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Abstract

Structured output classifiers based on the framework of Markov Networks provide a trans-
parent way to model statistical dependencies between output labels. The Markov Network
(MN) classifier can be efficiently learned by the maximum margin method, which however
requires expensive completely annotated examples. We extend the maximum margin al-
gorithm for learning of unrestricted MN classifiers from examples with partially missing
annotation of labels. The proposed algorithm translates learning into minimization of a
novel loss function which is convex, has a clear connection with the supervised margin-
rescaling loss, and can be efficiently optimized by first-order methods. We demonstrate
the efficacy of the proposed algorithm on a challenging structured output classification
problem where it beats deep neural network models trained from a much higher number of
completely annotated examples, while the proposed method used only partial annotations.

Keywords: Markov networks, missing labels, structured output classification, learning

1. Introduction

The structured output (SO) classification deals with the prediction of a set of statistically
interdependent labels. A transparent way to model the dependencies provides the frame-
work of Markov Networks. In this paper, we tackle the learning of a SO classifier, further
referred to as the Markov Network (MN) classifier, capturing the dependencies between
pairs of labels. Formally, the MN classifier is defined as follows. Let (V, E) be an undirected
graph, where V is a finite set of objects and E ⊆

(V
2

)
is a set of interacting object pairs.

Let x ∈ X be an observation and y = (yv ∈ Y | v ∈ V) a tuple of labels assigned to objects.
The labels are from a finite set Y. For example, in the case of image segmentation x is
an image, V are pixels, y contains the pixel labels, and E defines the pixel neighborhood.
Match between the observation x and a label yv ∈ Y assigned to object v ∈ V is scored by
a function fv : X × Y → R. Match between labels (yv, yv′) assigned to interacting objects
{v, v′} ∈ E is scored by a function fvv′ : Y × Y → R. Given an observation x ∈ X , the MN
classifier h : X → YV outputs labelling y ∈ YV with the maximal total score

h(x) ∈ Argmax
y∈YV

[∑
v∈V

fv(x, yv) +
∑

{v,v′}∈E

fvv′(yv, yv′)
]
. (1)

Evaluation of the MN classifier (1) requires solving a discrete optimization task, so-called
max-sum problem. In general, the max-sum problem is an NP-hard but there are sub-
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classes which can be solved efficiently. For example, when the graph (V, E) is a tree, the
max-sum problem can be solved by dynamic programming, when the pair-wise functions
fvv′ , {v, v} ∈ E , are supermodular, it can be solved by max-flow algorithm, or one can
resort to approximate solution by linear programming (LP) relaxation (Werner, 2007). The
choice of the graph (V, E) and the class of score functions (fv, fvv′) offers a powerful way to
encode the prior knowledge about the prediction problem. The particular score functions
from the chosen class are then learned from examples.

The linearly parametrized score functions can be learned by a family of methods further
denoted as Maximum Margin Markov Network (M3N) algorithms (Taskar et al., 2004a,b;
Tsochantaridis et al., 2005; Franc and Savchynskyy, 2008). The M3N algorithms translate
learning into a convex optimization problem. The M3N algorithms require a training set
of completely annotated examples Dxy = {(xi,yi) ∈ X × YV | i = 1, . . . ,m}. The require-
ment of the complete annotation constitutes a significant limitation because gathering the
annotation manually is expensive.

This paper tackles the learning of MN classifiers from partially annotated examples
Dxa = {(xi,ai) ∈ X ×AV | i = 1, . . . ,m} where A = {Y ∪ {?}} denotes a set of admissible
annotations. Given the annotation ai = (aiv ∈ A | v ∈ V) of the i-th training input xi ∈ X ,
the label of the object v ∈ V is either known, aiv ∈ Y, or missing, aiv =?, meaning that all
labels are possible. It has been shown by Antoniuk and Franc (2015) that a statistically
consistent algorithm, learning SO classifiers from partially annotated examples Dxa, can
be based on the minimization of a partial loss which counts errors only on the annotated
objects. The minimization of the partial loss is at the core of many methods learning SO
classifiers from the partial annotations (Chuong et al., 2008; Fernandes and Brefeld, 2011;
Lou and Hamprecht, 2012; Yu et al., 2014). The existing methods replace the discrete
partial loss by a proxy, e.g., by the ramp loss and its modifications, which is more amenable
to optimization. To our knowledge, all existing proxies are however nonconvex and the
existing solvers are local optimization methods prone to get stuck in local optima. Besides
this, the minimization of nonconvex proxies is computationally demanding and not tractable
for MN classifier unless its structure is restricted, e.g., to tree graphs (V, E). We resolve this
problem by proposing a novel proxy of the partial loss which is i) convex, ii) theoretically
grounded, iii) tractable for unrestricted MN classifier, and iv) it can be efficiently optimized
by simple first-order methods like stochastic gradient algorithm.

