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Abstract
Recently, many methods for optimization and sampling have been developed by designing continuous
dynamics followed by discretization. The dynamics that have been used for optimization have their
corresponding underlying functionals to be minimized. On the other hand, a wider class of dynamics
have been studied for sampling, which is not necessarily limited to functional minimization. For
example, dynamics perturbed with skew-symmetric matrices, which cannot be seen as minimization
of functionals, have been widely used to reduce asymptotic variance. Following this success
in sampling, exploring such perturbed dynamics in the context of optimization can open a new
avenue to optimization algorithm design. In this work, we introduce a perturbation technique for
sampling into optimization for strongly convex functions. We show that perturbation applied to the
gradient flow yields rapid convergence in optimization for strongly convex functions. Based on this
continuous dynamics, we propose an optimization algorithm for strongly convex functions with a
novel discretization framework that combines the Euler method with the leapfrog method which is
used in the Hamilton Monte Carlo method. Our numerical experiments show that the perturbation
technique is useful for optimization.
Keywords: Convex optimization, skew-symmetric matrices, gradient flow, discretization

1. INTRODUCTION

Analysis of continuous dynamics and discretization methods has been a driving force in recent
developments in optimization and sampling. In optimization, inspired by the relation between the
gradient flow as continuous dynamics and the gradient descent as discretized dynamics (Scieur
et al., 2017), acceleration methods such as Nesterov’s scheme have been analyzed as second-order
differential equations (Su et al., 2014). Recent analysis showed that the various first-order optimization
methods are closely related to continuous dynamics and discretization methods (Scieur et al., 2017).
Zhang et al. (2018) and Shi et al. (2019) showed that using the high-order discretization results in
acceleration.

For sampling, Wibisono (2018) analyzed the Langevin dynamics (LD) as a gradient flow in
the space of probability measures and proposed a method for discretizing continuous dynamics
based on a technique used in optimization. Motivated by this connection, many useful optimization
techniques have been introduced into sampling (e.g., Durmus and Majewski (2019)). In particular,
Muehlebach and Jordan (2019) introduced the continuous dynamics, which is used in optimization,
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into sampling for acceleration. In this way, studying the continuous dynamics and discretization
methods in optimization has brought significant advances in recent efficient sampling algorithms.

Most continuous dynamics designed for optimization have their corresponding underlying
functionals to be minimized. For example, the gradient flow and the second-order differential
equations for acceleration are derived through minimization of the Bregman Lagrangian (Wibisono
et al., 2016). On the other hand, designing the dynamics in sampling is not limited to minimizing
functionals. For example, a perturbation approach that adds a small perturbation composed of a
skew-symmetric matrix to the original LD has been gathering attention (Hwang et al., 2005, 2015;
Duncan et al., 2016, 2017a; Kaiser et al., 2017). This perturbation technique never changes the
stationary distribution but reduces the asymptotic variance for sampling. An interesting point of this
perturbed dynamics is that it cannot be seen as a minimization of a functional.

Based on this success of the perturbation technique in sampling, we expect that understanding
perturbed dynamics in the context of optimization may pave a new avenue for designing optimization
algorithms. In this paper, we show, for the first time to the best of our knowledge, that such perturbed
continuous dynamics are also useful when optimizing strongly convex functions.

However, when we adopt such perturbed dynamics into optimization, two major challenges arise.
First, the advantage of the perturbation in optimization is unclear although this technique reduces
the asymptotic variance in sampling. In optimization, we adopt the final state of a parameter as a
solution, and thus the asymptotic variance is not even defined. Second, it is not obvious what kind
of discretization is preferable for such perturbed dynamics. Existing work on perturbed dynamics
in sampling only focused on continuous dynamics since the obtained samples can be adjusted by
Metropolis-Hasting steps (Bishop, 2006).

We address the above challenges and show that the convergence rate of perturbed dynamics is
improved compared to un-perturbed dynamics in the continuous and discrete-time settings.

First, we present new continuous dynamics using skew-symmetric matrices that converge more
rapidly than the gradient flow under mild conditions. To show faster convergence, we analyze the
perturbed Hessian matrix. Since it is neither symmetric nor skew-symmetric, it remains unclear
whether diagonalization is possible. We clarify what kind of perturbation preserves the diagonalization
of the Hessian matrix and then show the largest and smallest eigenvalues are changed by perturbation.
This leads to faster convergence of the continuous dynamics.

Second, we provide a novel discretization method for the proposed dynamics and analyze its
convergence properties. We show that a simple Euler method cannot guarantee faster convergence.
To achieve faster convergence, inspired by Hamilton Monte Carlo (Bishop, 2006), we propose a
new discretization method that combines the Euler and leapfrog methods to effectively exploit
the particular structure of skew-symmetric matrices. Finally, we present methods for tuning the
hyper-parameters of our proposed method, including those of the skew-symmetric perturbations.

2. PRELIMINARIES
In this section, we briefly introduce the gradient flow, gradient descent, and the perturbation technique
in sampling.
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2.1. Gradient flow and gradient descent

Consider a strongly convex loss function F (x) on Rd. We assume that F is an m-strong and
M -smooth function. To minimize F (x), we consider the gradient flow:

dx(t)

dt
= −∇xF (x(t)), x(0) = x0, (1)

for which one can show

‖x(t)− x∗‖ ≤ e−mt‖x0 − x∗‖, (2)

which ensures the convergence to the optimal point x∗ = arg min
x∈Rd

F (x). In many cases, we

approximate Eq. (1) with a discretization method since we cannot directly implement it due to its
continous nature. A widely used method is the gradient descent (GD). We use xk to express a
candidate of a solution obtained from the k-th iterate of the GD. Then, the GD algorithm is given by
recursion:

xk+1 = xk − η∇xF (xk), (3)

where η > 0 is the step size. The convergence behavior is characterized as follows. GD converges if
the step size satisfies η ∈ [0, 2

M ). Furthermore, if η = 2
M+m , we have

‖xk − x∗‖ ≤ e−
m
M
k‖x0 − x∗‖. (4)

Based on the definition of strong convexity and smoothness, we can regardm andM as an upper
bound and a lower bound of eigenvalues of Hessian matrix Hx = ∇2

xF (x) for all x. Equivalently,
Hx � mI andMI � Hx hold, where I is the d× d identity matrix. Hereinafter, we simply express
Hx as H . Then, the convergence of the GD is charactderized by the ratio of the largest and smallest
eigenvalue of Hessian matrix. Thus, analyzing the properties of Hessian matrix is important to
understand the convergence behavior.

2.2. Perturbation techinque in sampling

A perturbation to the LD is used for sampling from Gibbs distribution π(x) ∝ e−U(x), where
U : Rd → R is a potential function. Let Xt denote a random variable on Rd and letW denote the
Wiener process. Then the perturbation to the LD is given by

dXt = −(I + J)∇U(Xt)dt+
√

2dW, (5)

where J is a skew-symmetric matrices that satisfies and J = −J>, and I is the identity matrix. The
stationary distribution of this dynamics is π(x). Compared to the standard LD, which corresponds to
J = 0, the perturbed dynamics shows smaller variance in the asymptotic limit. The perturbation of
J changes the smallest real part of the eigenvalue of the infinitesimal generator of Eq. (5), which is
larger than the standard LD. See the following works for details: Hwang et al. (2005, 2015); Duncan
et al. (2016, 2017a); Kaiser et al. (2017); Futami et al. (2020, 2021). Intuitively, the change of the
eigenvalue of the generator indicates that, if U is a strongly convex function, the smallest real part of
the eigenvalue of (I + J)∇2U is larger than that of ∇2U . Lelièvre et al. (2013) showed that when
∇U is a linear function, the optimal J improves the smallest and largest real part of the eigenvalue of
(I + J)∇2U to Tr(∇2U)/d.
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3. PROPOSED METHOD

In this section, we first present continuous dynamics. Then, we propose two types of discretization
methods and an algorithm to tune the hyper-parameters.

3.1. Theoretical properties of the perturbed Hessian matrix

Inspired by the perturbation in sampling, we incorporate a skew-symmetric matrix J to the gradient
term in the gradient flow:

dx(t)

dt
= −∇xF (x(t))− αJ∇xF (x(t)), (6)

where α ∈ R expresses the strength of the perturbation and J satisfies

J> = −J, ‖J‖F ≤ d, (7)

where ‖ · ‖F is the Frobenius norm. We call this dynamics skew-symmetrically perturbed gradient
flow. Inspired by the perturbation to the LD, we expect that introducing the skew-symmetric matrix
changes the eigenvalues of Hessian matrix and leads to rapid convergence. We denote the original
Hessian matrix byH = ∇2F and the perturbed Hessian matrix byH ′ = (I +αJ)H . To analyze the
skew-symmetrically perturbed gradient flow, we need to understand H ′ by elucidating the following
three factors: 1) whether the stationary point of the perturbed dynamics is x∗, 2) the condition in
which H ′ is diagonalizable, and 3) the condition in which the eigenvalues are improved. In this
section, we assume that J is a general skew-symmetric matrix that satisfies Eq. (7). We discuss the
concrete algorithm to generate J that has nice properties in Section 3.4.

Stationary point: First, we study question 1) by analyzing the stationary point of the perturbed
dynamics. From Eq. (6) and the property of the optimal point ∇xF (x∗) = 0, it is clear that x∗ is
also the stationary point of the perturbed dynamics. Furthermore, we can show that x∗ remains the
unique stationary point that satisfies (I + αJ)∇xF (x∗) = 0 since (I + αJ) has an inverse matrix;
see Appendix C.

Diagonalization: Next, we discuss the diagonalizability of H ′. We emphasize that the diago-
nalizability is an important property for convergence analysis of the continuous dynamics (see
Appendix D for details). Although without the diagonalizability, we can analyze the dynamics by
Jordan decomposition, it produces unsatisfactory constants in the convergence bound. Since H is
a real-valued symmetric matrix, it is always diagonalizable. On the other hand, since H ′ is not
symmetric, the diagonalizability is not assured. Remarkably, the following proposition provides the
practical guarantee for the diagonalization of J ′.

Proposition 1 Suppose that J is a random matrix whose upper triangular entries follow a probability
distribution that is absolutely continuous with respect to the Lebesgue measure. Then, (I + αJ)H is
diagonalizable with probability 1.
Improvement of eigenvalues: We discuss how the real parts of the eigenvalues of H ′ are
changed from those of H . Denote the pairs of the eigenvectors and the eigenvalues of H ′ as
{(vαi (x), λαi (x))}di=1. Order them as Re(λα1 (x)) ≤ · · · ≤ Re(λαd (x)). Thus, the eigenvectors
and eigenvalues of H are expressed by {(v0

i (x), λ0
i (x))}di=1. Let m′ := infx∈Rd Re(λα1 (x)) and

M ′ := supx∈Rd Re(λαd (x)). Thesem′ andM ′ can be regarded as the modified constants of (m,M)
of the objective F (x). The following proposition describes the relation between the eigenvalues:



Skew perturbation for optimization

Proposition 2 For all x, the real parts of the eigenvalues of (I + αJ)H satisfy

λ0
1(x) ≤ Re (λα1 (x)) ≤ · · · ≤ Re (λαd (x)) ≤ λ0

d(x). (8)

In addition, denote the set of the eigenvectors of eigenvalue λ0
1(x) as V 0

1 . Let us denote the size of V 0
1

as |V 0
1 |. If the following condtions are satisfied, then we have λ0

1(x) = Re (λα1 (x)):{
|V 0

1 | = 1, and v ∈ V 0
1 , Jv = 0,

|V 0
1 | > 1, and for any v, v′ ∈ V 0

1 , λ
0
1(x)αJv = (Im (λα1 (x)))v′ and λ0

1(x)αJv′ = −(Im (λα1 (x)))v.
(9)

We have similar sufficient conditions for λ0
d(x) = Re (λαd (x)). Furthurmore, the following relation

holds:

Re (λα1 (x)) ≤ TrH/d ≤ Re (λαd (x)) . (10)

Thus, from the above proposition, we havem ≤ m′ andM ′ ≤M by definition. Moreover, if α is
small enough, we can evaluate the change of the largest and smallest eigenvalues:

Proposition 3 Suppose H has d distinct eigenvalues. With the same notation as in Proposition 2,
for all x and for any i ∈ {1, . . . , d}, we have

Re (λαi (x)) = λ0
i (x) + α2

d∑
k=1,k 6=i

|v0
k(x)Jv0

i (x)|2

λ0
k(x)− λ0

i (x)
+O(α3). (11)

The proof is shown in Appendix C.4. Note that the first-order term in α is zero owing to the
skew-symmetric property of J . From this proposition, for example,

Re (λα1 (x)) = λ0
1(x) + α2

d∑
k=2

|v0
k(x)Jv0

1(x)|2

λ0
k(x)− λ0

1(x)
+O(α3) (12)

holds up to the second order. Since for all k ≥ 1, λ0
k(x) > λ0

1(x) holds, the second term above is
positive, indicating Re (λα1 (x)) > λ0

1(x) for any sufficiently small α. Similarly, Re(λαd (x)) < λ0
d(x)

holds for any sufficiently small α.

