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Abstract

In many scientific fields, various phenomena are modeled by ordinary differential equations
(ODEs). Parameters in ODEs are generally unknown and hard to measure directly. Since
analytical solutions for ODEs can rarely be obtained, statistical methods are often used to
infer parameters from experimental observations. Among many existing methods, Gaus-
sian process-based gradient matching has been explored extensively. However, the existing
method cannot be scaled to a massive dataset. Given N data points, existing algorithms
show O(N?3) computational cost. In this paper, we propose a novel algorithm using the
state space reformulation of Gaussian processes. More specifically, we reformulate Gaus-
sian process gradient matching as a special state-space model problem, then approximate
its posterior distribution by a novel Rao-Blackwellization filtering, which enjoys O(N) com-
putational cost. Moreover, our algorithm is expressed as closed forms, it is 1000 times more
faster than existing methods measured in wall clock time.

Keywords: Gaussian process, state space model, gradient matching

1. Introduction

In scientific fields ranging from physics to biology, many natural phenomena are often de-
scribed by models based on ordinary differential equations (ODEs) (Butcher, 2016). How-
ever, the parameters of ODEs are difficult to measure directly. Thus, parameters need to
be estimated from observations, which are given as time-series data.

Unfortunately, many interesting phenomena are described by non-linear ODEs, which
do not have closed-form solutions. This problem has traditionally been bypassed via com-
putationally expensive numerical integration of ODEs (Tarantola, 2005). Due to numerical
integration, using standard maximum likelihood estimation results in computationally ex-
pensive since every time we update parameters, we need to repeatedly integrate ODEs
numerically.

To circumvent the problem of high computation costs in maximum likelihood estimation,
gradient matching methods have been proposed (Calderhead et al., 2009). These methods
have many variants, and we briefly explain their intuitive principle following Calderhead
et al. (2009). The principle of gradient matching is composed of the data interpolation (DI)
and parameter adaptation (PA) steps. In the DI step, we develop a smooth interpolation
of the underlying dynamics from noisy observations based on statistical methods. In the
PA step, we first compute the time derivative based on the smoothed interpolation and
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compared it with the time derivative obtained from ODEs. Then, the parameters are
estimated by adjusting or minimizing the mismatch between them.

Currently, Gaussian process (GP) based methods (Calderhead et al., 2009) and many
extensions (Dondelinger et al., 2013; Macdonald et al., 2015; Gorbach et al., 2017; Wenk
et al., 2018) is widely used because of the flexibility of GP. The key idea of GP-based
methods is that when we use a time differentiable kernel, a time derivative of GP is also
GP. Thus, if we construct GP prior based on observations, this also provides GP over a
time derivatives of the system. Thanks to this property, the GP-based DI step provides us
with a natural way to conduct the PA step. However, existing GP-based gradient matching
suffers from high computation costs when we apply it to very large data.

A drawback of the existing methods comes from both the DI and PA steps. In the
DI step, GP requires a massive computational cost, which is O(N?3) for N observations.
There are many methods to reduce the computation cost, such as a sparse GP and low-
rank approximation of the kernel. These methods choose typical M data points or optimize
separate M inducing points and reduce the computation cost to O(M?N). However, when
the underlying process is highly nonlinear, it is unclear how to choose such points and how
much bias and variance they will cause to the parameter estimation.

Even if we can construct smoothed interpolation, the computation cost of the inference in
the PA step is also demanding. A typical inference step of GP-based gradient matching relies
on Markov Chain Monte Carlo (MCMC) (Calderhead et al., 2009). In existing methods, the
dimension of the posterior distribution is O(N), which can be high-dimensional. Thus, the
mixing speed of MCMC becomes very slow, and we need a vast number of trials to obtain
reasonable results. Also, we need the O(N?3) or O(M?N) computation cost to evaluate
the proposal distribution. Thus, the MCMC based PA step is difficult to be applied to a
massive dataset.