The deep neural architectures have been successfully applied to a large number of pre-
diction problems including SO classification. However, deep learning has its limits: it is
data hungry and it produces hard to interpret black-box models. Besides, canonical deep ar-
chitectures fail in some problems, e.g., learning simple arithmetic operations (Trask et al.,
2018), learning functions on binary chains like even/odd parity (Shalev-Shwartz et al.,
2017), or, most related to this paper, in SO classification with complex interactions be-
tween labels. An example of such challenging problem is prediction of the solution of the
Sudoku puzzle (Wang et al., 2019). The weaknesses and strengths of deep learning and
interpretable models, like the Markov Markov networks, are complementary. Therefore,
many current works integrate the advantages of deep networks and interpretable models
like Markov Networks (Chen et al., 2015; Schwing and Urtasun, 2015; Zheng et al., 2015),
MAXSAT framework (Wang et al., 2019), relational reasoning models (Palm et al., 2018),
or first-order logic rules (Yang et al., 2017). To our knowledge, all existing methods, how-
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ever, require a training set of completely annotated examples. The method proposed in this
paper allows the learning of complex structured models from cheaper partial annotations
and it can be seamlessly combined with neural networks. Contributions of this paper:

1. We propose a convex loss for learning the MN classifiers (1) from partially annotated
examples Dxa. The loss can be efficiently optimized by simple first-order methods.
The loss minimization is tractable even in case of an unrestricted MN classifiers with
an arbitrary neighbourhood (V, E) and unrestricted class of score functions (fv, fvv′).

2. We provide a theoretical justification of the proposed loss function. We prove that
asymptoticaly the value of proposed loss equals to the value of standard supervised
margin-rescaling loss.

3. We demonstrate experimentally the efficacy of the proposed method on challenging
problem of learning the Sudoku solver. Our approach significantly outperforms the
deep neural networks on both Sudoku with symbolic and visual input.

2. Existing methods

In section 2.1, we outline the supervised M3N algorithm. In section 2.2, we describe a
known formulation of learning from partially annotated examples and describe the issues
of existing nonconvex loss functions.

2.1. Supervised Maximum Margin Markov Networks

Let us assume that the score functions defining the MN classifier (1) are linear in parameters,
i.e. fv(x, y) = 〈w,ψ(x, y)〉, v ∈ V, and fvv′(yv, yv′) = 〈w,ψ(yv, yv′)〉, {v, v′} ∈ E , where
ψv : X × Y → Rd, v ∈ V, and ψvv′ : Y × Y → Rd, {v, v′} ∈ E , are fixed feature maps and
w ∈ Rd is a parameter vector to learn. The MN classifier is then an instance of a linear
classifier h : X × Rd → YV defined as

h(x,w) ∈ Argmax
y∈YV

〈w,ψ(x,y)〉 (2)

where ψ : X × YV → Rd is the joint input-output feature map defined as

ψ(x,y) =
∑
v∈V

ψv(x, yv) +
∑

{v,v′}∈E

ψvv′(yv, yv′) . (3)

Let p(x,y) be a distribution over X × YV , let ` : YV × YV → R+ be a target loss and
R`(h, p) = Ex,y∼p`(y,h(x,w)) the `-risk measuring the performance of h on p(x,y). Let
Dxy = {(xi,yi) ∈ (X × YV) | i = 1, . . . ,m} be a training set of completely annotated
examples drawn from i.i.d. random variables distributed according to p(x,y). The goal
of supervised learning is to use Dxy to infer w such that the `-risk R`(h, p) is close to the
Bayes `-risk R`

∗(p) = infh : X→YV R`(h, p).
The M3N-based algorithm casts learning of w from Dxy as a convex problem

w∗ = argmin
w∈Rn

[λ
2
‖w‖2 +

1

m

m∑
i=1

∆(xi,yi,w)
]

(4)
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where ∆: YV × YV × Rd → R+ is the margin-rescaling loss defined as

∆(x,y,w) = max
y′∈YV

[
`(y,y′) + 〈w,ψ(x,y′)〉

]
− 〈w,ψ(x,y)〉 , (5)

where λ ≥ 0 is a regularization constant. In the case of the additive loss (8), the loss-
augmented classification (LAC) problem in (5), i.e. the maximization task, becomes an
instance of the max-sum problem and it can be efficiently solved by dynamic programming
when (V, E) is a tree, otherwise, the LAC can be replaced by its linear programming upper
bound (Taskar et al., 2004a,b; Tsochantaridis et al., 2005; Franc and Savchynskyy, 2008).
In both cases, the loss is convex in the parameters and it can be evaluated together with
its subgradient in time polynomial in size of (V, E) and Y.

2.2. Learning from partially annotated examples

Let Dxa = {(xi,ai) ∈ X × AV | i = 1, . . . ,m} be a set of partially annotated training
examples drawn from i.i.d. random variables with the distribution

p′′(x,a) =
∑
y∈YV

p(x,y,a) (6)

where A = {Y ∪ {?}} denotes a set of admissible annotations of an object v ∈ V and
p(x,y,a) is a distribution over X ×YV×AV . The distribution p′(x,y) defined over X ×YV
is obtained from p(x,y,a) by marginalization w.r.t annotations AV , i.e.,

p′(x,y) =
∑
a∈AV

p(x,y,a) . (7)

The goal of learning is to use Dxa to infer w which has the `-risk R`(h, p′) close to the
Bayes `-risk R`

∗(p
′). Note that the goals of supervised learning and learning from partially

annotated examples are the same, however, the training sets are different.
A statistically consistent approach to minimize the `-risk by minimizing a partial loss

`p : AV × YV → R+ on Dxa was described in Antoniuk and Franc (2015). The approach
requires two assumptions. First, the target loss ` : YV × YV → R is additive, i.e.,

`(y,y′) =
∑
v∈V

`v(yv, y
′
v) , (8)

where `v : Y ×Y → R+, v ∈ V, are arbitrary loss functions such that `v(y, y′) = 0 iff y = y′.
An example of the additive loss is the Hamming loss `(y,y′) =