3.2. Continuous dynamics
Based on the above analysis, since the largest and smallest eigenvalues are improved by introducing
the skew-symmetric matrix, we expect that it will improve the convergence speed of the dynamics.
We present our first main theorem that describes the effect of the skew-symmetric gradient on
convergence.

Proposition 4 If (I + αJ)H is diagonalizable, the convergence of Eq. (6) is

‖x(t)− x∗‖ ≤ e−m′t‖x0 − x∗‖. (13)

We outline the proof since it includes an important property of continuous dynamics.
Proof (Outline) Let r(t) := x(t)− x∗ and define a functional L(t) = r(t)>r(t). Then

dL
dt

= −2r(t)>(I + αJ) (∇F (x(t))−∇F (x∗)) = −2

∫ 1

0
r(t)>(I + αJ)H(x̄(τ))r(t)dτ,
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where x̄(τ) := x∗ + τ(x(t)− x∗). We used the Taylor expansion and expressed its residual by the
integral. Since (I + αJ)H is diagonalizable, we can analyze the dynamics based on the eigenvalue
decomposition. We assume that it has l real eigenvalues λ′1, . . . , λ′l and 2m complex eigenvalues,
µ1 = α1± iβ1, . . . , µm = αm± iβm. Thus, d = l+2m. We express the corresponding eigenvectors
as {vj}lj=1 for the real eigenvalues and {wj = aj + ibj}mj=1 for the complex eigenvalues. We express
the corresponding conjugate eigenvectors as {w̄j}. Define d× d matrix V as

V = [v1, . . . , vl, a1, b1, . . . , am, bm]. (14)

Then, we decompose (I + αJ)H(x(τ)) into a block diagonal matrix known as the Jordan canonical
form (Golub and Van Loan, 2012);

(I + αJ)H(x∗ + τ(x(t)− x∗)) = V DV −1, (15)

where

D =


λ′1

. . .
λ′l

α1 0
0 α1

. . .
αm 0
0 αm


︸ ︷︷ ︸

D1

+


0

. . .
0

0 β1
−β1 0

. . .
0 βm
−βm 0


︸ ︷︷ ︸

D2

. (16)

Then,

dL
dt

= −2

∫ 1

0
r(t)>V DV −1r(t)dτ = −2

∫ 1

0
r(t)>V (D1 +D2)V −1r(t)dτ

= −2

∫ 1

0
r(t)>V D1V

−1r(t)dτ

≤ −2Re(λα1 (x(τ)))r(t)>r(t), (17)

where Re(λα1 (x(τ))) = min{λ′1, . . . , λ′l, α1, . . . , αm}. We used the skew-symmetric property of
D2 and applied the Gronwall inequality to obtain the proposition.
Compared to the standard GD in Eq. (2), the acceleration is confirmed sincem′ ≥ m holds. This
improvement can be quantified by Eq.(12). In the proof, the key factor is the skew-symmetric property
of D2, with which we can eliminate the imaginary part of the eigenvalue from the convergence rate.
See Appendix D.3 for details.

3.3. Discretization

We need to discretize the continuous dynamics to implement it. In this section, we first observe
that the Euler discretization degrades the convergence rate and propose a discretization scheme that
integrates the Euler and leapfrog methods to overcome this issue.
Euler discretization: First, the Euler discretization is given by

xk+1 = xk − η(I + αJ)∇xF (xk), (18)

where η is a stepsize. The convergence behavior is analyzed in the following way.
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Proposition 5 Define r := αmaxi

(∑d
j=1 |Jij |

)
. Suppose that in Eq. (18), (I + αJ)H is diago-

nalizable. Also suppose that α and η satisfy r ≤ m′ and η ∈ (0, 2
M ′+r ]. Then, xk converges to x∗ as

k →∞ and the rate of convergence is

‖xk − x∗‖ ≤ e−
m′−r
M′ k‖x0 − x∗‖. (19)

The proof shown in Appendix E is outlined here.
Proof (Outline) From the discretized dynamics Eq. (18), subtract x∗ from both sides and define
rk := xk − x∗. Then, we have

‖rk+1‖ = ‖rk − η(I + αJ)∇F (xk)‖. (20)

We define h(x) := x− η(I + αJ)∇F (x). The above equation can be expressed:

‖rk+1‖ = ‖h(xk)− h(x∗)‖. (21)

Then, we apply the mean-value theorem. There exists a point ξk = (1−β)xk +βx∗, β ∈ [0, 1) ⊂ R
(expressed by ξk ∈ [xk, x

∗) ⊂ Rd for simplicity), such that

‖rk+1‖ ≤ ‖ (I − η(I + αJ)H(ξk)) ‖‖rk‖. (22)

Here we used the operator norm ‖ · ‖ defined by

‖M‖ := sup
x 6=0

‖Mx‖
‖x‖

= ‖M †M‖1/2 = s(M), (23)

for any matrixM , where s(M) isM ’s largest singular value.
To bound ‖ (I − η(I + αJ)H) rk‖, we evaluate the singular value of H ′ = I − η(I + αJ)H .

Note that from the Jordan canonical form,

H ′ = I − ηV DV −1 = I − ηV D1V
−1 − ηV D2V

−1 (24)

holds. We define P = I − ηV D1V
−1 and Q = −ηV D2V

−1. The largest singular value of H ′
(denoted by s(H ′)) is upper bounded by the largest singular values of P and Q (Bhatia, 2013)
(denoted as s(P ) and s(Q)),

s(H ′) ≤ s(P ) + s(Q). (25)

Note that s(P ) and s(Q) depend on η. Thus, all we need is to bound each term. The remaining part
of the proof is shown in Appendix E.

The key factor is that the convergence rate depends on the singular value. Given a matrix that
has complex eigenvalues, its singular values depend on both the real and imaginary parts of the
eigenvalues. Thus, unlike the continuous dynamics, discretized dynamics is characterized by both the
real and imaginary parts of the eigenvalues. Since propositions 4 and 5 suggest a large gap between
the Euler discretization and continuous dynamics, the convergence rate of Eq. (18) is not always
improved compared to that of the GD.

We can intuitively understand why the Euler discretization does not work well by focuing on J .
Consider the change in F (x(t)) in the continuous case:
dF (x(t))

dt
= ∇F (x(t))>

dx(t)

dt
= −‖∇F (x(t))‖2 − α∇F (x(t))>J∇F (x(t)) = −‖∇F (x(t))‖2. (26)

The value of F is preserved for J due to the skew-symmetric property. Although such preservation is
a critical property, the Euler method does not take it into consideration.
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Euler-leapfrog discretization: To exploit the preservation property of J , we propose a new
discretization method that combines the Euler and the leapfrog methods, which is widely used in
Hamilton Monte Carlo (Bishop, 2006). We split the dynamics into two parts. One is related to J ,
and we discretize it by the leapfrog method. The other part is unrelated to J , and we discretize it
by the Euler method. To implement the leapfrog method, we introduce auxiliary variable yk ∈ Rd
and optimize augmented objective function F̃ (x, y) = F (x) + 1

2c‖y‖
2 where c is a positive constant,

whose condition is described in Proposition 6. Then, we update {xk} and {yk} by{
xk+ 1

2
= xk − ηα

c Jyk,

yk+ 1
2

= yk − ηαJ∇F (xk+ 1
2
),

(27)

{
yk+1 = yk+ 1

2
− η

c yk+ 1
2
,

xk+1 = xk+ 1
2
− η∇F (xk+ 1

2
).

(28)

Eq. (27) corresponds to the leapfrog step, which discretizes the dynamics related to J . Eq. (28)
corresponds to the Euler step, which discretizes the gradient flow. We call this the Euler-leapfrog
(ELF) discretization. In Appendix F.4, we compared the ELF method with other discretization
methods. Before we present a formal statement, we explain the intuition of our ELF method in matrix
form:

∥∥∥∥( xk+1 − x∗
yk+1 − y∗

)∥∥∥∥ ≤
∥∥∥∥∥∥∥∥∥
(
−ηH(ξ

k+1
2
) 0

0 (1− η/c)I

)
︸ ︷︷ ︸

=H̃(c,η)

(
I −ηαc−1J

−ηαJH(ξ
k+1

2
) I + η2α2c−1JH(ξ

k+1
2
)J

)
︸ ︷︷ ︸

=L(η,c,α,J)

∥∥∥∥∥∥∥∥∥
∥∥∥∥( xk − x∗

yk − y∗
)∥∥∥∥ ,
(29)

where ξk+ 1
2
∈ [xk+ 1

2
, x∗) is a constant in Rd, specified by the mean-value theorem; see Appendix F.1

for details. In Eq. (29), H̃ corresponds to the Euler step of Eq. (28) and L corresponds to the
leapfrog step of Eq. (27). If we appropriately select α, the singular values of L will be 1. This is
the characteristic property of the leapfrog step. From the submultiplicativity of the matrix norm,
‖H̃L‖ ≤ ‖H̃‖‖L‖ ≤ ‖H̃‖ = 1 − m

M under appropriate conditions for η and c. Furthermore, if
we generate J following the rules described in Section 3.4, the ELF method will converge faster
than the GD. Summarizing these results, we have the following theorem, whose proof is shown in
Appendix F.1:

Proposition 6 In Eqs. (27),(28), if η, c, and α satisfy η ∈ (0, 2
M ], c−1 ∈ (0, 2

η ], and α2 ≤
4c(η2Ms2

d)
−1, where sd is the largest singular value of J , xk converges to x∗ as k →∞. If we set

η = 2
m+M , c−1 ∈ (m,M ], and α < 2

√
c(η2Ms2

d)
−1,

‖xk − x∗‖ ≤ e−κ(α,m,M,c,J)k‖x0 − x∗‖ (30)

holds for positive constant κ(α,m,M, c, J) that satisfies κ(α,m,M, c, J) ≥ 2m/(m + M). If
m 6= M and kerJ = {0} are satisfied, then κ(α,m,M, c, J) > 2m/(m+M) holds.

From above proposition, if we choose hyperparameters appropriately, the ELF method shows faster
convergence than gradient descent.
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3.4. Tuning hyper-parameters for the ELF method
Here, we present an algorithm to tune J , α, and c in the ELF method to satisfy conditions of
Propositions 1 and 6. Detailed explanation of the algorithm is shown in Appendix F.2. We assume
thatm 6= M . Our proposed algorithm is summarized in Algorithm 1 and its theoretical property is
shown in Theorem 7.

First, we discuss how to generate J . Lelièvre et al. (2013) obtained the optimal J when the
drift function is linear under continuous time. However, to get the optimal J , we require O(d3)
time per iteration, which is computationally demanding. Such J may cause numerical instability
for discretized dynamics shown in Section 5. Instead, we propose using a random matrix for J , as
suggested from Proposition 1, and fix it during the optimization to reduce the computational cost.
Although this choice is not optimal, it successfully alters the trajectory and improves the convergence
rate but does not cause the numerical instability due to the large singular values. See Section 5 for
details.