Gorbach et al. (2017) proposed a scalable method in terms of the number of states in
ODEs. However, their method suffers from O(N?3) computational cost when performing
natural parameter evaluation at each step during the evidence lower bound optimization.

This lack of scalability for the number of observations in existing work is problematic
when we have to treat very long observations. For example, to simulate nonlinear dynamics
exactly, we use small time steps to reduce the discretization error. This often results in a
vast amount of data points. Unfortunately, existing methods cannot be applied to such a
problem and need heuristic sub-sampling to reduce the number of data points. To overcome
these problems of the existing methods, we propose a scalable gradient matching method
based on the state-space representation of GPs.

It is known that GPs can be reformulated as state-space models for time series data
(Solin et al., 2016). Once we reformulate GP as a state-space model, we can take advantage
of efficient algorithms for state-space models whose computation cost is O(NN). Thus, the
state space formulation can drastically reduce the computation costs. Then we derive a
novel algorithm of gradient matching based on the combination of Rao-Blackwellization
particle filtering. Our algorithm enjoys small computation costs with high accuracy.
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2. Background

In this section, we first introduce the existing GP-based gradient matching method. Next,
we briefly review the state space reformulation of GPs.

2.1. ODEs and notations

First, we introduce the notations of ODEs. Consider a K-dimensional continuous dynamical
system whose dynamics is described by a set of K states, z(t) = [x1(t)---zx(t)]" with K
set of ODEs:

= fr(x(t), 0, 1), 1
R O %) (1)
where 65, € R? is a parameter vector of ODEs. We express the whole parameters as 6 for
simplicity. For simplicity, we assume that each state is one dimensional, x(t) € R. We
are interested in non-linear dynamics, that is, f is non-linear and no closed-form solution
is available. We assume that we only observe the noisy state y:

pr(Yklzk) = N(yg|zg, ox), (2)

where N denotes the standard normal distribution. When we observe ODEs at N time
points, we express it as

Y(tn) = 2(tn) + €(tn), 3)
and assume that t; < --- < tn holds. For convenience, we express the observed discrete
states as the matrix,

X =[z(t))---x(ty)] = [x1---2x] € REXN, (4)
Y =[y(tr)---ytn)] = [yr---yx] " € REXY, (5)

where xj, = [x(t1) - - - 21(tn)] € RY denotes the k-th state observations. In the same way,
we define X as the matrix of K states and N observation points. We also use y.; to express all
the observations until time ¢. We also express @ ,, 1= zx(t,), and @, := [z1(tn) -+ - 2x (tn)]
for notational simplicity.

Our goal is to infer the state X and the parameter 6 given the observations Y. Since
we want to infer the uncertainty of the estimated parameters and states rather than point
estimates, we will infer them in a Bayesian way. Thus, our goal is to derive the posterior
distribution about (6, X) conditioned on the observation Y. With this notation, we can
express Eq.(3) as

p(Y|X) = [T T Nk(tn)lzx(tn), on). (6)
kK n

This is used as a likelihood function.
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2.2. Gradient matching

To circumvent the numerical integration of ODEs explained in Section 1, Calderhead et al.
(2009) proposed building GP prior on each latent state xj, of which covariance is defined
by a differentiable kernel ky(%;,t;), where ¢ is a hyperparameter of the kernel. We express
the corresponding Gram matrix by Cy, where (Cy) ;) = kg(ti t;). We put the Gaussian
process prior on xj with mean zero and covariance Cy, ,

pr(Tk|dk) = N(2k|0,Cp,). (7)

Then we construct K number of GPs, each corresponds to each ODEs for xj.