∑
v∈V [[yv 6= y′v]]. Second,

the labels are missing at random (MAR), meaning that the annotation process p(a | x,y)
defining the distribution p(x,y,a) = p(a | x,y)p(x,y) satisfies

p(a | x,y) =
∑

z∈{0,1}V
p(z | x)

∏
v∈V

[[av = α(yv, zv)]] , (9)

where α(yv, zv) = yv if zv = 1, α(yv, zv) =? if zv = 0, and p(z | x), x ∈ X , are conditional
distributions over z ∈ {0, 1}V such that marginals p(zv = 1 | x) > 0, ∀v ∈ V1. The MAR

1. We distinguish the distributions by their arguments, i.e., p(zv | x) and p(zv′ | x) are different marginal
distributions provided v 6= v′.
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process means that the examples Dxa are generated as follows. The nature generates (x,y)
from p(x,y). The annotator decides objects to label based on observing the input x. His
decision is stochastic, represented by a binary vector z ∈ {0, 1}V generated from p(z | x).
The annotator reveals the labels of the objects Vlab = {v ∈ V | zv = 1}, i.e. he sets av = yv,
v ∈ Vlab, while labels of the remaining objects are not provided, i.e. av =?, v ∈ V \ Vlab.

Under the two assumptions, the original task of minimizing the `-risk can be replaced
by an equivalent auxiliary task of minimizing `p-risk defined as follows. Given a target
additive loss `, an associated partial loss `p : AV × YV → R+ counts penalty only on the
annotated objects, i.e.,

`p(a,y) =
∑
v∈V

[[ay 6=?]]`v(av, yv) , (10)

The auxiliary task is then to find h with the `p-risk R`p(h, p′′) = Ex,a∼p′′`
p(a,h(x,w)) close

to the Bayes `p-risk R`p
∗ (p′′) = infh : X→YV R`p(h, p′′). Equivalence between the original task,

i.e., minimization of `-risk, and the auxiliary task, i.e., minimization of `p-risk, was shown
in Antoniuk and Franc (2015). Namely, for all sequences of classifiers hm : X → YV it

holds that R`p(hm, p
′′)

P→ R`p
∗ (p′′) implies R`(hm, p

′)
P→ R`

∗(p
′). Minimization of `p-loss

was implemented in many algorithms learning from partially annotated examples Txa like,
e.g., Chuong et al. (2008); Sarawagi and Gupta (2008); Vedaldi and Zisserman (2009); Yu
and Joachims (2009); Wang and Mori (2010); Girshick et al. (2011); Fernandes and Brefeld
(2011); Lou and Hamprecht (2012); Yu et al. (2014). A direct minimization of `p-loss is
however difficult. Therefore, the existing approaches minimize a proxy of the form

∆p
NON−CVX(x,a,w) = max

y∈UP

[
`p(a,y) + 〈w,ψ(x,y)〉

]
− max

y∈UR
〈w,ψ(x,y)〉 , (11)

where the label set UP ⊆ YV is so called penalty space and UR ⊆ YV is a reward space.
For example, for UR = UP = YV the loss ∆p

NON−CVX(x,a,w) becomes the Ramp-loss most
frequently used in literature. Application of this approach to learning the parameters of
the MN classifier (2) leads to a nonconvex problem

w∗ ∈ Argmin
w∈Rn

[λ
2
‖w‖2 +

1

m

m∑
i=1

∆p
NON−CVX(xi,ai,w)

]
. (12)

A standard method to solve (12) is the convex-concave procedure (CCCP) (Yuille and
Rangarajan, 2003) which, however, has three serious issues. First, the CCCP finds a local
optimum, the quality of which depends on the initialization and is strongly variable. Second,
the CCCP algorithm is computationally demanding as it alternates the prediction of all
training examples and supervised learning until convergence. Third, the concave term
in (11) cannot be approximated by LP relaxation, in turn, the approach is not tractable for
unrestricted MN classifiers, and, for this reason, it has been used so far only for learning
tree based MN classifiers (Lou and Hamprecht, 2012).

3. Proposed method

In section 3.1, we propose the partial margin-rescaling loss as a novel convex proxy of `p-loss.
The partial margin-rescaling loss requires knowledge of the marginals of the missingness
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process p(z | x), the estimation of which is discussed in section 3.2. Finally, in section 3.3,
we propose a linear programming relaxation of the partial margin-rescaling loss whose
minimization is tractable even for unrestricted MN classifiers.

3.1. Partial margin-rescaling loss

To sum up, the missing label scenario described in the previous section considers data
(x,y,a) generated from p(x,y,a), however, we have access only to a sample of the partially
annotated examples Dxa = {(xi,ai) ∈ X × AV | i = 1, . . . ,m}. The goal is to learn
parameters w of the MN classifier (2) by minimizing the partial loss `p-loss (10) on Dxa.
In this section, we derive a convex proxy of the `p-loss by extending the margin-rescaling
loss (5) to the setting with missing labels generated by MAR process (9).