J needs to be generated to satisfy the assumption of Proposition 1. We also want to ensure
the condition for κ > 2m/(m+M) in Proposition 6 so that acceleration will occur. Also, from
Proposition 6, kerJ = {0} is a sufficient condition for that. To satisfy kerJ = {0}, we first generate
matrix J ′ wherein the upper triangular entries (i < j) are

J ′ij =

{
1 + ρij/d ρij ∼ N (0, ε) if i is odd and i = j + 1,

ρij/d ρij ∼ N (0, ε) otherwise,
(31)

where N (0, ε) denotes the zero-mean Gaussian distribution with small variance ε. For example, we
set ε = 10−4 in numerical experiments. Finally, we set J as J = J

′> − J ′. This J is diagonalizable,
and the eigenvalues are very close to ±i if d is even, which means that kerJ = {0}. If d is odd,
however, eigenvalues are ±i and 0, which implies that kerJ 6= {0}. To resolve this problem with the
case of odd d, a simple idea is to introduce dummy variable x̃ so that the dimension of the objective
function will be even. Then, we optimize F (x, x̃) = F (x) + γ‖x̃‖2 where γ is a positive constant.
We can use γ = 1

2c so that the convergence rate of F (x, x̃) is dominated by the original F (x).
Next, we set c as c−1 = ‖∇f(x)−∇f(y)‖

‖x−y‖ , where x and y are arbitrary distinct points, e.g., those
chosen from the initial point and its neighborhood. Conditionm ≤ c−1 ≤M in Proposition 6 holds
by definition.

Finally, α must satisfy 0 < χ < 4, where χ := η2α2c−1s2
dM , which is required for the ELF

method to accelerate the convergence. We also empirically observed that the ELF method works well
with χ around 1. Based on these insights, we set α so that α2 = c

2ηs2d
, which ensures 0 < χ ≤ 1 < 4

since ηM ≤ 2. From the construction of J, the largest singular value sd is upper bounded by
s2
d ≤ maxi(1 +

∑
j 6=i |Jij |/d)2 from the Gerchgorin theorem (Golub and Van Loan, 2012). We use

this as an estimate of s2
d. In practice, setting η to a large value is advisable within condition ηM ≤ 2

so that χ will be close to 1. Summarizing the above discussions, we generate α and J by Algorithm 1,
analyzed by the following proposition.

Proposition 7 Suppose that d is even,m 6= M , and J and α are generated by Algorithm 1. Then,
with high probability, the conditions of Proposition 6 are satisfied and κ > 2m

m+M holds.

The detailed proof is shown in Appendix F.3. This proposition guarantees that the ELF shows better
convergence than the GD with high probability. We confirm that matrix J obtained by Algorithm 1
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Algorithm 1 Tuning hyperparameters α and J
1: Input: η, c, ε (e.g., ε = 10−4)
2: Output: α, J
3: Make a random matrix J ′ by Eq. (31).
4: Calculate J = J

′> − J ′
5: Calculate s2d = maxi(1 +

∑
j 6=i |Jij |/d)2

6: Set α =
√
c(2ηs2d)

−1

indeed shows better convergence behavior in numerical experiments. When d is odd, we solve
F (x, x̃) = F (x) + 1

2c‖x̃‖
2, where x̃ is a dummy variable so that we can apply Proposition 7.

Compared to the optimal J that requires O(d3) (Lelièvre et al. (2013)), the calculation cost
of Algorithm 2 is O(d) time. Our hyper-parameter tuning also works even in nonlinear dynamics,
although the optimal J given by Lelièvre et al. (2013) can only be applicable to linear drift functions.
In the numerical experiments in Section 5, we observed that the optimal J of Lelièvre et al. (2013) is
unstable for discretized dynamics. When implementing the ELF discretization, we can re-use the
gradient calculation in Eqs. (27) and (28), and thus, the computation cost of the ELF method is not
much larger than that of the Euler discretization.

4. DISCUSSION AND RELATEDWORK
In this section, we discuss the relationship between our proposed method, perturbation technique in
sampling, and other optimization methods.

4.1. Relation to perturbation technique in sampling
Although our work is inspired by perturbation technique in sampling (Hwang et al., 2005, 2015;
Duncan et al., 2016, 2017a; Kaiser et al., 2017), it is different in the sense that we focused on the
property of J and discretizations. For the first time, our work propose using a randommatrix for J and
analyze the desirable conditions. We present a concrete algorithm to construct J in the ELF method.
No previous work has considered the relation between J and discretization methods. Lelièvre et al.
(2013) derived the optimal J , but it is limited to linear dynamics and is computationally demanding.
Our numerical experiments in Section 5 also show that such an optimal J causes a numerical issue for
discretized dynamics. Although Duncan et al. (2017b) worked on the splitting method, they focused
on its asymptotic behavior with a general skew-symmetric matrix.

4.2. Relation to preconditioning methods
Our methods can be understood as preconditioning schemes. One of the most successful precondi-
tioning methods is Newton’s method and its approximations. These methods take metric information
into consideration and multiply the inverse of Hessian matrix to the gradient. Thus, the gradient
of each dimension is re-scaled, and the condition number of these dynamics becomes one in the
re-scaled space. See Appendix G for details. However, since calculating such inverse matrices is
computationally demanding, many variants of methods have been established.

Our proposed dynamics correlate different dimension by skew-symmetric matrices, and the
perturbed Hessian matrix shows that the smallest real part of the eigenvalue is larger than that of
the un-perturbed Hessian matrix. This results in a faster convergence compared to the un-perturbed
dynamics and makes the trajectory smoother than the GD. See Section 5. As Lelièvre et al. (2013)
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argued, for linear dynamics, we can construct optimal J , and the smallest and largest real parts of the
eigenvalues become TrH/d, which means that the condition number becomes one, which is the same
as Newton’s method. Concerning the computational cost, our methods need an additional matrix and
a vector product computation, which is usually much smaller than Newton’s method.

4.3. Condition number and `2 regularization
Our method and `2 regularization are similar in the sense that the smallest and largest eigenvalues
of the Hessian matrix change. If γ ∈ R+ is a regularization parameter, then objective function
F (x) + γ‖x‖2 is a (m + γ)-strong convex and a (M + γ)-smooth function. Thus, the condition
number becomes M+γ

m+γ . This indicates that the convergence rate improved. However, the obtained
solution is biased. On the other hand, our method improves the convergence rate without biasing the
solution.

4.4. Relation to other continuous dynamics for optimization

Studying optimization algorithms through continuous dynamics has become an important approach.
For example, Scieur et al. (2017) recently described the relation between the gradient flow and several
discretization methods with a variety of optimization methods, including accelerated optimization
methods such as the Nesterov method. Since our proposed dynamics is a perturbed gradient flow,
we can combine more sophisticated higher-order discretization methods to ours following by Scieur
et al. (2017). We note that the continuous dynamics of Nesterov’s scheme is known as a second-order
differential equation (Wibisono et al., 2016), while our continuous dynamics are first-order differential
equations. Future work might introduce perturbation to that second-order equation.

5. NUMERICAL EXPERIMENTS

We confirmed our theoretical findings through numerical experiments. First, we confirmed the
acceleration of continuous dynamics. Then, we observed the convergence behavior of two different
discretization methods: the Euler and Euler-leapfrog (ELF) methods. We also show additional
numerical experiments in Appendix I.

5.1. Least square experiments

We considered F (x) = 1
N

∑N
i=1(Ai∗x− yi)2 where y = (y1, . . . yN )> and Ai∗ denotes the ith row

of A ∈ RN×d. We generated design matrix A with entries following N (0, 1). y was generated by
y = Az + ε where z ∼ N (0, Id×d) and ε ∼ N (0, IN×N ). Then, Hessian matrix is H = A>A.
Since the properties of J depend on whether d is odd or even, we considered (d,N) = (400, 600)
and (401, 600). For d = 401, we introduced a dummy variable and solved the problem with d = 402.
Detailed experimental settings and further discussions are presented in Appendix H.

First, we compared the continuous dynamics of the gradient flow (GF) and the perturbed dynamics
under three types of J . One is a completely random matrix of which each entry follows the standard
Gaussian (Random-J); the second is obtained by Algorithm 1 (Alg-J); the third is the optimal matrix
obtained by the method in Lelièvre et al. (2013) (Opt-J) (its algorithm is shown in Appendix H). The
results are shown in Fig. 1. For the perturbed dynamics, the results are the averages of ten repetitions
for different realizations of random perturbation. Table 1 shows how the largest and the smallest
real part of the eigenvalues of the Hessian matrix are changed by the perturbation. As shown in
Proposition 4, the larger the smallest real part of the eigenvalue is, the faster convergence we have.
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Figure 1: Convergence behavior of continuous dynamics

Table 1: Smallest and largest real parts of eigenvalues of Hessian matrix A>A
Reλ1 Reλd

GF 0.03 3.26
Random-J 0.05 ±0 2.64 ± 0.003
Alg1-J 0.10 ±0 2.52 ± 0
Opt-J 0.20 1.74

The optimal choice of J shows the best performance. We can confirm that completely random J still
remains useful for acceleration. We also confirmed that for each different J , all the eigenvalues of the
perturbed Hessian matrix are distinct, meaning that the perturbed Hessian matrix is diagonalizable.
We also show the histogram of the sigular values for each J in Appendix 7.

Next, we compared the discretization methods and different choices of J . The choice of J is
identical as the continuous settings. We used optimal step sizes. For the ELF, we tuned α following
Algorithm 1. For the Euler method, since it was sensitive to the choice of α, we reported the best
result among those obtained with several different αs. The results are shown in Fig. 2. As shown in
Propositions 5 and 6, although the ELF method shows faster convergence than the GD, the Euler
discretization does not. We also found that the optimal choice of J by Lelièvre et al. (2013) is
unstable with the ELF method. This is because its singular values are significantly large, and it does
not satisfy the conditions of the ELF method. Figs. 2(b) and 2(d) show the trajectories of the GD
and the proposed perturbed dynamics. Those of the perturbed dynamics are smoother. This figure
suggests that the proposed method achieved rapid convergence.

5.2. Logistic regression experiments

We considered learning parameters of logistic regression for binary classification. Let the input and
output pairs of data {(zi, yi)}Ni=1, where zi ∈ Rd and yi ∈ {1,−1}. Let z̃i := (zi, 1)> ∈ Rd+1. The
objective function is given as F (x) = 1

N

∑N
i=1 lnσ(yix

>z̃i), where σ(x) = (1 + exp(−x))−1 is the
logistic function and x ∈ Rd+1 is the parameter that we optimized. We compared the convergence
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(d) Trajectory to x∗, indicated by star

Figure 2: Comparisons of different discretization. d = 401 for (a) and (b). d = 400 for (c) and (d)

speed of the GD and our proposed algorithm with skew-symmetric matrices generated by Algorithm 1
(Alg-J) and used the discretizations of the ELF method and the Euler method. Note that in logistic
regression, using optimal skew-symmetric matrices is computationally demanding since Hessian
matrices depend on the current position of xk. This means the optimal J changes during the
optimization, and thus we need to calculate the optimal J at each step. We also found that using the
completely random skew-symmetric matrices with each entry following the standard Gaussian does
not accelerate the convergence.

First, we considered toy data experiments to observe the convergence behavior of the GD and the
Euler and Euler-leapfrog (ELF) methods of our proposed methods. To generate toy data, we drew
each dimension of z from the uniform distribution between −1 and 1 and generated each dimension
of the true parameter x from the uniform distribution between −5 and 5. The result is shown in
Fig. 3. In Fig. 3(a), we fixed N = 5000, changed d, and measured the number of steps required for
convergence. In Fig. 3(b), we fixed d = 501 and changed N . In both experiments, we confirmed
that our proposed algorithm consistently accelerated the convergence in both large sample and large
dimension settings.

Next, we used a real dataset to confirm that our proposed algorithm is useful in practice. We used
four datasets in the UCI machine learning repository (Dheeru and Karra Taniskidou, 2017), and the
result is shown in Fig. 4. Our proposed algorithm using the ELF method consistently accelerated the
convergence. We found that using the Euler discretization did not always accelerate the convergence,
which is consistent with our Proposition 5.
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(b) Change N and fix d = 501

Figure 3: Convergence behaviors of logistic regression under different d and N
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Figure 4: Convergence behavior of logistic regression: N is amount of data points and d is input
dimensions.

6. CONCLUSION

We proposed a new continuous dynamics, which was obtained by perturbing the gradient flow by a
random skew-symmetric matrix. By analyzing the perturbed Hessian matrix, we proved that perturbed
dynamics shows rapid convergence. We presented a new discretization method that combines the
Euler and leapfrog methods. It preserved the faster convergence property better than the gradient
descent. We also presented an effective algorithm to select hyper-parameters.
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An important conclusion of our work is that the perturbation technique in sampling is also useful
for optimization. Our result suggests that perturbing the underlying dynamics is different from the
standard scheme of minimizing a functional, it is a promising approach for designing optimization
algorithms.