Since a GP is closed under the linear operation and the differentiation is a linear op-
eration, the derivative of a GP is also a GP. Thus, we can derive the distribution over
derivatives conditioned on the states at the observation:

p(Tk|Tk, d) = N(Zk| Dy, Br), (8)
o —1

By = Cgk B Célbk Cd:klc;ﬁ:’
where
, d d
()i = | 50| alty) | = Tho (0),2(6)] )
t=t; t=t;

d d

<Cgk)i’j = %@k% (x(t)7x(t/)) (10)

t=t;,t'=t;

Then, we incorporate the mechanism of ODE into a joint distribution. We model the rela-
tionship between the output of an ODE whose input is  and & as the Gaussian distribution,

P(Tpelre, 0,) = N(Zkt| fro(we, Ok), Vi) (11)

Following the product of experts approach, we connect the two distributions Eqgs.(8) and
(11) for ,

P(X|X,0,7,0) o [ [ plaxlor, 9)p(d.r, 2t Oks 10), (12)
kn

where X is defined is the same way as X. The intuition of this approach is that the resulting
density only assigns high probability if both experts assign high probabilities, that means,
both the ODE model and the observed data agree well (Wenk et al., 2018). We show the
graphical model of this expert model in Fig 1.

Then by introducing the prior distribution p(6), p(7), p(¢), we obtain the joint distribu-
tion for (X, X, 6,7, ),

k,n

(13)
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Figure 1: Graphical model of gradient matching

where we defined fy, x(xyn) == fi(xt,,0)) for simplicity. We can analytically integrate out
about #. Finally, we incorporate the likelihood function of Eq.(6). Then we obtain the joint
distribution:

p(Y, X,0,7,,0) o< [ [ N(lzr, o) N (£ (X, 04) | Dy, Br + i) x
K

N (2110, Cg,, )p(0k) (D) (Vi) (0k), (14)

where (X, 0r) = [fi(4,),-- -, fe(zey)]T € RY. Thus, we can obtain the posterior distri-
bution from this joint distribution. There are two ways to obtain the posterior distribution:
one is to use the sampling method such as MCMC, and the other is variational inference.
Since we simultaneously treat all the data points and dimensions of the random variables
of the posterior, we call this existing GP-based gradient matching the batch GP method.

2.3. State-space Gaussian process

When we treat one-dimensional data that has a natural ordering, we can exploit that data
structure. Time series data is a nice candidate for this. Surprisingly, we can reformulate
one-dimensional time series GPs to corresponding state-space models (SSM) (Sarkka et al.,
2013; Solin et al., 2016, 2018; Nickisch et al., 2018). A GP prior on one dimensional times
data zy(t) (Here k is the k-th dimension of z(t) following the notation in the previous
sections) is equivalent to following SSM:

ik(tn) ~ N(ik@n)’Ak,nflik(tn—l)a Qk,nfl)a yk(tn) ~ p(yk(tn)‘h—rik(tn))a (15)

where X (t,) € R™ is the state of the SSM, and A € R™*™ Q € R™ ™ h ¢ R™*! are
transition, noise, and measurement matrices, respectively. As we explained below, m and
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these matrices are completely determined by a choice of a kernel function of the original
GP.
The relation between observed data xx(t) and Xj(t) is

%5.(1) = [op(t), dn(t), (1), ... ]T € R™, (16)

and thus, X (t) represents high order time derivative information. Here, m, the dimension
of the SSM, is determined by the choice of the kernel matrix of the original GP.

As for transition and noice matrices, when we use a stationary kernel that is, k(¢,t') =
k(t — '), following conditions are satisfied: A,, = exp(FAt,) with At, = t,4+1 — tp, and
Qn = Py — AnPOOAI where P., is the solution of the Lyapunov equation, that is, P =
FPy — P FT +LQ.LT =0.

For simplicity, we focus on using Matérn(v = 3/2) kernel:

k(t,t') = P(1+ VB[t — t'| /) exp(—V3|t — | /1), (17)

which is a common choice in time series GPs and we use this kernel function in this paper.
Here [ and I’ are hyperparameters of Matérn(v = 3/2) kernel. Then, the dimension of SSM
is determined as m = 2 and moreover:

0 1 ? 0
F:[—)\Q —2>\]’ Pm:{o AW]’ (18)

where A = v/3/I" and , h = [1,0]". Thus, using Matérn(v = 3/2) kernel, SSM incorporates
[k (t), 2k (t)] for its linear dynamics.