A straightforward plugging of `p-loss into the margin-rescaling loss (5) yields

∆p
∗(x,y,a,w) = max

y′∈YV

[
`p(a,y′) + 〈w,ψ(x,y′)〉 − 〈w,ψ(x,y)〉

]
. (13)

The value of ∆p
∗(x,y,a,w) is zero when the score of the correct labelling y is greater

than the score of any the incorrect labelling y′ extended by the value of `p(a,y′). It
is easy to see that ∆p

∗(x,y,a,w) upper bounds the partial loss `p(a, h(x,w)), that is,
∆p
∗(x,y,a,w) ≥ `p(a,h(x,w)) holds for all (x,y,a,w) ∈ X × YV ×AV × Rd. The proxy

∆p
∗(x,y,a,w) has clear relation to the `p-loss, however, it requires the complete labeling y,

not available in the partially annotated examples Dxa. We propose to replace ∆p
∗(x,y,a,w)

by a proxy ∆p : X ×AV × Rd → R, named partial margin-rescaling loss, and defined as

∆p(x,a,w) = max
y′∈YV

[
`p(a,y′) + 〈w,ψ(x,y′)〉 − 〈w,ψp(x,a)〉

]
, (14)

where ψp : X ×AV → Rd is the input-annotation feature map defined as

ψp(x,a) =
∑
v∈V

[[av 6=?]]

p(zv = 1 | x)
ψv(x, yv) +

∑
v,v′∈E

[[av 6=? ∧ av′ 6=?]]

p(zv = 1, zv′ = 1 | x)
ψvv′(yv, yv′) . (15)

The partial margin-rescaling loss ∆p(x,a,w) can be evaluated on the partially annotated
examples (x,a) ∈ Dxa and it is convex in the parameters w. The loss requires knowledge
of marginals p(zv = 1 | x) and p(zv = 1, zv′ = 1 | x) of the missing label process p(z | x).
The marginals can be easily estimated by maximum-likelihood method from the partially
annotated examples Dxa as discussed in Section 3.2.

The partial margin-rescaling loss ∆p(x,a,w) is obtained from ∆p
∗(x,y,a,w) by re-

placing the correct labelling score 〈w,ψ(x,y)〉, which cannot be computed, by the score
〈w,ψp(x,a)〉 which can be computed. This replacement is justified by the fact that the
expectation of both scores equals as stated by the following theorem.

Theorem 1 Let ψ : X × YV → Rd be the input-output feature map defined by (3) and
ψp : X × AV → Rd the input-annotation feature map defined by (15). Let both ψ and ψp

be constructed from the same set of ψv : X × Y → Rd, v ∈ V, and ψvv′ : Y × Y → Rd,
{v, v′} ∈ E. Let p(x,y,a) = p(x,y)p(a | x,y) be a distribution over X × YV × AV such
that the annotation process p(a | x,y) satisfies (9). Then it holds that

Ea∼p(a|x)ψ
p(x,a) = Ey,a∼p(y,a|x)ψ(x,y) , ∀x ∈ X .
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The proof is in Appendix A. An immediate consequence of Theorem 1 is the following:

Corollary 2 Let ∆p
∗ : X × YV × AV × Rd → R+ be the loss defined by (13) and ∆p : X ×

AV × Rd → Rd the partial margin-rescaling loss defined by (14). Under the assumptions of
Theorem 1 it holds that

Ea∼p(a|x)∆
p(x,a,w) = Ey,a∼p(y,a|x)∆

p
∗(x,y,a,w) , ∀x ∈ X ,w ∈ Rd . (16)

Corollary 2 together with the law of large numbers guarantee that for the increasing number
of examples m, the sample averages of ∆p

∗(x,y,a,w) and ∆p(x,a,w) converge to the same
value. This justifies using ∆p(x,a,w), which can be evaluated on Dxa, as a replacement
for ∆p

∗(x,y,a,w), which cannot be evaluated but has a clear relation to `p-loss.
Having defined the ∆p-loss, we pose learning of the parametersw of the MN classifier (2)

from the partially annotated examples Dxa as unconstrained convex problem

w∗ = argmin
w∈Rn

[
λ

2
‖w‖2 +

1

m

m∑
i=1

∆p(xi,ai,w)

]
. (17)

The approach is further denoted as MIssing Label Maximum Margin Markov Network (MIL-
M3N) algorithm. The problem (17) can be solved by first-order methods, like stochastic
gradient or cutting plane methods. These methods require an oracle evaluating ∆p(x,a,w)

and its subgradient w.r.t w, which reads ∂∆p(x,a,w)
∂w = ψ(x, ŷ)−ψp(x,a), where

ŷ ∈ Argmax
y∈YV

[
`p(a,y) + 〈w,ψ(x,y)〉

]
= Argmax

y∈YV

[∑
v∈V

(
[[av 6=?]]`(av, yv) + 〈w,ψv(x, yv)〉

)
+

∑
{v,v′}∈E

〈w,ψ(yv, yv′)〉
]
.

(18)

The bottle neck is solving the loss-augmented classification (LAC) problem (18) which is an
instance of NP-hard max-sum problem. In section 3.3 we derive an algorithm completely
avoiding solving the LAC problem which is applicable to an unrestricted MN classifier.