Our work can be extended in various ways. In this paper, we focused on the perturbation of a
skew-symmetric matrix although there are other types of perturbations in sampling such as the one
proposed byMaragliano and Vanden-Eĳnden (2006). Incorporating such techniques into optimization
would be an interesting research direction. Combining our technique with Nesterov’s second-order
dynamics scheme is also promising. In sampling, applying our discretization technique to existing
Langevin-based sampling may provide potential improvements.
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Appendix A. Motivating example

Before going to the detailed analysis, let us observe a simple example. Let x, y ∈ R and F (x, y) :=
x2 + y2 + xy. Then, the hessian matrix is

∇2F =

(
2 1
1 2

)
, (32)

and its eigenvalues are

λ = 3, 1. (33)

Let us add the skew-symmtric matrix:

(I + J)∇2F =

((
1 0
0 1

)
+

(
0 1
−1 0

))(
2 1
1 2

)
=

(
3 3
−1 1

)
. (34)

Then, the eigenvalues are

λ = 2± i
√

2. (35)

Thus, the eigenvalues are changed, while the trace is preserved. If the convergence is dominated
the real part of the largest and the smallest eigenvalues, then this skew-matrix can accelerate the
convergence.

Appendix B. Motivation of the assumption

In the main paper, we assumed ‖J‖F ≤ d. This assumption is motivated by the fact that ‖I‖F = d.

Appendix C. Properties of a skew-symmetric matrix

C.1. Proof of the existence of an inverse matrix I + αJ

Proof Amatrix has an inverse matrix if its determinant is not 0. Then, we will prove det(I +J) 6= 0.
This holds because, since eigenvalues of a skew-symmetric matrix J is 0 or purely imaginary (see
Petersen et al. (2008)). Thus, J + I has 1 or complex values as eigenvalues thus it cannot have 0 as
an eigenvalue. Thus, det(I + J) 6= 0 holds.

From this analysis, (I + αJ)∇F (x) = 0 indicates ∇F (x) = 0. Since x∗ is the unique stationary
point that satisfies ∇F (x∗) = 0, the perturbed dynamics has the same stationary point with the
un-perturbed dynamics.

C.2. Proof of Proposition 1

Next, we discuss diagonalization of (I + αJ)H . Before that, we state a useful property for J :

Lemma 1 (I + αJ)H and H + αH1/2JH1/2 are similar, i.e., have common eigenvalues.
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H1/2JH1/2 is skew-symmetric while the original JH is not. Thus H1/2JH1/2 is much easier to
analyze than JH .
Proof First, observe that

H1/2((I + J)H)H−1/2 = H +H1/2JH1/2. (36)

This means (I + J)H and H +H1/2JH1/2 are similar. Since the matrices which are similar with
each other have the same eigenvalues, (I + J)H andH +H1/2JH1/2 have the same eigenvalues.

Proof [Proof of Proposition 1] The proof is almost the same as that of the main theorem in Okamoto
(1973). As shown in Okamoto (1973), we only need to prove that the discriminant of the characteristic
polynomial of H + αJH is not identically 0. In this proof, we use the lemma in Okamoto (1973);

Lemma 2 (Okamoto (1973)) If f(x1, . . . , xm) is a polynomial in real variables x1, . . . , xm, which
is not identically zero, i.e., there exists (x1, . . . , xm) such that f(x1, . . . , xm) 6= 0, then the subset
Nm = {(x1, . . . , xm)|f(x1, . . . , xm) = 0} of the Euclideanm-space Rm has the Lebesgue measure
zero.

We consider that f in the above lemma corresponds to the discriminant of the characteristic polynomial
of H + αJH . That is, the characteristic polynomial is given as

f(J1,2, . . . , Jd−1,d) = |λId −H ′|. (37)

Then, if the discriminant of this polynomial is not equal to 0, then H ′ has distinct eigenvalues.
From the above lemma, if the discriminant of the characteristic polynomial ofH + αJH is not

identically 0, then the probability that the discriminant of the characteristic polynomial is 0 with
probability 0. That means the probability that H + αJH has distinct eigenvalues is 1. This means
that H + αJH is diagonalizable with probability 1.

Thus our goal here is to prove that the discriminant of the characteristic polynomial ofH +αJH
is not identically 0. The outline is that given x, we have Hx. For any random J generated by
Alg. 1, we prove that there exists a J̃ that is arbitrarily close to J , for which the discriminant of the
characteristic polynomial of H + αJ̃H is not 0. If such J̃ exists, it is clear that the characteristic
polynomial of H + αJH is not identically 0.

Hereafter, for simplicity, we set α = 1. Also from lemma 1, we only need to consider the
eigenvalues ofH +H1/2JH1/2. First, let us express the Jordan canonical form ofH +H1/2JH1/2

as follows: H + H1/2JH1/2 has l real eigenvalues λ1, . . . , λl and 2m complex eigenvalues,
µ1 = α1 ± iβ1, . . . , µm = αm ± iβm. Thus, d = l+ 2m. We denote the corresponding generalized
eigenvectors as {vj}lj=1 for real eigenvalues. Here we assumed the generalized eigenvectors since
H + H1/2JH1/2 is not always diagonalizable. We also denote the generalized eigenvectors as
{wj = aj + ibj}mj=1 for complex eigenvalues {µj}mj=1, we denote their conjugate as {w̄j}, which
are the generalized eigenvectors of the conjugate eigenvalues. Then define a matrix as

V = (v1, . . . , vl, a1, b1, . . . , am, bm). (38)
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From the definition of the generalized eigenvectors, we have

H +H1/2JH1/2 = V ΛV −1 (39)

Λ :=

 Λ1

. . .
Λr

 , (40)

where each elementary Jordan block Λi are expressed as

ΛR
i :=


λ 1 0 . . . 0
0 λ 1 . . . 0

. . .
λ 1

λ

 , (41)

for the real eigenvalues and

ΛC
i :=


A I2 0 . . . 0
0 A I2 . . . 0

. . .
A I2

A

 , A :=

(
α β
−β α

)
, I2 :=

(
1 0
0 1

)
, (42)

for the complex eigenvalues. We will construct a specific skew-symmetric matrix J ′ such that
perturbing Λ with J ′ will yield a matrix with all eigenvalues distinct from each other, and thus the
discriminant characteristic polynomial will be nonzero.

We perturb Λi by a skew-symmetric matrix J ′i so that the perturbed Λi has distinct eigenvalues.
For ΛR

i , if its size is an even number 2m′, take the following skew-symmetric matrix

J
′R
i :=



0 c1 0 . . . 0
−c1 0 0 . . . 0

0 0 0 c2 . . . 0
0 0 −c2 0 . . . 0

. . .
0 cm′

−cm′ 0


, (43)

where {cj}m
′

j=1 are the distinct positive real numbers, and let Λ′i = ΛR
i + J

′R
i then, its eigenvalues

ω ∈ C are the solution of

0 = |Λ′i − ωI| =
m′∏
j=1

(
(λ− ω)2 + cj(1 + cj)

)
, (44)

which is derived by the formula of determinant of the block diagonal matrix as

det

(
A B
0 D

)
= det(A)det(D); (45)



Futami Iwata Ueda Yamane

see Petersen et al. (2008). Thus, it is easy to find that ws are distinctm pairs of conjugate complex
values since all cj are distinct from each other. If the size of ΛR

i is an odd number 2m′ + 1, then we
just need to prepare the skew-symmetric matrix

J
′R
i :=



0 c1 0 . . . 0
−c1 0 0 . . . 0

0 0 0 c2 . . . 0
0 0 −c2 0 . . . 0

. . .
0 cm′ 0
−cm′ 0 0

0 0 0


. (46)

Then, in the same way as the above discussion, we get them′ pairs of distinct complex eigenvalues
and one real eigenvalue. In conclusion, we get the distinct eigenvalues by adding the skew-symmetric
matrix.

Next, we consider ΛC
i . This is almost similar to the case of ΛC

i . If its size is an even number 2m′,
by preparing the following skew matrix

J
′C
i :=



0 c1I2 0 . . . 0
−c1I2 0 0 . . . 0

0 0 0 c2I2, . . . 0
0 0 −c2I2 0, . . . 0

. . .
0 cm′I2

−cm′I2 0


, (47)

where {cj}j=12m′ are the distinct positive real numbers, and letΛ′i = ΛC
i +J

′C
i . Define its eigenvalues

ω ∈ C, which are the solution of

0 = |Λ′i − ωI| =
m′∏
j=1

(
|A− ωI|2 + |cjI2||(1 + cj)I2|

)
=

m′∏
j=1

(
(α− ω)2 + β2 + (1 + cj)cj

)
.

(48)

Thus, it is easy to find that ws are distinct m pairs of conjugate complex values. For the odd size
matrix, the argument is the same as the case of real eigenvalues.

Finally, we collect the above perturbations and define

J ′ :=

 J
′R
1 . . . 0

. . .
0 J

′C
m

 , (49)

and Λ + J ′ has d distinct eigenvalues. Since

V −1(H +H1/2JH1/2)V = Λ, (50)
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we have

V −1(H +H1/2JH1/2)V + J ′ = Λ + J ′. (51)

Thus

H +H1/2JH1/2 + V J ′V −1 = V (Λ + J ′)V −1. (52)

and sinceΛ+J ′ and V (Λ+J ′)V −1 are similar,H+H1/2JH1/2+V J ′V −1 have distinct eigenvalues.
Then if we prepare

J ′′ = H−1/2V J ′V −1H−1/2, (53)

H+H1/2(J+J ′′)H1/2 has distinct eigenvalues. Then, it is possible to generate such a randommatrix
J+J ′′. This means that the discriminant of the characteristic polynomial ofH+H1/2(J+J ′′)H1/2

is not identically zero. This concludes the proof.

C.3. Proof of Proposition 2

Proof Since we assume that the Hessian matrixH := ∇2F (x) is a diagonalizable matrix, (I + J)H
andH+H1/2JH1/2 have the same eigenvalues since they are similar. Thus, to study the eigenvalues
of (I + J)H , we will study those of H +H1/2JH1/2 instead.

We setA = H+H1/2JH1/2, that is, non-symmetric matrixA has d(= 2m) complex eigenvalues
and eigenvectors,

Awj = µjwj ⇔ A(aj + ibj) = (αj + iβj)(aj + ibj). (54)

We denote the eigenvalues and eigenvectors of H as {λj , vj}dkj=1 and vjs are linearly independent.
And we assume that λ1 ≤, . . . , λd. We assume that the lengths of all eigenvectors are normalized to
1. We assume that d is even and all the eigenvalues are complex. It is straightforward to extend the
proof in this section to the case when d is odd and there exists real value eigenvalues.

From the above definition, by checking the real parts and complex parts, the following relations
are derived

Aaj = αjaj − βbj , (55)
Abj = αjbj + βaj . (56)

thus, by the skew-symmetric property

a>j Aaj + b>j Abj = αj(‖aj‖2 + ‖bj‖2) = αj (57)

= a>j Haj + b>j Hbj , (58)

and in the third equality, we used the property

a>j H
1/2JH1/2aj = b>j H

1/2JH1/2bj = 0, (59)

since H1/2JH1/2 is a skew symmetric matrix.
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Then, we expand aj and bj by vj as

ak =

d∑
j=1

a>k vjvj (60)

bk =

d∑
j=1

b>k vjvj , (61)

and substitute this into Eq.(58). Then, we have

αk =
d∑
j=1

λj(a
>
k vj)

2 +
d∑
j=1

λj(b
>
k vj)

2 (62)

≥ λ1

d∑
j=1

((a>k vj)
2 + (b>k vj)

2) (63)

= λ1. (64)

This means that any real part of the eigenvalue of A is larger than λ1 which is the smallest eigenvalue
ofH . Thus, if the α1 is the smallest real part of the eigenvalue of A, that is larger than the smallest
eigenvalue of H . This concludes the proof.

