

= −
(

8ηk
( 1
ck
− 1

)
+ 4ηk

)
[f(xk)− f(x∗)] + 8ηk

( 1
ck
− 1

)
[f(xk−1)− f(x∗)] .

Now we simplify constants, recalling that ρk = k−1
k+1 and ck = 4

k+3 :

8ηk
( 1
ck
− 1

)
= 2 4

µ(k + 1)

(
k + 3

4 − 1
)

= 2
µ

1
k + 1 (k − 1)

= ρk
2
µ
,

using this we have:

8ηk
( 1
ck
− 1

)
+ 4ηk = 2

µ

k − 1
k + 1 + 4 1

µ(k + 1)

= 2
µ

k − 1 + 2
k + 1

= 2
µ
.

Also note that:

1− ρk − 2µηk = 1− k − 1
k + 1 −

2µ
µ(k + 1)

= 1− k + 1− 2
k + 1 − 2

k + 1
= 0.

So we have:

EAk+1 + 2
µ

[f(xk)− f(x∗)] = ρk

[
Ak + 2

µ
f(xk−1)− f(x∗)

]
+ 4η2

kG
2.

Based on the form of this equation, we have a Laypunov function

Bk+1 = Ak+1 + 2
µ

[f(xk)− f(x∗)] ,

then:
EBk+1 ≤ ρkBk + 4η2

kG
2,

with ρk descent plus noise. To finish the proof, we multiply by k(k + 1) and simplify the last term:

(k + 1) kE[Bk+1] ≤ k (k − 1)Bk + 4
µ2G

2.



D E F A Z I O G O W E R

We now telescope from k = 1 to n, using the law of total expectation:

(n+ 1)nE[Bn+1] ≤ 4n
µ2G

2,

∴ E [f(xn)− f(x∗)] ≤
2G2

µ(n+ 1) .

Appendix D. Accelerated Method

Consider the following iterate averaging form of Nesterov’s method

yk = (1− ck+1)xk + ck+1zk,

zk+1 = zk − ρk∇f(yk),
xk+1 = (1− ck+1)xk + ck+1zk+1. (49)

with z0 = x0. Note the following two key relations, that can be derived by rearranging the above
relations

zk = yk −
( 1
ck+1

− 1
)

(xk − yk) , (50)

and
xk+1 − yk = ck+1 (zk+1 − zk) . (51)

Lemma 3 Let f(x, ξ) be L–smooth and convex. If we set ck+1 = 2/(k+ 2) and ρk = (k+ 1)/(γL)
then the iterates of iterate averaging form of Nesterov’s method (49) satisfy

−f(yk) ≤ −f(xk+1)− 2L
(

γ

(k + 1)2
− 1

(k + 2)2

)
‖zk+1 − zk‖2 .

Proof We start with the Lipschitz smoothness upper bound:

f(xk+1) ≤ f(yk) + 〈∇f(yk), xk+1 − yk〉+ L

2 ‖xk+1 − yk‖2 ,

∴ −f(yk) ≤ −f(xk+1) + 〈∇f(yk), xk+1 − yk〉+ L

2 ‖xk+1 − yk‖2 .

Using (51) and∇f(yk) = −Lγ/(k + 1) (zk+1 − zk) in the above gives

f(yk) ≤ −f(xk+1)− Lγ

α (k + 1) 〈(zk+1 − zk) , ck+1 (zk+1 − zk)〉+ L

2 ‖ck+1 (zk+1 − zk)‖2 .

Note that c2
k+1 = 4

(k+2)2 so:

−f(yk) ≤ −f(xk+1)− L

k + 1
2

(k + 2) ‖zk+1 − zk‖2 + L

2
4

(k + 2)2 ‖zk+1 − zk‖2 .

Grouping terms gives the lemma.
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P R O O F O F T H E O R E M 4

Theorem 12 Let f(x, ξ) be L–smooth and convex. Let xk be given by the iterate averaging form of
Nesterov’s method (49). If we set ck+1 = 2/(k + 2) and ρk = (k + 1)/(γL) with γ = 2 then

f(xn)− f(x∗) ≤
2L
n2
‖x0 − x∗‖2 . (52)

Proof We start by expanding the distance to solution term:

‖zk+1 − x∗‖2 = ‖zk − x∗ − (zk − zk+1)‖2

= ‖zk − x∗‖2 − 2(k + 1) 1
γL
〈∇f(yk), zk − x∗〉+ ‖zk+1 − zk‖2 .

Simplifying the inner product term:

−2(k + 1) 1
γL
〈∇f(yk), zk − x∗〉

(50)= −2(k + 1) 1
γL

〈
∇f(yk), yk −

( 1
ck+1

− 1
)

(xk − yk)− x∗
〉

= −2(k + 1) 1
γL
〈∇f(yk), yk − x∗〉

− 2(k + 1) 1
γL

( 1
ck+1

− 1
)
〈∇f(yk), yk − xk〉 .