3.2. Estimating the marginals

Evaluation of the partial margin-rescaling loss (14) requires the unary marginals p(zv |
x), v ∈ V, and pair-wise marginals p(zv, zv′ | x), {v, v′} ∈ E , of the distribution p(z |
x) describing the label missingness. The marginals can be estimated from the partially
annotated examples Dxa in a principled way via the maximum-likelihood method. Note
that the estimation of the marginals is considerably simpler compared to the estimation of
p(y | x) governing the optimal classifier. As an example, consider the so-called homogeneous
completely at random missingness, when

p(z | x) =
∏
v∈V

p(zv) = θt(1− θ)t (19)

where t =
∑

v∈V zv and θ ∈ [0, 1] is the probability that a randomly chosen part v ∈ V is
annotated. The ML estimate of the marginals based on Dxa is then

p̂(zv | x) = θ, v ∈ V,
p̂(zv, zv′ | x) = θ2, {v, v′} ∈ E , where θ =

1

m|V|

m∑
i=1

∑
v∈V

[[aiv 6=?]] . (20)

The estimated marginals are used in the input-annotation features ψp(x,a) defined by (15).
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3.3. LP relaxation of the partial margin-rescaling loss

As described in section 3.1, learning of the MN classifier by minimizing ∆p-loss is applica-
ble when the LAC problem (18) leads to a tractable max-sum problem. In this section we
replace the max-sum problem emerging in (18) by Schlesinger’s linear programming relax-
ation (Schlesinger, 1976; Werner, 2007). A similar idea was previously used in supervised
learning of MN classifier (Taskar et al., 2004a; Franc and Laskov, 2011). The LP relaxed
partial margin-rescaling loss remains convex and its minimization is tractable for an un-
restricted class of MN classifiers. The following derivation borrows the basic results and
terminology related to LP relaxation from Werner (2007).

The ∆p-loss defined by (14) can be written as

∆p(x,a,w) = max
y∈YV

f(x,y,a,w)− 〈w,ψp(x,a)〉 , (21)

where

f(x,y,a,w) =
∑
v∈V

(
[[av 6=?]]`v(av, yv) + 〈w,ψv(x, yv)〉

)
+

∑
{v,v′}∈E

〈w,ψvv′(yv, yv′)〉 .

The optimal value of the max-sum problem maxy∈YV f(x,y,a,w) can be approximated by
a linear program (LP). The optimal value of the LP always upper bounds the optimal value
of the max-sum problem and in some cases the bound is tight. We exploit the Lagrange
dual of the LP, because the inequality constraints of the dual have a simple form allowing
to formulate the upper bound of the max-sum problem as an unconstrained minimization
problem. In particular, the LP relaxation upper bound reads

max
y∈YV

f(x,a,y,w) ≤ min
ϕ∈R2|E||Y|

u(x,a,ϕ,w) , (22)

where ϕ ∈ R2|E||Y| is a vector representation of discrete functions (so called potentials or
messages) ϕvv′ : Y → R, {v, v′} ∈ E , ϕv′v : Y → R, {v, v′} ∈ E , and

u(x,a,ϕ,w) =
∑
v∈V

max
y∈Y

uv(x, y, av,ϕ,w) +
∑

v,v′∈E
max

y,y′∈Y2
uvv′(y, y

′,ϕ,w) ,

uv(x, av, y,ϕ,w) = [[a 6=?]]`v(av, y) + 〈w,ψv(x, y)〉 −
∑

v′∈N (v)

ϕvv′(y) ,

uvv′(y, y
′,ϕ,w) = 〈w,ψvv′(y, y

′)〉+ ϕvv′(y) + ϕv′v(y′) .

(23)

The LP-relaxation upper bound minϕ∈R2|E||Y| u(x,a,ϕ,w) is an unconstrained problem
which is convex both in the parameters to learn w, and the auxiliary parameters ϕ. Substi-
tuting the upper bound (22) to the formula for the partial margin-rescaling loss (21) yields
the LP-relaxed partial margin-rescaling loss

∆p
LP (x,a,w) = min

ϕ∈R2|E||Y|
u(x,a,ϕ,w)− 〈w,ψp(x,a)〉 .

By the inequality (22), it holds that ∆p(x,a,w) ≤ ∆p
LP (x,a,w) , ∀x ∈ X ,a ∈ AV ,w ∈ Rd

and the equality ∆p(x,a,w) = ∆p
LP (x,a,w) occurs when the LP-relaxation is tight. The

tight approximation is guaranteed, e.g., when the neighbourhood graph (V, E) is a tree or
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when pair-wise scores fvv′(y, y
′) = 〈ψv,v′(y, y

′),w〉, {v, v′} ∈ E , are super-modular. Besides,
the LP-relaxation is tight for a broader class of max-sum problems which, however, do not
have an explicit characterization.

Learning of the parameters w of the MN classifier from partially annotated examples
Dxa, further denoted as LP-MIL-M3N algorithm, leads to the following convex problem:

w∗ = argmin
w∈Rd

[
λ

2
‖w‖2 +

1

m

m∑
i=1

∆p
LP (xi,ai,w)

]
= argmin

w∈Rd

min
ϕ1∈R2|E||Y|

:

ϕm∈R2|E||Y|

[
λ

2
‖w‖2 +

1

m

m∑
i=1

(
u(xi,ai,ϕi,w)− 〈w,ψp(xi,ai)〉

)]
.

(24)

The optimization problem (24) as the following properties:

• The problem (24) has d + 2|E||Y|m variables, i.e., the number of variables grows
linearly with the number of parameters d, the number of examples m, the number of
labels |Y|, and the number of edges E .

• Besides the parameters w ∈ Rd to be learned, each training example has a vector of
auxiliary variables ϕi ∈ R2|E||Y|, used to make the prediction of that example by the
MN classifier a tractable problem. The auxiliary variables are not used after training.

• When the LP-relaxation is tight, i.e., ∆p(xi,ai,w) = ∆p
LP (xi,ai,w), i ∈ {1, . . . ,m},

the optimal solution of (24) coincides with the optimal solution of the problem (17)
which minimizes the (unrelaxed) ∆p-loss. As mentioned above, this happens for ex-
ample when (V, E) is a tree. In this sense, (24) subsumes (17) as a special case.