In the same way,

αk =
d∑
j=1

λj(a
>
k vj)

2 +
d∑
j=1

λj(b
>
k vj)

2 (65)

≤ λd
d∑
j=1

((a>k vj)
2 + (b>k vj)

2) (66)

= λd, (67)

which means any real part of the eigenvalues of A is smaller than the largest eigenvalue of H . Thus,
if α is the largest real part of the eigenvalues of A, it is smaller than the largest eigenvalue of H .

Next, we discuss when the equality holds for α1 and λ1. First, we assume that eigenvalues of H
are distinct. Later, we discuss if eigenvalues are not distinct. From Eq. (62), we have

α1 =
d∑
j=1

λj(a
>
1 vj)

2 +
d∑
j=1

λj(b
>
1 vj)

2 (68)

≥ λ1

d∑
j=1

((a>1 vj)
2 + (b>1 vj)

2) (69)

= λ1, (70)

in general. To study when the equality holds, let us assume that a1 and b1 corresponds to a1 = cvk
and b1 = c′vk′ where c2 + c

′2 = 1. Note that if

a1, b1 ∝ v1, (71)
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does not hold, for example a1 = c1v1 + c1v2), where c2
1 + c2

2 = c2 and b2 = c′v1, then, we have

α1 =

d∑
j=1

λj(a
>
1 vj)

2 +
d∑
j=1

λj(b
>
1 vj)

2 (72)

= c2
1λ1 + c2

2λ2 + c′2λ1 (73)
> λ1. (74)

Thus, a1, b1 ∝ v1 is required to have α1 = λ1. Moreover, a1 and b1 are linearly independent from
the basic property of the skew matrices (Bhatia, 2013), thus we only have either i) v1 = a1 or ii)
v1 = ib1 as the condition.

If i) is satisfied, then Av1 = (λ1 ± iIm(λ1))v1 holds. Since Av1 is a real-valued vector, we can
see that Im(λ1) = 0 holds. Thus, if i) is satisfied, Av1 = λ1v1 holds.

Next, if ii) is satisfied, thenAv1 = A(±ib1) = (λ1± iIm(λ1))± ib1 holds. SinceAv1 is a purely
imaginary-valued vector, we can see that Im(λ1) = 0 holds. Thus, if ii) is satisfied, then Av1 = λ1v1

holds. In conclusion, in both i) and ii), these are equivalent to the condition of Av1 = λ1v1.
Then, from the definition of the eigenvalue, we obtain the following relation

λ1v1 = Av1 = (H + αH1/2JH1/2)v1 = Hv1 + αH1/2JH1/2v1 = λ1v1 + αλ1H
1/2Jv1. (75)

This indicates

αH1/2Jv1 = 0. (76)

From the definition of H , H1/2 has an inverse matrix. By multiplying it to the above condition,
the above condition is equivalent to Jv1 = 0. This is the condition that λ1 = α1 holds. The same
relation can be derived for λd = αd.

Next, we assume that eigenvalues of H are not distinct and if the multiplicity of eigenvalue λ1 is
greater than 1. We denote the set of eigenvectors of H whose eigenvalues are 1, as V 0

1

To study when equality α1 = λ1 holds, from the similar discussion with the case when H are
distinct, we obtain the condition that

a1, b1 ∈ V 0
1 , (77)

Based on this, let us assume that w1 = ca1 + ic′b1 where c2 + c
′2 = 1. We consider the case a1 6= b1.

Then

H−1/2A(ca1 + ic′b1) = λ
−1/2
1 (λ1 + iβ1)(ca1 + ic′b1)

H−1/2(H + αH1/2JH1/2)(ca1 + ic′b1) = λ
1/2
1 c(I + αJ)a1 + iλ

1/2
1 c′(I + αJ)b1, (78)

then we obtain the condition

λ1cαJa1 = −β1c
′b1, (79)

λ1c
′αJb1 = β1ca1. (80)

The same discussion can be made for αd and λd.
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Finally we discuss the trace bound. Note that

Tr(H + αJ) = Tr(H). (81)

On the other hand

Tr(H + αJ) =

d/2∑
i=1

Reλi(α) ≥ dReλ1(α). (82)

Here we assumed that d is even and only complex eigenvalues appear. The situation when d is odd or
real eigenvalues exists is treated almost similar way. Then

Tr(H) ≥ dReλ1(α), (83)

holds. The discussion for Reλd(α) is almost the same.

C.4. Proof of Proposistion 3

In this section, we express (I + αJ)H byH ′. First, we introduce the notations. Since H ′ is almost
surely diagonalizable, we will use the eigen decomposition in the proof. For simplicity, we assume that
all the eigenvalues ofH ′ are imaginary. Note that if the real eigenvalues are exist, following derivation
can be used. First, the eigenvalues ofH are expressed by λ1, . . . , λd and corresponding eigenvectors
are v1, . . . , vd. As for H ′, there are 2m complex eigenvalues, µ1 = α1 ± iβ1, . . . , µm = αm ± iβm.
Thus, d = 2m. Note that is d is odd, then there are real eigenvalues. We denote the corresponding
eigenvectors as {wj = aj + ibj}mj=1 for complex eigenvalues and {w̄j} for corresponding conjugate
eigenvalues.

Here we introduce the notation

wj = vj + δvj , (84)
µj = λj + δλj , (85)

Then from the definition

H ′wj = Hwj + αV wj = µwj = (λj + δλj)(vj + δvj), (86)

where V := H1/2JH1/2. Note that V is similar to JH . Then we have

Hvj +Hδvj + αV vj + αV δvj = λjvj + δλjvj + λjδvj + δλjδvj . (87)

First, we consider the first order expansion. Thus, we consider

Hvj +Hδvj + αV vj = λjvj + δλjvj + λjδvj . (88)

Since {v1, . . . , vk} are an orthogonal basis, we expand δvs by this basis.

δvj =

d∑
k=1

cjkvk, (89)
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where cjk = δv>j vk.
By multiplying Vj to Eq.(92) from the left handside, we have

λj + λjv
>
j δvj + αv>j V vj = λj + δλj + λjv

>
j δvj , (90)

since v>j V vj = 0 due to the skew-symmetric property of V . Thus we have

δλj = 0, (91)

up to the first-order expansion.
Then we substitute this into Eq.(92) and multiplying vi where i 6= j, we have

λicji + αv>i V vj = λjcji. (92)

Then we have

cji =
αv>i V vj
λj − λi

. (93)

As for cjj , since w>j wj = 1, we have

cjj = 0. (94)

Then we get

δvj = α
d∑
i 6=j

v>i V vj
λj − λi

vi. (95)

We substitute this into Eq.(97), and multiplying v>j , we have

v>j Hα

d∑
i 6=j

v>i V vj
λj − λi

vi + αv>j V vj + αv>j V α

d∑
i 6=j

v>i V vj
λj − λi

vi

= δλjv
>
j vj + λjv

>
j α

d∑
i 6=j

v>i V vj
λj − λi

vi + δλjv
>
j α

d∑
i 6=j

v>i V vj
λj − λi

vi. (96)

Since v>j V vj = 0 and v>j vi = 0 and v>j vj = 1, we have

α2
d∑
i 6=j

v>i V vj
λj − λi

v>j V vi = δλj . (97)

Thus, we have

µj − λj = αj + iβj − λj = −α2
d∑
i 6=j

(v>i V vj)
2

λj − λi
. (98)

Thus by taking the real part, and note that Reλj(α) = αj , we have

Reλj(α)− λj = α2Re

d∑
i 6=j

(v>i V vj)
2

λi − λj
+O(α3). (99)
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Appendix D. Analysis of the continuous dynamics

In this section, first we review the linear ODE with asymmetric matrix. After that we analyze
proposed continuous dynamics.

D.1. Basic examples

Given a matrix A ∈ Rd×d, let us consider a linear differential equations

ẋ = Ax, (100)

where ẋ = dx
dt . If A is a normal symmetric matrix, we can diagonalize it and can define the

exponential matrix eA. Then given the initial condition x(0) = x0, we can solve the above ODEs as

x(t) = etAx0. (101)

Our next interest is the case in which A is not symmetric, that is, which can have complex
eigenvalues and eigenvectors. Given a complex number v = x+ iy, we denote its complex conjugate
by v̄ = x− iy. Then

Av =

 a11 . . . a1d
...

...
ad1 . . . add


 v1

...
vd

 = A(x+ iy) = Ax+ iAy. (102)

This implies

Āv = Av̄. (103)

Thus, if we assume that λ is a complex eigenvalue ofA and v is the corresponding complex eigenvector,
Av = λv,

Av̄ = λ̄v̄, (104)

holds. Furthermore, the Euler’s formula is useful to consider the matrix exponential,

eλ = eα+iβ = eα(cosβ + i sinβ). (105)

Having these relations in mind, let us consider following case,

A =

(
α β
−β α

)
. (106)

Then, its eigenvalues are λ = α + iβ and λ̄ = α − iβ and corresponding eigenvectors are
v = (1, i)> = (1, 0)> + i(0, 1)> and v̄ = (1,−i)> = (1, 0)> − i(0, 1)>. Next, let us consider the
matrix exponential etA. Note that

A = αI + βJ, I =

(
1 0
0 1

)
, J =

(
0 1
−1 0

)
. (107)
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Then J satisfies J2 = −I , J3 = −J , J4 = I, . . . , thus

etJ = I + tJ +
t2

2!
J2 +

t3

3!
J3 + . . . (108)

= I + tJ − t2

2!
I − t3

3!
J + . . . (109)

=

(
1− t2

2!
+
t4

4!
− . . .

)
I +

(
t− t3

3!
+
t5

5!
− . . .

)
J (110)

= cos(t)I + sin(t)J (111)

=

(
cos(t) sin(t)
− sin(t) cos(t)

)
. (112)

(Eigenvalues of J is ±i, thus above calculation is done via Euler’s formula.) Thus,

etA = etαI+tβJ = eαt
(

cos(βt) sin(βt)
− sin(βt) cos(βt)

)
. (113)

D.2. General case

Based on the previous simple example, let us consider d× d skew-symmetric matrix. Furthermore,
assume that d × d skew-symmetric matrix A has l real eigenvalues λ1, . . . , λl and 2m complex
eigenvalues, µ1 = α1± iβ1, . . . , µm = αm± iβm. Thus, d = l+ 2m. We denote the corresponding
eigenvectors as {vj}lj=1 for real eigenvalues and {wj = aj + ibj}mj=1 for complex eigenvalues
{µj}mj=1 and {w̄j} for corresponding conjugate eigenvalues.

Then, let us define a d× d matrix V as

V = [v1, . . . , vl, a1, b1, . . . , am, bm]. (114)

Then, we can decompose A into a block diagonal matrix known as the Jordan canonical form Golub
and Van Loan (2012);

AV = V D (115)

D :=



λ1

. . .
λl

α1 β1

−β1 α1

. . .
αm βm
−βm αm


. (116)
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Then, we can calculate the matrix exponential by A = V DV −1

etA = eV DV
−1

= V etDV −1 (117)

etD =



etλ1

. . .
etλl

etα1 cos(β1t) etα1 sin(β1t)
−etα1 sin(β1t) etα1 cos(β1t)

. . .
etαm cos(βmt) etαm sin(βmt)
−etαm sin(βmt) etαm cos(βmt)


(118)

Based on this, let us consider the problem ẋ = Ax. To solve this, following theorem is useful;

Lemma 3 (Linear independence)
i)Vectors (v1, . . . , vl, a1, b1, . . . , am, bm) are linearly independent.
ii)When given a real vector x ∈ Rd, it is written as a form

x = c1v1 + · · ·+ clvl +
1

2
c′1w1 +

1

2
c̄′1w̄1 + · · ·+ 1

2
c′mwm +

1

2
c̄′mw̄m (119)

= c1v1 + · · ·+ clvl + Re
(
c′1w1 + · · ·+ c′mwm

)
, (120)

where cj lj=1 are real values and c′j
m

j=1
are complex values.

Proof i) is a direct consequence of the diagonalizable property ofA. As for ii), since (v1, . . . , vl, a1, b1, . . . , am, bm)
span d-dimensional linear space, thus we use this set as a basis and apply the eigen decomposition.