Then we apply the inequalities:

−〈∇f (yk) , yk − x∗〉 ≤ f(x∗)− f(yk),

−〈∇f (yk) , yk − xk〉 ≤ f(xk)− f(yk).

So we have

‖zk+1 − x∗‖2 ≤ ‖zk − x∗‖2 + ‖zk+1 − zk‖2

− 2(k + 1) 1
γL

[f(yk)− f(x∗)] + 2(k + 1) 1
γL

( 1
ck+1

− 1
)

[f(xk)− f(yk)] .

Now rearranging the function value terms and using that ck+1 = 2
k+2 gives

‖zk+1 − x∗‖2 ≤ ‖zk − x∗‖2 + ‖zk+1 − zk‖2

− (k + 1)2 1
γL

[f(yk)− f(x∗)] + (k + 1)2 1
γL

( 1
ck+1

− 1
)

[f(xk)− f(x∗)] .

Now we use Lemma 3 on −f(yk) gives

−(k + 1)2 1
γL

f(yk) ≤ −(k + 1)2 1
γL

f(xk+1)− 2
(

1− (k + 1)
γ(k + 2)

)
‖zk+1 − zk‖2 ,

which combined with the preceding result gives

‖zk+1 − x∗‖2 ≤ ‖zk − x∗‖2 +
(

1− 2
(

1− k + 1
γ(k + 2)

))
‖zk+1 − zk‖2

− (k + 1)2 1
γL

[f(xk+1)− f(x∗)] + (k + 1)2 1
γL

( 1
ck+1

− 1
)

[f(xk)− f(x∗)] .
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When γ = 2 then −2
(
1− k+1

γ(k+2)

)
≤ −1 so

‖zk+1 − x∗‖2 +(k + 1)2 1
γL

[f(xk+1)− f(x∗)]

≤ ‖zk − x∗‖2 + (k + 1)2 1
γL

( 1
ck+1

− 1
)

[f(xk)− f(x∗)] .

Now we apply Lemma 1 to give a telescopable sum:

‖zk+1 − x∗‖2 + (k + 1)2 1
γL

[f(xk+1)− f(x∗)] ≤ ‖zk − x∗‖2 + k2 1
γL

[f(xk)− f(x∗)] .

After telescoping:

f(xn)− f(x∗) ≤
2L
n2
‖x0 − x∗‖2 .

Appendix E. SVRGM

Lemma 4 (Johnson and Zhang, 2013) The following bound holds for gst at each step:

E ‖gst ‖
2 ≤ 4L [f (xst )− f (x∗)] + 4L

[
f
(
x̃s−1

)
− f (x∗)

]
.

E.1. Proof of Theorem 5 (Convex Case)

Theorem 13 At the end of epoch S, when using r = 1/2 factorial power momentum given by

ct = 1/2 + 1
t+ 1/2 + 1 ,

and step-size η = 1
6L , the expected function value is bounded by:

E
[
f(xSms−1)− f(x∗)

]
≤ 1

2S [f (x0)− f (x∗)] + 9L ‖x0 − x∗‖2

2Sm0
.

Proof We start in the same fashion as for non-variance reduced momentum methods:

E
∥∥zst+1 − x∗

∥∥2 = E ‖zst − ηgst − x∗‖
2

= ‖zst − x∗‖
2 − 2η 〈∇f(xst ), zst − x∗〉+ η2E ‖gst ‖

2

= ‖zst − x∗‖
2 − 2ηt

〈
∇f(xst ), xst −

( 1
ct
− 1

) (
xst−1 − xst

)
− x∗

〉
+ η2E ‖gst ‖

2

= ‖zst − x∗‖
2 + η2E ‖gst ‖

2

− 2η 〈∇f(xst ), xst − x∗〉 − 2η
( 1
ct
− 1

) 〈
∇f(xst ), xst − xst−1

〉
.
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Using the following two convexity inequalities

〈∇f (xst ) , x∗ − xst 〉 ≤ f(x∗)− f(xst ),〈
∇f (xst ) , xst−1 − xst

〉
≤ f(xst−1)− f(xst ),

combined with (1/ct − 1) ≥ 0 gives

E
∥∥zst+1 − x∗

∥∥2 ≤ ‖zst − z∗‖
2 + η2E ‖gst ‖

2

− 2η [f(xst )− f(x∗)]− 2η
( 1
ct
− 1

) [
f(xst )− f(xst−1)

]
.