• The problem (24) can be reformulated as a convex quadratic program with d +
2|E||Y|m+ |E||V|m variables and m(|V||Y|+ |E||Y|2) inequality constraints. That is,
the number of constraints and variables is polynomial in the problem size. However,
this approach is efficient only for small problem instances.

For large problem instances, the problem (24) can be solved efficiently by simple to
implement stochastic gradient algorithms. To this end, we rewrite objective of (24) as

Q(w,ϕ1, . . . ,ϕm) =
1

m

m∑
i=1

Qi(w,ϕ
1, . . . ,ϕm)

where Qi(w,ϕ
1, . . . ,ϕm) =

λ

2
‖w‖2 + u(xi,ai,ϕi,w) − 〈w,ψp(xi,ai)〉 . The sub-gradient

of Qi w.r.t. w and ϕ1, . . . ,ϕm, then reads

∂Qi

∂w
= λw +

∑
v∈V

ψv(xi, ȳv) +
∑

{v,v′}∈E

ψvv′(¯̄yv, ¯̄yv′)−ψp(xi,ai)

∂Qi

∂ϕi
vv′(y)

= [[¯̄yv = y]]− [[ȳv = y]]

∂Qi

∂ϕi
v′v(y)

= [[¯̄yv′ = y]]− [[ȳv′ = y]]

 , {v, v′} ∈ E , y ∈ Y .
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∂Qi

∂ϕj
vv′(y)

=
∂Qi

∂ϕj
v′v(y)

= 0 , j ∈ {1, . . . ,m} \ {i}, {v, v′} ∈ E , y ∈ Y ,

where
ȳv ∈ argmax

y∈Y
uv(xi, aiv, y,ϕ

i) , v ∈ V ,

(¯̄yv, ¯̄yv′) ∈ argmax
(y,y′)∈Y2

uvv′(y, y
′,ϕi,w) , {v, v′} ∈ E .

Recall that uv(xi, aiv, y,ϕ
i) and uvv′(y, y

′,ϕi,w) are the reparametrized scores of the LAC
problem defined by (23). The gradient computation requires O(|V||Y|+|E||Y|2+d(|V|+|E|))
operations in total, i.e., it is polynomial in the main dimensions of the model. The stochastic
gradient method randomly samples i ∈ {1, . . . ,m}, computes the gradient of Qi w.r.t. w
and ϕ1, . . . ,ϕm and uses it to update the variables. The MN classifier can be used as the
last layer of a NN architecture. In this case, the features ψv(x, yv), v ∈ V, are not fixed,
but they are the outputs of a NN whose parameters are learned simultaneously with w.

4. Experiments

4.1. Synthetic data: Hidden Markov Chain

The input and output are sequences of symbols x = (x1, . . . , x100) ∈ {1, . . . , 30}100 and
y = (y1, . . . , y100) ∈ {1, . . . , 30}100 generated from the Hidden Markov Chain

p(x,y) = p(y1)
100∏
i=2

p(yi | yi−1)p(xi | yi) . (25)

We used the uniform state prior p(y1) = 1/30, the emission probability p(xi | yi) = 1/2 if
xi = yi and p(xi | yi) = 1/58 otherwise, and the transition probabilities p(yi | yi−1) = 1/2
if yi = yi−1 and p(yi | yi−1) = 1/10 otherwise. We generated the partial annotation
a ∈ ({1, . . . , 30}∪{?})100 using p(a | x) given by (9) and missingness process p(z | x) given
by (19). We used the probability of missing label θ ∈ {0, 0.1, 0.2, 0.5}.

We learned the MN classifier (2) by the proposed MIL-M3N algorithm solving (17) with
the BMRM (Teo et al., 2010). The graph (V, E) is a chain and the LAC problem is solved by
the dynamic programming. The feature maps ψv(x, y) = 1xv ,y, and ψvv′(y, y

′) = 1y,y′ , are
one-hot-encodings of the symbols (xv, y) and (y, y′), respectively. We use the normalized
Hamming loss `(y,y′) = 1

n

∑
v∈V [[yv 6= yv′ ]] as the target loss. We approximate the marginals

by (20). Note that for data Txa generated with θ = 0, i.e. no missing labels, the MIL-M3N
becomes equivalent to a standard supervised M3N algorithm. We used three baselines.
First, the Bayes optimal rule minimizing the Hamming loss hHAM (x) = (ŷ1, . . . , ŷn) where
ŷv ∈ argmaxyv∈Y p(yv | x), v ∈ V. Second, the Bayes optimal rule minimizing 0/1-loss
h0/1(x) ∈ argmaxy∈Yn p(y | x). The rules are derived from the generating distribution (25).
Third, the CCCP algorithm to learn the MN classifier by minimizing the Ramp-loss (12).

We trained the MN classifier onDxa with the number of examplesm ∈ {50, 100, . . . , 1000}.
The optimal regularization constant λ was selected from {0.1, 1, 10, 100} based on the Ham-
ming loss evaluated on 5, 000 validation examples. For the best λ, we report the training
partial error (i.e., the average of `p-loss) and the test error (i.e. average of `-loss) computed
on 10, 000 test examples. The experiment was repeated 5 times. Figure 1 shows the mean
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and standard deviation of the errors. The test error of the proposed MIL-M3N algorithm
approaches the test error of the fully supervised M3N algorithm as the number of training
examples increases. The performance gap is proportional to the portion of missing labels,
however, it always vanishes when the number of training examples is above 300. The profile
of the training partial error of MIL-M3N copies the error profile of the supervised M3N al-
gorithm decreased by a factor proportional to the number of missing labels not counted by
the `p-loss. The error of the CCCP is higher and does not decrease monotonically with the
number of training examples. The CCCP suffers from the non-convexity of the Ramp-loss.