With this linear dependency in mind, we can solve ẋ = Ax as

Proposition 8 (Linear ODEs by a skew-symmtric matrix)
The initial condition is given as x(0) = c1v1 + · · ·+ clvl + Re (c′1w1 + · · ·+ c′mwm), the solution
of ẋ = Ax is given by

x(t) = c1e
λ1tv1 + · · ·+ cle

λltvl + Re
(
c′1e

µ1tw1 + · · ·+ c′me
µmtwm

)
(121)

= c1e
λ1tv1 + · · ·+ cle

λltvl + eα1tRe
(
c′1e

iβ1tw1

)
+ · · ·+ eαmtRe

(
c′me

iβmtwm

)
. (122)

Proof Wecan easily confirmeach element of a set (eλ1tv1, . . . , e
λltvl, e

µ1tw1, e
µ̄1tw̄1, . . . , e

µmtwm, e
µ̄mtw̄m)

satisfies the given ODE. Thus they are the solutions. Since they are linearly independent, we use
them as a basis for the decomposition, then we get the proposition.

As we can see that the real parts of the eigenvalues determine the exponential convergence or
divergence of the solution.

Note: In the above analysis, we assumed that A is diagonalizable. This is a strong assumption in
general because A is neither symmetric nor skew-symmetric or normal. To show the diagonalization,
the algebraic and geometric multiplicities of eigenvalues must coincide. To show this, one strategy is
to show that all the eigenvalues are distinct. As we had seen in the previous appendix, this is not
difficult for a random matrix in general.
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D.3. Proof of Proposition 4

Proof Recall that our proposed dynamics is given as

dx(t)

dt
= −(I + αJ)∇F (x). (123)

Let us define a functional as

L = (x(t)− x∗)>(x(t)− x∗). (124)

Then

dL
dt

= −2(x(t)− x∗)>(I + αJ) (∇F (x(t))−∇F (x∗)) . (125)

Then, from the taylor expansion and expressing its residual by integral, we have

dL
dt

= −2(x(t)− x∗)>
(∫ 1

0
(I + αJ)H(x∗ + τ(x(t)− x∗)) (x(t)− x∗) dt

)
= −2

(∫ 1

0
(x(t)− x∗)>(I + αJ)H(x∗ + τ(x(t)− x∗)) (x(t)− x∗) dt

)
. (126)

Since (I + αJ)H is almost surely diagonalizable, we will analyze the dynamics based on the
eigen decomposition. Followings are the notation of the eigenvalues and vectors: l real eigenvalues
λ1, . . . , λl and 2m complex eigenvalues, µ1 = α1 ± iβ1, . . . , µm = αm ± iβm. Thus, d = l + 2m.
We denote the corresponding eigenvectors as {vj}lj=1 for real eigenvalues and {wj = aj + ibj}mj=1

for complex eigenvalues {µj}mj=1 and {w̄j} for corresponding conjugate eigenvalues.
Then, let us define a d× d matrix V as

V = [v1, . . . , vl, a1, b1, . . . , am, bm]. (127)

Then, we can decompose (I + αJ)H(ξ) into a block diagonal matrix known as the Jordan canonical
form Golub and Van Loan (2012);

(I + αJ)H(x∗ + τ(x(t)− x∗)) = V DV −1, (128)
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where

D :=



λ1

. . .
λl

α1 β1

−β1 α1

. . .
αm βm
−βm αm



=



λ1

. . .
λl

α1 0
0 α1

. . .
αm 0
0 αm


+



0
. . .

0
0 β1

−β1 0
. . .

0 βm
−βm 0


:= A+B. (129)

Then,

dL
dt

= −2

(∫ 1

0
V DV −1 (x(t)− x∗) dt

)
= −2

(∫ 1

0
V (A+B)V −1 (x(t)− x∗) dt

)
= −2

(∫ 1

0
V AV −1 (x(t)− x∗) dt

)
≤ −2Re(λα1 (x(t)))‖x(t)− x∗‖2

≤ −2m′‖x(t)− x∗‖2 (130)

Then, from the Gronwall inequality, we get the proposition.
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Appendix E. Analysis of the Euler discretization (Proof of Proposition 5)

Proof From the discretized dynamics Eq.(18), subtract x∗ from both sides and set it as rk = xk−x∗,
we have

‖rk+1‖ = ‖rk − η(I + αJ)∇F (xk)‖. (131)

We define h(x) := x− η(I + αJ) (∇F (x)), then above equation can be expressed as

‖rk+1‖ = ‖h(xk)− h(x∗)‖. (132)

Then, we apply the mean-value theorem. There exists a point ξk = (1− t)xk + tx∗, t ∈ [0, 1) ⊂ R
(we express this ξk ∈ [xk, x

∗) ⊂ Rd for simplycity), such that

‖rk+1‖ ≤ ‖
(
I − η(I + αJ)∇2F (ξk)

)
‖‖rk‖. (133)

Here, the operator norm is used. Given a matrixM , it is defined as,

‖M‖ := sup
x 6=0

‖Mx‖
‖x‖

, (134)

and it is also characterized by the largest singular value s(M);

‖M‖ = ‖M †M‖1/2 = s(M), (135)

To bound ‖ (I − η(I + αJ)H) rk‖, we evaluate the singular value of H ′ = I − η(I + αJ)H . We
use the same notation in Appendix D.3. Note that from the Jordan canonical form in Appendix D.3,
we have,

H ′ = I − ηV DV −1 = I − ηV AV −1 − ηV BV −1, (136)

holds (A and B are the diagonal and skew matrices). We define P = I − ηV AV −1 and Q =
−ηV BV −1. From III.6.4 in Bhatia (2013), the largest singular value of H ′ (we denote it s(H ′)) is
upper bounded by the sum of the largest eigenvalues of P and Q (we denote them s(P ) and s(Q)).

s(H ′) ≤ s(P ) + s(Q). (137)

s(P ) depends on η. Let λS := Reλα1 (ξk) = min{λ1, . . . , λl, α1, . . . , αm} and λL := Reλαd (ξk) =
max{λ1, . . . , λl, α1, . . . , αm}. Then form Figure 5 where the vertical line is s(P ), and we can
upperbound s(P ) by the bold line in Figure 5. The bold line can be analytically calculated by the
definition of s(P ).

About s(Q), it is calculated by the definition of B

s(Q) = ηmax
l
βl, (138)

where β is the imaginary part of the eigenvalues (see Appendix D.3). Then, from Theorem 8.2.1 in
Golub and Van Loan (2012) (Gershgorin Circle Theorem), we can upper bound this as follows,

max
l
βl ≤ αmax

j

(
d∑
i=1

|Jij |

)
. (139)
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1
λL

2
λL
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λL + λS

η
1
λS

λL − λS
λL + λS

max{|1 − ηλS|, |1 − ηλL|}

Step size and convergence rate

|1 − ηλS|
|1 − ηλL|

Figure 5: Conceptual figure of the relation between the convergence rate and the step size

Let us define

r := αmax
j

(
d∑
i=1

|Jij |

)
, (140)

then, we obtain

s(Q) ≤ ηr. (141)

Based on these facts, we obtain

s(H ′) ≤ s(P ) + s(Q). (142)

We upper bound s(P ) + s(Q) using the relation shown in Figure 6 where the vertical line is
s(P ) + s(Q). From the figure we obtain the optimal step size as η = 2

λL+λS
.

Then, by substituting the optimal step size, we obtain

s(H ′) ≤ λL − λS + 2r

λL + λS
. (143)

Using this upper-bound of the singular value, we can upper bound the residual of rk+1 as

‖rk+1‖ ≤
(

1− (λS − s)
λL

)
‖rk‖ ≤

(
1− (λS − r)

λL

)
‖rk‖. (144)

Finally from definition,m′ ≤ λS and λL ≤M ′, we obtain

‖rk+1‖ ≤
(

1− (m′ − r)
M ′

)
‖rk‖. (145)
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0
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1
λL
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2
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η
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max{|1 − ηλS| + ηr, |1 − ηλL| + ηr}

Step size and convergence rate

|1 − ηλS| + ηr
|1 − ηλL| + ηr

Figure 6: Conceptual figure of the relation between the convergence rate and the step size

Thus, combined with the above bound, we get

‖rk‖ ≤ e−
m′−r
M′ k‖r0‖. (146)

Also, from Figure 6, if η ≤ 2
Reλd(α)+s and Reλ1(α) > r is satisfied, then the algorithm converges at

rk. Thus the condition is η ≤ 2
M ′+r andm

′ > r holds.
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Appendix F. Analysis of the Euler-leapfrog discretization

F.1. Proof of Proposition 6

Proof First, we express the Euler-leapfrog method in a matrix form. In the same way as the proof of
Proposition 5, we first change the gradient to the Hessian matrix. First, subtract (x∗, y∗)>, where
y∗ = 0, from the update equation, then we obtain(

xk+1 − x∗
yk+1 − y∗

)
=

(
xk − ηα

c Jyk − η∇F (xk − ηα
c Jyk)− x

∗

(1− ηc−1)(yk − ηαJ∇F (xk − ηα
c Jyk))− y

∗

)
=

(
h1(xk, yk)− x∗
h2(xk, yk)− y∗

)
=

(
h1(xk, yk)− h1(x∗, y∗)
h2(xk, yk)− h2(x∗, y∗)

)
, (147)

where we defined the function h1, h2 : Rd → Rd, as

h1(xk, yk) := xk −
ηα

c
Jyk − η∇F (xk −

ηα

c
Jyk) (148)

h2(xk, yk) := (1− ηc−1)(yk − ηαJ∇F (xk −
ηα

c
Jyk)), (149)

and from the definition

h1(x∗, y∗) = x∗ (150)
h2(x∗, y∗) = y∗ = 0. (151)

Then by applying the mean value theorem∥∥∥∥( xk+1 − x∗
yk+1 − y∗

)∥∥∥∥ ≤ ∥∥∥∥( ∇xh1(ξk, ζk) ∇yh1(ξk, ζk)
∇xh2(ξk, ζk) ∇yh2(ξk, ζk)

)∥∥∥∥∥∥∥∥( xk − x∗
yk − y∗

)∥∥∥∥ , (152)

where ξk = (1 − β)xk + βx∗, β ∈ [0, 1) ⊂ R and ζk = (1 − β′)yk + β′y∗, β′ ∈ [0, 1) ⊂ R (we
express them ξk ∈ [xk, x

∗) and ζk ∈ [yk, y
∗) for simplycity), are some constants in Rd which is

specified by the mean-value theorem. And the definition of the matrix norm is that given a matrix A,

‖A‖ = sup
x

‖Ax‖
‖x‖

, (153)

and

‖A‖ = ‖A†A‖1/2 = sd(A), (154)

where sd(A) is the largest singular value.
By calculating the Hessian matrix, we have

∥∥∥∥( xk+1 − x∗
yk+1 − y∗

)∥∥∥∥ ≤
∥∥∥∥∥∥∥∥∥∥∥
(
I − ηH(ξk+ 1

2
) 0

0 (1− ηc−1)I

)
︸ ︷︷ ︸

=H̃(η)

(
I −ηαc−1J

−ηαJH(ξk+ 1
2
) I + c−1η2α2JH(ξk+ 1

2
)J

)
︸ ︷︷ ︸

=L(η,α,J)

∥∥∥∥∥∥∥∥∥∥∥
∥∥∥∥( xk − x∗

yk − y∗
)∥∥∥∥,

(155)



Skew perturbation for optimization

where ξk+ 1
2
is specified by ξk − ηα

c Jζk. Since ξk and ζk are specified by the mean-value theorem,
ξk+ 1

2
is also a some constant in Rd which is specified by the mean-value theorem.

Next we analyze H̃L. From the definition of the matrix norm, we need to evaluate the singular
value of H̃L. From the submultiplicativity of the matrix norm, that is, ‖H̃L‖ ≤ ‖H̃‖‖L‖ holds. Thus,
we need to evaluate the norm of H̃ and L separately. Later, we consider when ‖H̃L‖ = ‖H̃‖‖L‖
holds.