Now rearranging further:

E
∥∥zst+1 − x∗

∥∥2 ≤ ‖zst − z∗‖
2 + η2E ‖gst ‖

2

− 2η 1
ct

[f(xst )− f(x∗)] + 2η
( 1
ct
− 1

) [
f(xst−1)− f(x∗)

]
.

Now using Lemma 4:

E
∥∥zst+1 − x∗

∥∥2 ≤ ‖zst − z∗‖
2 + 4Lη2

[
f
(
x̃s−1

)
− f (x∗)

]
− 2η

( 1
ct
− 2ηL

)
[f(xst )− f(x∗)] + 2η

( 1
ct
− 1

) [
f(xst−1)− f(x∗)

]
.

Now for the purposes of telescoping, define λt = p(t+ 1), we want to choose p > 0 such that

1
ct
− 2ηL = p(t+ 1) and

1
ct
− 1 = pt.

These equations are satisfied for p = 1− 2Lη = 2
3 , when η = 1

6L and

ct = 1
pt+ 1 = 1/2 + 1

t+ 1/2 + 1 .

This corresponds to r = 1/2 factorial power momentum. So we have:

E
∥∥zst+1 − x∗

∥∥2 ≤ ‖zst − z∗‖
2 + 1

9L
[
f
(
x̃s−1

)
− f (x∗)

]
− 2

9L(t+ 1) [f(xst )− f(x∗)] + 2
9Lt

[
f(xst−1)− f(x∗)

]
.

We now telescope from t = 0 to t = ms − 1, using the law of total expectation (i.e. E [E [X|Y ]] =
E[X]), so that this expectation is unconditional:

E
∥∥zsms−1 − x∗

∥∥2 ≤ ‖zs0 − z∗‖
2 + ms

9L
[
f
(
x̃s−1

)
− f (x∗)

]
− 2ms

9L [f(xst )− f(x∗)] .

Which we can write as:

9L
2ms

E
∥∥zsms−1 − x∗

∥∥2 + [f(xst )− f(x∗)] ≤
9L

2ms
‖zs0 − z∗‖

2 + 1
2
[
f
(
x̃s−1

)
− f (x∗)

]
.
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Noting that the choice zs0 = zs−1
ms−1−1 and ms = 2ms−1 gives:

‖zs0 − x∗‖
2

ms
= 1

2

∥∥∥zs−1
ms−1−1 − x∗

∥∥∥2

ms−1
.

So we may form the Lyapunov function:

Bs = 9L
2ms

E
∥∥zsms−1 − x∗

∥∥2 + [f(xst )− f(x∗)] ,

which gives the simple relation:

E [Bs] ≤ 1
2E
[
Bs−1

]
.

So after S epochs we have:
E [Bs] ≤ 2−SB0.

and so:

E
[
f(xSms−1)− f(x∗)

]
≤ 1

2S [f (x0)− f (x∗)] + 9L ‖x0 − x∗‖2

2Sm0
.

E.2. Proof of Theorem 6 (Strongly Convex Case)

Theorem 14 When each fi is strongly convex with constant µ, we may use m, c, η constants that
don’t depend on the step. In particular, after epoch s, when m = 6κ and c = 5

3
1

4κ+1 , and η =
1/(10L):

E [Bs] ≤ 6
10B

s−1,

where:
Bs = E [f(x̃s)− f(x∗)] + 3

4µ
∥∥xsms

− x∗ + λ
(
xsms
− xsms−1

)∥∥2
.

Proof We can use the same proof technique as we applied in the non-variance reduced case to
deduce the following 1-step bound:

EAst+1 ≤ (1− ρ− µν) ‖xst − x∗‖
2 + ρAt + 4Lν2

[
f(x̃s−1)− f(x∗)

]
− 2ν (1 + ρλ− 2Lν) [f(xst )− f(x∗)] + 2ρλν

[
f(xst−1)− f(x∗)

]
.

Where

ρ = (λ+ 1)β
λ

and ν = (λ+ 1)α.

We need 1− ρ− µν ≤ 0, which suggests for step-sizes of the form ν = 1/ (qL) ,

ρ = 1− µν = 1− 1
qκ
.

Now in order to see a ρ decrease in function value each step, we will require:

−2ν (1 + ρλ− 2Lν) ≤ −2λν,
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so solving at equality gives
1 + ρλ− 2Lν = λ,

∴ 1− 2Lν = (1− ρ)λ,

λ = 1− 2/q
1/qκ = (q − 2)κ.

This gives:

2λν = 2 (q − 2)κ 1
qL

= 2
µ

(
1− 2

q

)
.

Making these substitutions, our one-step bound can be written as:

EAst+1 + 2
µ

(
1− 2

q

)
[f(xst )− f(x∗)] ≤ ρAst + ρ

2
µ

(
1− 2

q

) [
f(xst−1)− f(x∗)

]
+ 4
q2L

[
f(x̃s−1)− f(x∗)

]
.