MIL-M3N CCCP
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Figure 1: Results on the synthetic data generated from HMC (25). Test error and train-
ing partial error of MN classifier trained from examples with various amount of
missing labels shown as a function of the number of training examples. The left
and the right column show results of the proposed MIL-M3N algorithm and the
CCCP algorithm, respectively. The horizontal solid red line shows error of the
Bayes rule for Hamming loss and the dashed red line the Bayes rule for 0/1-loss.

4.2. Sudoku

The Sudoku puzzle is composed 9 × 9 cells V = {(i, j) ∈ N | 1 ≤ i ≤ 9 , 1 ≤ j ≤ 9}. Each
cell is either filled with a number from 1 to 9 or it is empty �. We represent the puzzle
assignment by x = (xv ∈ {�, 1, . . . , 9} | v ∈ V). The task is to fill the empty cells with a
number so that each row, each column, and each of non-verlapping 3× 3 sub-grids contain
all numbers from 1 to 9. We represent the puzzle solutions by y = (yv ∈ {1, . . . , 9} | v ∈ V).
We used Sudoku assignments and their correct solutions to generate a training set Dxa of
assignments and partial solutions. The partial solution was generated by MAR process (9)
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using p(zv = 1 | x) = 1 if xv ∈ {1, . . . , 9} and p(zv = 1 | x) = 1−τ if xv = �, where τ ∈ [0, 1]
is the probability of missing label for empty cell. This process corresponds to instructing
the annotator preparing Dxa, to copy the numbers of filled cells to the corresponding label
and to label 100(1 − τ) % of randomly chosen empty cells of the puzzle. Note that τ is
the portion of unlabeled empty cells, not the portion of all unlabeled objects like in the
previous experiment. The value of τ thus determines to what extent the puzzle is unsolved,
e.g. τ = 0.2 requires the annotator to label (and to solve) 80% of empty cells.

We used the proposed LP-MIL-M3N algorithm to train MN classifier (2) predicting the
Sudoku solution y from assignment x. The prior knowledge is encoded by revealing the
algorithm that cells in rows, in columns, and in 3×3 sub-grids are related, i.e., by setting E =
{{(v, v′), (u, u′)} | v = v′ ∨ v′ = u′ ∨ (dv/3e = du/3e ∧ dv′/3e = du′/3e)}. The feature maps
ψv(x, y) = 1xv ,y, and ψvv′(y, y

′) = 1y,y′ , are one-hot-encodings of the symbol pairs (xv, y)
and (y, y′), respectively. We use the normalized Hamming loss `(y,y′) = 1

n

∑
v∈V [[yv 6= yv′ ]]

as the target loss. We approximate the marginals by the same p(zv | x) which was used
for annotation, assuming that the annotator followed the instructions. The parameters w
of MN classifier were found by solving (24) with ADAM (Kingma and Ba, 2015). The
regularization was not used, i.e., λ = 0. We evaluated the MN classifier by Augmented
Directed Acyclic Graph solver (Schlesinger, 1976; Werner, 2007).

We trained from Dxa with varying number of examples m and the probability of missing
label for empty cells τ ∈ {0, 0.1, 0.2, 0.5}. We tested on 100 puzzles involving prediction
of 81 · 100 = 8, 100 labels. The test error is the portion of incorrectly predicted cells per
puzzle. The experiment was repeated 5 times. Figure 2(a) shows the mean and standard
deviation of the test error as a function of the number of training examples. It is seen
that the test error decreases with the number of training examples and with the portion of
missing labels. To obtain the perfect Sudoku solver with zero test error, it was enough to
train from 100 examples regardless the portion of missing labels. Figure 2(c)(d) show the
score functions of the MN classifier learned from 100 examples of half-solved Sudokus. The
scores nicely capture the rules of the game. Namely, the unary scores enforce the solver to
copy the input symbol to the label if the cell is filed, and the pair-wise scores enforce the
related cells to have different labels.

4.3. Visual Sudoku

We replaced the input symbols {1, . . . , 9} by 28 × 28 images of hand-written digits from
MNIST dataset (LeCun and Cortes, 2010). The empty cells were replaced by all-black
images. As a feature map of the unary scores, we use ψv(x, y) = (ψ̄1, . . . , ψ̄9), where
ψ̄y′ ∈ R2000, y′ 6= y, are all-zero vectors, ψ̄y = (k(xv,µ1), . . . , k(xv,µ2000)) ∈ R2000 is a
vector of RBF kernels k(xv,µi) = exp(−2‖xv − µi‖2) evaluated for the image xv of the
v-th cell and 2,000 randomly sampled images of MNIST digits. There is no overlap between
the digits used in the test Sudokus, the training Sudokus, and the 2,000 digits. All other
settings are the same as for the symbolic Sudoku experiment. Figure 2 shows the mean and
standard deviation of the test error as a function of the number of training examples.
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(a) Symbolic Sudoku (b) Visual Sudoku
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Figure 2: Figure (a) and (b) shows test error as function of the number of training examples
for symbolic and visual Sudoku problem, respectively. The curves are computed
for different portion of unsolved empty cells in the annotation. Figure (c) and
(d) visualize the learned quality scores of the MN classifier for symbolic Sudoku.