We first analyze L. We evaluate its eigenvalues. We denote its eigenvalue as l. It is derived by
solving the following characteristic equation:

0 = det (lI − L) . (156)

We use the fourmula of determinant of the block diagonal matrix as

det

(
A B
C D

)
= detAdet(D −BA−1C), (157)

see Petersen et al. (2008). Then,

0 = det (lI − L)

= det
(
(1− l)((1− l)I + η2α2c−1JHJ)− c−1η2α2JHJ

)
= det

(
l2I − l(2I + η2α2c−1JHJ) + I

)
. (158)

Note that since H1/2J = H1/4(H1/4JH1/4)H−1/4, H1/2J , H1/4JH1/4 are similar, thus they
have common eigenvalues. SinceH1/4JH1/4 is a skew-symmetric matrix, it has purely imaginary
eigenvalues or 0 as eigenvalues. Thus let us denote the eigenvalues ofH1/2J as ±iωi, where ωi ≥ 0.
Let us define the unitary matrix U (since a skew-symmetric is normal, thus it is diagonalizable by a
unitary matrix), which is the set of eigenvectors of H1/2J . Then

0 = det
(
l2I − l(2I + η2α2c−1JHJ) + I

)
= det

(
U †
(
l2I − l(2I + η2α2c−1JHJ) + I

)
U
)

=
∏
i

(
l2 − l(2− η2α2c−1ω2

i ) + 1
)
. (159)

Thus we get

li =
2− η2α2c−1ω2

i

2
± 1

2

√
(2− η2α2c−1ω2

i )
2 − 4. (160)

If (2− η2α2c−1ω2
i )

2 − 4 ≤ 0, then

li =
2− η2α2c−1ω2

i

2
± i1

2

√
4− (2− η2α2c−1ω2

i )
2, (161)

and

‖li‖ = 1 (162)
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holds. The condition

(2− η2α2c−1ω2
i )

2 − 4 ≤ 0 (163)

can also be expressed as

η2α2c−1ω2
i ≤ 4, (164)

and if we express the largest singular value of J as sd, from Bhatia (2013), maxi ω
2
i ≤ s2

dM . Thus,
the above condition is satisfied if

η2α2s2
dc
−1M ≤ 4 (165)

holds. Thus, if we set α sufficeintly small, this conditin will be satisfied. Then∥∥∥∥( xk+1 − x∗
yk+1 − y∗

)∥∥∥∥
2

=

∥∥∥∥H̃(η)L(η, α, J)

(
xk − x∗
yk − y∗

)∥∥∥∥
≤ ‖H̃‖‖L(η, α, J)‖

∥∥∥∥( xk − x∗
yk − y∗

)∥∥∥∥
≤ ‖H̃‖

∥∥∥∥( xk − x∗
yk − y∗

)∥∥∥∥ , (166)

where we used the submultiplicativity of the matrix norm. Next we consider ‖H̃‖. We treat it as the
direct sum:

H̃ = (I − ηc−1I)⊕ (I − ηH). (167)

Thus from Bhatia (2013), we have

‖H̃‖ = max{‖(I − ηc−1I)‖, ‖(I − ηH)‖} (168)

Thus, for ‖(I − ηH)‖, from the analysis of the GD for strongly convex function, setting η = 2
m+M is

the optimal and it is bounded as ‖(I − ηH)‖ ≤ 1− 2m
m+M . Thus, if we setM ≥ c−1 ≥ m,

‖H̃‖ ≤ 1− 2m

m+M
(169)

holds. Thus, ∥∥∥∥( xk+1 − x∗
yk+1 − y∗

)∥∥∥∥
2

≤
(

1− 2m

m+M

)∥∥∥∥( xk − x∗
yk − y∗

)∥∥∥∥
2

≤ e−
m
M
k

∥∥∥∥( x0 − x∗
y0 − y∗

)∥∥∥∥
2

. (170)

For the convergence,

‖1− ηc−1‖ < 1 (171)

must be satisfied and this is equivalent to 0 < c−1 ≤ 2
η .

Next, we study the condition for α. As we confirmed, following condition must hold

η2α2s2
dc
−1M ≤ 4. (172)

Then,

α2 ≤ 4c(η2Ms2
d)
−1 (173)

is required for the convergence.
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Equality condition: Next, we consider when the equality holds for the submultiplicativity, that is
‖H̃L‖ = ‖H̃‖‖L‖. If condition is satisfied then we have∥∥∥∥( xk+1 − x∗

yk+1 − y∗
)∥∥∥∥

2

≤
(

1− 2m

m+M

)∥∥∥∥( xk − x∗
yk − y∗

)∥∥∥∥
2

(174)

and if ‖H̃L‖ < ‖H̃‖‖L‖ is satisfied then we have∥∥∥∥( xk+1 − x∗
yk+1 − y∗

)∥∥∥∥
2

≤ s
∥∥∥∥( xk − x∗

yk − y∗
)∥∥∥∥

2

. (175)

where s the largest singular value of ‖H̃L‖ and satisfies s < 1− 2m
m+M . Thus, if ‖H̃L‖ = ‖H̃‖‖L‖

is not satisfied, then we have the faster convergence. Since ‖L‖ = 1 as we had proved so far, this
condition is equivalent to ‖H̃L‖ = ‖H̃‖.

From the definition of the matrix norm, we focus on the largest singular value of H̃L and H̃ . Note
that the singular value of L is one as we proved so far. Also, note that eigenvalues and eigenvectors
of H̃ are real values, and those of H̃L can be complex values.

Let us express a eigenvector of L as w = a+ ib and define the corresponding eigenvalue as µ, of
which norm is |µ| = 1. We also express the pairs of eigenvalues and vectors of H̃ as {(vk, λk)}dk=1

and λ1 ≤ · · · ≤ λd. Assume that ws and {vk}s are normalized to 1.
If a, b corresponds to some {vk}s, that is

w = a+ ib = c1vk + ic2vk′ , (176)

where c1 and c2 are real values and c2
1 + c2

2 = 1 holds and since a and b is always linearly independent
thus k 6= k′. Here we assumed that the eigenvalues of H̃ are distinct. Then

‖H̃Lw‖ = |µ|‖H̃(c1vk + ic2vk′)‖ = ‖c1λkvk + ic2λk′v
′
k‖ =

√
c2

1λ
2
k + c2

2λ
2
k′ . (177)

If λ2
k ≥ λ2

k′ , then

‖H̃Jw‖ =
√
c2

1λ
2
k + c2

2λ
2
k′ ≤ |λk′ | ≤ λd = ‖H̃‖. (178)

From above discussion, if the equality in Eq.(178) holds, ‖H̃J‖ = ‖H‖ is satisfied. This means that
if w = vd, then ‖HJw‖ = |λd| = ‖H‖ holds. In the same way, if w = ivd, then ‖HJw‖ = |λd| =
‖H‖ holds. If a and b does not corresponds to vs, ‖HJ‖ < ‖H‖‖J‖ holds. The above discussion
can be applied when there is a multiplicity for eigenvalues. Thus if the eigenvector w is vd or ±ivd,
the equality can be satisfied. Here w = vd means that the eigenvalue of L is real, that means, li = ±1
and η2α2c−1w2

i = 0 or 4. w = ±ivd means that the eigenvalue of L is real thus li = ±1.
In the above, if λ1 = λ2 = · · · = λd, then for any k 6= k′, we expand a, b by v

a =

d∑
j=1

a>vjvj (179)

b =

d∑
j=1

b>vjvj . (180)
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Then we have

‖HLw‖ = ‖HJ(
d∑
j=1

a>vjvj + i
d∑
j=1

b>vjvj)‖ = |µ||λd|‖
d∑
j=1

a>vjvj + i
d∑
j=1

b>vjvj‖ = |λd|.

(181)

Thus, if all the eigenvalues of H̃ are the same, the equality always holds. This condition is equivalent
tom = M .

Thus, ‖H̃L‖ = ‖H̃‖ holds if m = M or when m 6= M , the eigenvalue of L is ±1 and its
eigenvector is corresponds to vd or ±ivd.

In conclusion, if

ker(H̃ − λdI) ∩ (ker(L− I) ∪ ker(L+ I)) = {0} (182)

is satisfied, andm 6= M is satisfied, ‖H̃L‖ < ‖H̃‖‖L‖ holds.
Next, we simply the condition

ker(H̃ − λdI) ∩ (ker(L− I) ∪ ker(L+ I)) = {0}. (183)

From the definition, if ker(L− I) = {0} and ker(L+ I) = {0} holds, then the above condition will
be satisfied.

To investigate ker(L−I)( or ker(L+I)), we study the singular values ofL−I( or (L+I)). This
is because if all the singular values are larger than 0, then ker(L− I) = {0}( or ker(L− I) = {0}).
We first discuss L− I . The discussion for L+ I is the same.

For that purpose, first, let us decompose L− I as

L− I =

(
0 −ηαc−1J

−ηαJH(ξk) η2α2JH(ξk)J

)
=

(
0 0
0 η2α2JH(ξk)J

)
︸ ︷︷ ︸

A

+

(
J 0
0 J

)(
0 I
I 0

)(
−ηαH(ξk) 0

0 −ηαc−1I

)
︸ ︷︷ ︸

B

, (184)

where A is symmetric and B is similar to a skew-symmetric (Note that JH is not a skew symmetric,
but it is similar toH1/2JH1/2. Thus they have common eigenvalues and eigenvectors. Thus JH has
purely imaginary eigenvalues.). Thus, the eigenvalues of A are real and B are purely imaginary.

Let s(B) and s(A) denote the smallest singular values of B and A. From III.13 of Bhatia
(2013), the smallest singular value of L − I is lower bounded by

√
s(B)2 + s(A)2. Thus if√

s(B)2 + s(A)2 > 0 holds, ker(L− I) = {0}. From the definition, s(A) = 0. Thus we need to
study when s(B) > 0 is satisfied.

Let us decompose B by B = L̃B̃ where

B̃ =

(
0 I
I 0

)(
−ηαH(ξk) 0

0 −ηαc−1I

)
, (185)

and

L̃ =

(
J 0
0 J

)
. (186)
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Suppose s(L̃) and s(B̃) denote the smallest singular values of L̃ and B̃. Then from III.6.14 of Bhatia
(2013)),

s(B) ≥ s(L̃)s(B̃). (187)

holds. Thus, if

s(L̃)s(B̃) > 0, (188)

holds, s(B) > 0 will be satisfied. From the definition of B̃, it is clear that B does not have 0 as
eigenvalues. Thus, s(B̃) > 0 holds. Then if

s(L̃) > 0 (189)

holds, s(B) > 0 will be satisfied. From the definition of the singular value, if kerL̃ = {0}, s(L̃) > 0
holds.

Therefore, in conclusion, if kerL̃ = {0}, then s(B) > 0 holds. This indicates ker(L− I) = {0}.
Then since L̃ = J ⊕ J , kerL̃ = {0} is equivalent to kerJ = {0}.

F.2. Derivation of Algorithm 1

Here we present the algorithm to tune J and α in the ELF.

Tuning method for c: First of all, we discuss how to set c. This is conducted by roughly estimating
m,M . For example, we can use the following relation.

‖∇f(x)−∇f(y)‖ = ‖∇2F (ξ)(x− y)‖ ≤ ‖H‖‖x− y‖. (190)

Thus,

m ≤ ‖∇f(x)−∇f(y)‖
‖x− y‖

≤M (191)

holds for any x, y. For example, we calculate ‖∇f(x1)−∇f(x0)‖
‖x1−x0‖ and set it as c, then the condition will

be satisfied. x0 is the initial point and x1 is an arbitrary nearby point.

Construction of J: From now on, we will consider how to generate J such that J̃ does not have
0 as eigenvalues. Thus, by constructing J carefully, 0 will not appear as eigenvalues. (Note that
J is d × d matrix, of which dimension can be odd. If the dimension is odd, 0 always appears as
eigenvalues.)

To assure these conditions, we propose to construct J as follows:

J ′ =



0 1 . . . 0 0
0 0 . . . 0 0
0 0 0 1 . . . 0
0 0 0 0 . . . 0
... . . . . . .
0 0 . . . 0 1
0 0 . . . 0 0


, (192)
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and then J = J ′> − J ′. Then J has eigenvalues ±i from the definition of the Jordan form of the
skew-symmetric matrix.