We can now telescope using the sum of a geometric series
∑k−1
i=0 ρ

i = 1−ρk

1−ρ and the law of total
expectation to give:

EAsm+1 + 2
µ

(
1− 2

q

)
[f(xsm)− f(x∗)] ≤ ρmAs0 + ρm

2
µ

(
1− 2

q

) [
f(x̃s−1)− f(x∗)

]
+ 1− ρm

1− ρ
4
q2L

[
f(x̃s−1)− f(x∗)

]
.

These expectations are now unconditional. Now multiplying by µ/2, simplifying with 1− ρ = 1
qκ

gives:

µ

2EA
s
m+1+

(
1− 2

q

)
[f(xsm)− f(x∗)] ≤ ρm

µ

2A
s
0+
(
ρm
(

1− 2
q

)
+ 2
q

(1− ρm)
) [
f(x̃s−1)− f(x∗)

]
.

Dividing by
(
1− 2

q

)
:

µ

2
q

q − 2EA
s
m+1+[f(xsm)− f(x∗)] ≤ ρm

µ

2
q

q − 2A
s
0+
(
ρm + 2

q − 2 (1− ρm)
) [
f(x̃s−1)− f(x∗)

]
Now we can try q = 6 for instance, giving

ρm + 2
q − 2 (1− ρm) = ρm + 1

2 (1− ρm) = 1
2ρ

m + 1
2 .

Then if we use m = 6κ we get ρm ≤ exp(−1) ≤ 2/5 for m = 6 to give:

3
4µEA

s
m+1 + [f(xsm)− f(x∗)] ≤

6
10

[3
4µA

s
0 +

[
f(x̃s−1)− f(x∗)

]]
.
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Then we may determine the momentum and step-size constants α, β :

β = λ

λ+ 1ρ = (6− 2)κ
(6− 2)κ+ 1

(
1− 1

6κ

)
= 4κ

4κ+ 1

(6κ− 1
6κ

)
= 2

3
6κ− 1
4κ+ 1

= 4κ− 2/3
4κ+ 1

= 1− 5/3
4κ+ 1 .

and
α = ν

λ+ 1 = 1
6L

1
4κ+ 1 .

To write in iterate averaging form, we have β = 1− c and

c = 5
3

1
4κ+ 1 ,

from αk = ηc we get for η that

η =
1

6L
1

4κ+1
5
3

1
4κ+1

= 1
10L.

Appendix F. Dual averaging

First we provide a convergence theorem for the dual averaging method that does not use factorial
powers to set the β̂k parameters.

Theorem 15 Let

δn = max
x,‖x‖≤R

{
n∑
i=0
〈∇f (xi) , xi − x〉

}
.

Consider the Dual Averaging method

sk+1 = sk +∇f (xk) ,

xk+1 = arg min
x

{
〈sk+1, x〉+ β̂k+1

γ

2 ‖x− x0‖2
}
, (53)

where the sequence β̂k is defined recursively by

β̂0 = β̂1 = 1, and β̂k+1 = β̂k+1 + 1/β̂k+1. (54)

If γ = G√
2R then

1
k + 1δk+1 ≤

 √
2(

1 +
√

3
) 1

(k + 1) + 2√
k + 1

RG.
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Proof Nesterov (2009) establishes the following bound:

δk ≤ γβ̂k+1R
2 + 1

2G
2 1
γ

k∑
i=0

1
β̂i
.

The β̂i sequence given in Nesterov (2009) satisfies
∑k
i=0

1
β̂i

= β̂k+1 and β̂k+1 ≤ 1
1+
√

3 +
√

2k + 1
so we have:

δk ≤
(
γR2 + 1

2G
2 1
γ

)( 1
1 +
√

3
+
√

2k + 1
)
.

The optimal step-size is γ = G√
2R So:

δk ≤
( 1√

2
RG+ 1√

2
RG

)( 1
1 +
√

3
+
√

2k + 1
)

δk ≤ RG
( √

2
1 +
√

3
+
√

4k + 2
)
.

Using the concavity of the square-root function:

√
4k + 2 ≤

√
4k + 4 + 1

2
4k + 2− 4k − 4√

4k + 4

=
√

4k + 4− −1√
4k + 4

.

We need to normalize this quantity by 1/(k + 1), so we have:
√

4k + 2
k + 1 ≤

√
4k + 4
k + 1 − 1

2 (k + 1)3/2

≤ 2√
k + 1

.

Therefore the bound on the normalization of δ is:

1
k + 1δk+1 ≤

 √
2(

1 +
√

3
) 1

(k + 1) + 2√
k + 1

RG.
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