4.4. Comparison with neural architectures

Solving the Sudoku by deep networks was considered in Wang et al. (2019). They used both
the symbolic and the visual Sudoku composed of MNIST digits as we do. They trained
SATNet architecture which is a CNN endowed with a layer implementing a maximum satis-
fiability (MAXSAT) solver. The SATNet can better learn hard interactions between output
variables than canonical neural architectures. They also trained a common convolutional
neural network (ConvNet) as a baseline. They used 9, 000 completely annotated training
examples and 1, 000 test examples. The MN classifier was trained by the proposed LP-MIL-
M3N algorithm from 500 examples in the case of symbolic Sudoku and 1,500 examples in
the case of visual Sudoku, using the setting described in the previous section. Following
Wang et al. (2019), we measure the performance in terms of accuracy, defined as the portion
of perfectly solved puzzles, i.e., already a single misclassified label counts as an error.

Table 1 shows comparison between SATNet, ConvNet, and the MN classifier. The MN
classifier significantly outperforms both neural models, ConvNet and SATNet, in the case
of symbolic as well as visual Sudoku. The MN classifier is trained on a significantly smaller
number of examples, and it performs better even when trained using partial annotations.
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Label Accuracy
Method annotation Symbolic Sudoku Visual Sudoku

MN classifier complete 100.0±0.0% 90.0±2.9%
trained by 10% missing 100.0±0.0% 80.4±3.8%

LP-MIL-M3N 20% missing 100.0±0.0% 89.8±3.0%
50% missing 100.0±0.0% 76.4±3.3%

ConvNet complete 15.1% 0.1%
SATNet complete 98.3% 63.2%

Table 1: The accuracy of predicting solution of the symbolic and visual Sudoku puzzle by
the MN classifier trained by the proposed LP-MIL-M3N algorithm compared to
two neural models, the CovnNet and the SATNet proposed by Wang et al. (2019).

5. Conclusions

We proposed a novel loss function for learning MN classifier from partially annotated exam-
ples. The loss is convex, has a clear connection to the standard supervised margin-rescaling
loss, and it can be efficiently optimized by first-order methods. We showed that the proposed
loss can be used to learn MN classifiers with a complex neighbourhood structure, which on a
challenging problem of predicting Sudoku solution significantly outperforms neural architec-
tures trained from a higher number of completely annotated examples, while the proposed
method used only partial annotations. To our knowledge, the proposed method is the first
efficient algorithm for learning the unrestricted M3N classifiers from partial annotations.
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Appendix A. Proof of Theorem 1

Let us introduce shortcuts δ(av, yv, zv) = [[av = α(yv, zv)]] and δ(av, av′ , yv, yv′ , zv, zv′) =
[[av = α(yv, zv) ∧ av′ = α(yv′ , zv′)]]. By marginalizing p(a | x) =

∑
y p(a | x,y)p(y | x),

where p(a | x,y) is a MAR process given by (9), we derive that

p(av | x) =
∑
yv

∑
zv

p(zv | x)p(yv | x)δ(av, yv, zv) ,

p(av, av′ | x) =
∑
yv ,yv′

∑
zv ,zv′

p(zv, zv′ | x)p(yv, yv′ | x)δ(av, av′ , yv, yv′ , zv, zv′) .
(26)

By using (26), we derive the equality Ea∼p(a|x)ψ
p(x,a) = Ey∼p(y|x)ψ(x,y) as follows

Ea∼p(a|x)ψ
p(x,a) = Ea∼p(a|x)

[∑
v

[[av 6=?]]

p(zv | x)
ψv(x, yv) +

∑
v,v′

[[av 6=? ∧ av′ 6=?]]

p(zv = 1, zv′ = 1 | x)
ψvv′(yv, yv′)

]

=
∑
v

∑
av

p(av | x)
[[av 6=?]]

p(zv | x)
ψv(x,yv) +

∑
v,v′∈E

∑
av ,a′v

p(av, av′ | x)
[[av 6=? ∧ av′ 6=?]]

p(zv = 1, zv′ = 1 | x)
ψvv′(yv, yv′)

=
∑
v

∑
av

∑
yv

∑
zv

p(zv | x)p(yv | x)δ(av, yv, zv)
[[av 6=?]]

p(zv = 1 | x)
ψv(x, yv)

+
∑
v,v′

∑
av ,av′

∑
yv ,yv′

∑
zv ,zv′

p(zv, zv′ |x)p(yv, yv′ |x)δ(av, av′ , yv, yv′ , zv, zv′)
[[av 6=? ∧ av′ 6=?]]

p(zv = 1, zv′ = 1|x)
ψvv′(yv, yv′)

=
∑
v

∑
yv

p(zv = 1 | x)p(yv | x)

p(zv = 1 | x)
ψv(x, yv) +

∑
v,v′

∑
yv ,yv′

p(zv = 1, zv′ = 1 | x)p(yv, yv′ | x)

p(zv = 1, zv′ = 1 | x)
ψvv′(yv, yv′)

=
∑
v

∑
yv

p(yv | x)ψv(x, yv) +
∑
v,v′

∑
yv ,yv′

p(yv, yv′ | x)ψvv′(yv, yv′)

= Ey∼p(y|x)

[∑
v

ψv(x, yv) +
∑
v,v′

ψvv′(yv, yv′)

]
= Ey∼p(y|x)ψ(x,y) .
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