The reason that we prepared the matrix that has eigenvalues ±i is that we need to control the
largest and the smallest singular values of J due to the following reasons. Recall that the convergence
of ELF is characterized by ‖H̃L‖, and ‖H̃L‖ = ‖H̃‖‖L‖ is satisfied if the eigenvalue of L is real,
that is, in general, the eigenvalues of L is expressed by

li =
2− η2α2c−1ω2

i

2
± i1

2

√
4− (2− η2α2c−1ω2

i )
2, (193)

and if the above imaginary part disappears, that means ‖H̃L‖ = ‖H̃‖‖L‖. Thus, we need to satisfy

0 6= 4− (2− η2α2c−1ω2
i )

2 (194)

and

η2α2c−1s2
dM ≤ 4, (195)

by definition. Here, ωi is the eigenvalues of H1/2L. Note that if ωi = 0, the condition of Eq. (194)
never satisfied. Thus, ωi must be lower bounded by some positive constant. From the property of the
eigenvalue, |ωi| ≥ m1/2s1 holds, where s1 denotes the smallest singular value of J . Thus, if J has 0
as an eigenvalue, the condition of Eq.(194) is never satisfied. Also, too small ωi = 0 results in a
small imaginary part for the eigenvalue of L, which leads to a small acceleration effect. Thus, we
need to control the smallest singular value about J . Also, a too large singular value of J violates the
condition of Eq.(195). Thus, we need to control the singular values of J so that singular values will
not become too large or too small. Based on these observations, making J by Eq. (192) results in J
having ±i for all the eigenvalues, which is desirable.

However, sincemakingJ byEq.(192) is notmaking a randommatrix, the condition of Proposition 1
is not satisfied. Thus, we propose to add a very small Gaussian noise to generate the matrix. Then
it satisfies the condition and becomes diagonalizable. Moreover, we need to control the singular
value. This is achived by Theorem 8.2.1 in Golub and Van Loan (2012) (Gershgorin Circle Theorem).
Following the main paper, its singular value is upper bounded by s2

d ≤ maxi(1 +
∑

j 6=i |Jij |/d)2.

Tuning for α: Next, we consider the condition of α. Since the eigenvalues of L are

li =
2− η2α2c−1ω2

i

2
± i1

2

√
4− (2− η2α2c−1ω2

i )
2, (196)

and

η2α2c−1ω2
i ≤ 4 (197)

need to hold for the convergence. This is equivalent to

η2α2s2
dc
−1M ≤ 4. (198)

So, as for α, we set it η2α2c−1s2
dM ≈ 2 for example. This is because if η2α2c−1s2

dM are close to 0
or 4, then eigenvalues will be very close to ±1 and no acceleration occurs.
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From the construction of J , the largest singular value is estimated by

s2
d ≤ max

i
(1 +

∑
j 6=i
|Jij |/d)2 (199)

and lower bounded by

s2
d ≥ min

i
(1−

∑
j 6=i
|Jij |/d)2, (200)

where Jij is the realization of the element of J . If we choose ε very small, then sd are very close to 1
and step size is set so that ηM ≤ 2 holds. So we have to set α2 ≈ c

2η(1+ρmax)2
, then acceleration

occurs with high probability. The probability that sd becomes 0 is estimated by the next proposition.

F.3. Proof of Proposition 7

Proof We prove that when we generate J randomly, the probability that has 0 as an eigenvalue is
very small. From the definition of J and the Gershgorin circle theorem, the smallest eigenvalue of J
appears inside the circle, centered at 1 with the radius

∑
j 6=i |Jij |/d. Thus, if

∑
j 6=i |Jij |/d is smaller

than 1, J will not have 0 as an eigenvalue.
Since Jij follows Gaussian N(0, ε), its absolute values follows the folded Gaussian distribution.

By definition, the folded Gaussian distribution ofN(0, ε) has the mean of ε
√

2
π and the variance of ε.

Since each Jij is generated independently with each other, the mean of
∑

j 6=i |Jij |/d is (d−1)/dε
√

2
π .

Then we need to estimate the probability that (d−1)/dε
√

2
π is smaller than 1. This is easily estimated,

for example, by Markov inequality. We have that with probability 1− (d−1)/dε
√

2
π , (d−1)/dε

√
2
π

is smaller than 1. This indicates that the eigenvalue of 0 does not appear with high probability since
we assume that ε is very small.

F.4. Other implementation for the leapfrog discretization

Copied objective function: We can also consider different leapfrog schemes. To implement the
leap frog method, we prepare two sequence of parameters as {xk} and {yk}. Then the dynamics is

xk+ 1
2

= xk − ηαJ∇F (yk), (201)

yk+ 1
2

= yk − ηαJ∇F (xk+ 1
2
), (202)

xk+1 = xk+ 1
2
− η∇F (xk+ 1

2
), (203)

yk+1 = yk+ 1
2
− η∇F (yk+ 1

2
), (204)

where we copied the original objective function F (x), and we optimize F̃ (x, y) = F (x) + F (y).
The advantage of this approach is that we do not need the hyper-parameter c, which was appeared in
our main paper. On the other hand, we need to evaluate∇F (yk) in addition. Thus, we need twice
as much time for the gradient evaluations as in our main paper. As we had seen, c is tuned easily,
thus we considered this copying approach is computationally heavy and computationally inefficient
compared to the approach in the main paper.
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Different step sizes: We can consider the discretization, in which different step sizes are used for
the Euler discretization and leap-frog discretizations as:{

xk+ 1
2

= xk − η′α
c Jyk,

yk+ 1
2

= yk − η′αJ∇F (xk+ 1
2
),

(205)

{
yk+1 = yk+ 1

2
− η

c yk+ 1
2
,

xk+1 = xk+ 1
2
− η∇F (xk+ 1

2
).

(206)

This is more flexible but difficult to tune two step sizes in practice. Another promising way is that we
incorporate the step size of the leapfrog step as{

xk+ 1
2

= xk − α
c Jyk,

yk+ 1
2

= yk − αJ∇F (xk+ 1
2
),

(207)

{
yk+1 = yk+ 1

2
− η

c yk+ 1
2
,

xk+1 = xk+ 1
2
− η∇F (xk+ 1

2
).

(208)

To control the convergence condition of the leapfrog method, this approach requires tuning only α.
However, we also need to tune η in the whole, thus the difficulty in tuning η and α is the same as the
method in the main paper.

Other discretizations: Other than the leapfrog method, the promising discretization method is the
kind of backward discretization method. In optimization, they are known as the proximal steps. If the
dynamics are linear, then we can implement the backward step by calculating the inverse matrix of
the drift function. Thus, it is computationally demanding. Another way to implement the backward
discretization is to use the proximal step for a given convex objective function. However, since the
perturbation entails the skew-symmetric term, it is unclear how to incorporate it into the proximal
step calculation. Thus, we leave the approach of proximal step to future work.
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Appendix G. Eigenvalues of Newton’s method

In this section, we observe the property of Newton’s method. Newton’s method selects the next point
in an optimal way,

xk+1 = xk − ηdk, (209)

where the direction is chosen as a solution to the system

∇2F (xk)dt = ∇F (xk). (210)

This is equivalent to minimizing the quadratic approximation:

F (y) ≈ F (xk) +∇F (xk)
>(y −Xk) +

1

2αt
(y − xk)>∇2F (xk)(y − xk). (211)

We can understand this Newton method in terms of condition number as follows: let us introduce a
change of variables x = Uy. Then we consider minimizing F̃ (y) ≡ F (Uy) by a gradient descent.
Since∇F̃ (y) = U∇F (x). Thus,

yk+1 = yk − η∇F̃ (yk). (212)

Then, multiply U , we get

Uyk+1 = Uyk − ηU∇F̃ (yk), (213)

and this is equivalent to

xk+1 = xk − ηU2∇F (xk). (214)

Since

∇2F̃ (y) = U∇F (x)U>. (215)

Thus, if we choose U2 := ∇2F (x)−1, it will be an best choice in terms of the condition number.
Here all the eigenvalues of∇2F̃ (y) will be 1, thus condition number will be 1.

Next, we will observe the relationship between the Newton method and a skew-symmetric matrix.
Let us denote the spectral decomposition of∇2F (x) = V >ΛV where V is the orthonormal matrix
and Λ is the diagonal matrix whose entries are eigenvalues. Then we can set U = V Λ−1/2. Note
that there exists a skew-symmetric matrix whose matrix exponential is equal to this V . This is the
property of the Lie group. Then, we express it as V = eJ = I +

∑∞
n=1 J . Here, let us consider

rough approximation V ≈ I + J . Then,

U2 ≈ (I + J)>Λ−1(I + J) ≈ (I − J2), (216)

here for simplicity, we assumed that all the eigenvalues are similar. Thus, in this sense Newton’s
method is related to a skew-symmetric matrix, however, it is quite different from our acceleration.
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Table 2: Maximum and minimum singular values
Random Alg-1 optimal

Max 0.0002 1.00002 3.1488× 104

Min 5.1× 10−7 0.9999 5.64

Appendix H. Experimental settings and discussions

First, we discuss how prepared J in numerical experiments and show their singular values which
plays an important role.

About the random J , we first generated the upper triangular matrix with each entry following
standard Gaussian distribution. Then we divide all the entries by d so that the assumption ‖J‖F ≤
will be satisfied.

Next, J of our proposed algorithm is generated at ε = 1e− 4.
Finally, about the optimal J , we present the algorithm 2 of Lelièvre et al. (2013).

Algorithm 2 Generating optimal J
1: Input: Prepare an arbitrary orthonormal basis {ψi}di=1

2: for n = 1 . . . d− 1 do
3: Make a permutation of (ψn . . . ψd) so that

ψ>nHψn = max
k=n,...,d

ψ>k Hψk > TrH/d (217)

and

ψ>n+1Hψn+1 = max
k=n,...,d

ψ>k Hψk < TrH/d (218)

4: Compute n∗ such that ψn∗ = cosn∗ψn + sinn∗ψn+1 satisfies ψ>n∗Hψn∗ = TrH/d
5: By using a Gram-Schmidt procedure, change a set of (ψn∗ , ψn+1, . . . , ψd) to an orthonormal basis

(ψn∗ , ψ̃n+1, . . . , ψ̃d)
6: end for
7: Calculate the eigenvalues of Q = [ψ1, . . . , ψd]. Set them as {λi}di=1

8: Solve −λk+λj

λk−λj
ψ>j Hψk = ψ>j Jψk if k 6= j and −λk+λj

λk−λj
ψ>j Hψk = 0 if k = j.

9: Output: J

As for this optimal J , we found that it cannot satisfy ‖J‖F numerically.

Singular value of J : Here we plot the singular values of different Js because singular values play
important roles for the convergence analysis.

First, the singular values of J , which are generated randomly are very small and as shown in
Table 2, the maximum and minimum singular values are very different. As for J generated by our
algorithm shows that all the eigenvalues are concentrated near 1. Finally, as for optimal J , which
shows very large singular values and its histogram shows the long tail to the right. This distribution
of the singular value of optimal J makes the discretization difficult.

Setting α in continuous dynamics: As we have seen in Section D, the imaginary parts of the
eigenvalues of H + αJH will never affect the convergence behavior. There is no condition for α
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(a) Singular value of J generated randomly
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(b) Singular value of J generated by Algorithm
1
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(c) Singular value of J generated by optimal
method

Figure 7: Comparison of singular values of different J

in general. Thus, in our experiments, we set α as the maximum singular value of J for randomly
generated Js. As for optimal J , we set α = 1.

Appendix I. Additional numerical experiments

Here we present the additional numerical experiments.
First, we present the softmax linear regression optimization for multiclass classification with L2

regularization. Figure 8 is the results of the softmax linear regression using MNIST and UCI (wine)
datasets. We found that the proposed ELF method consistently outperformed the baseline GD.

Next, we present a least-square optimization using a sparse design matrix. The experimental
setting is almost the same as the discretized experiments in Section 5.1. The difference is the design
matrix A. We generated design matrix A with entries followingN (0, 1). Then we replace each entry
with 0 with probability 1−p. Here we consider p = 0.9 and 0.7. We considerN = 600 and d = 400.
The results are shown in Figure 9. We found that our proposed algorithm outperformed other methods
in all experiments. We found that Euler did not improve the convergence in the experiment with
p = 0.7.
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(a) Softmax linear regression on MNIST dataset
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(b) Softmax linear regression on UCI (wine) dataset

Figure 8: Convergence behaviors of softmax linear regression
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Figure 9: Comparisons of different discretization. p = 0.9 for (a) and (b). p = 0.7 for (c) and (d)
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