3. Proposed method

In this section, we propose a gradient matching algorithm based on the state-space refor-
mulation of GPs.

3.1. State space gradient matching

To reduce the large computational cost of GPs in gradient matching, we propose to trans-
form GPs in gradient matching into SSM as we had seen in Section 2.3. This reformulation
enables us to use sample efficient and online setting algorithms in SSM. Since Eq.(15) is a
linear state-space model and a Gaussian likelihood is used for gradient matching, we can
use the linear Bayesian filter (Sdrkka, 2013) to estimate the posterior distribution of the
underlying dynamics. This algorithm enjoys O(N) computational cost, which is smaller
than the computational cost of original GP, O(N?).

First, we reformulate the joint likelihood of gradient matching in Eq. (14) into SSM as
follows under Matérn(v = 3/2) kernel:

p(Y, X? Xa 9, v ¢) 8 HN([:Ek,nv j:kﬂ’b]—r |Ak,n—1 [xk,n—la -’tk,n—l]—ra Qk,n—l)
k.n

Tns 0k)P(Ok)P(Dk)P(vk)p(ok)  (19)

and ¢ = [I,I']. We call our approach gradient matching state-space model (GMSSM).

X N &kl for, k(@n) Ye) N (Ykn
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Algorithm 1 Augment state (Naive particle filtering)

Draw S particles from the prior p(zg, @0, 0y) and set the all weights w = 1/5.
fort=1to T do
1)Update the particles by Eq.(20)
also 0;41 = 0; + €, € is small noise.
2)Update weights by Eq.(21)
3)If the effective particle number Eq.(22) is low, perform resampling.
end for

Algorithm 2 Resampling in the particle filtering
1)Interpret the each weight wéf) as the discrete probability which we obtain mg).
2)Draw S samples from the discrete probability distribution in step 1

3)Set all the weights as 1/S

Next, we need to estimate the posterior distribution p(X,0|Y) from the obtained joint
distribution. For SSM, a widely used approximation is particle filtering shown in Alg. 1.
However, we found that naive particle filtering has significant problems in our model (see
nection 3.3 for details). To solve problems in naive particle filtering, in Section 3.4, we will
introduce our filtering algorithm shown in Alg. 3.

3.2. Naive particle filtering

In this section, we briefly explain the naive particle filtering shown in Alg. 1. In particle
filtering, we approximate the posterior distribution by weighted samples. For example each
particle in Eq.(19) is composed of the tuple of weights and state-space (wg), {x,(fl)n, iy, n}k 1)
which means the [-th particle for k-th dimension of the state at time ¢,,. Particle ﬁltermg is
composed of two steps: one is updates of particles by proposal distributions and the other
is updates of weights of each particle. In this work, we use the transition matrix Ay, for
the particle updates,

l (1 l l
[xl(e)n+1’xl(c)n+1] NAkn[xé)n,xé)n] t6 (20)

where € ~ N(0, Q). To infer 6, a naive approach is using the augmented space method,

with which we extend the state space from (xg)n, x,(f)n) to (xg)n, :cg)n, Hl(fl)n). Here we assume

that a dynamics of @ is defined as 0( ) 1= = Ok, In practice, we add a small Gaussian noise
for regularity (Kitagawa, 1998). The beneﬁt of this augmented method is that we can avoid
the iterative filtering steps, which are required in the maximum likelihood approach, such
as the EM algorithm.

We update weights w() in proportion to the likelihood function. In our setting, we
multiply the likelihood of the observation and the ODE condition:

wld ocuply TING T g @) N (a2 on) (21)
X ,n
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When weights become small, the effective particle number defined as

S -1
iy = (Z (ws>)2) (22

l

become small. This leads to inefficiency. A common approach to eliminate this problem is
resampling shown in Alg.2. The resampling algorithm means we draw new .S samples from
the discrete distribution composed from the weighted particles which are obtained by the
sequential monte carlo until now.

3.3. Problems of naive particle filtering in Alg. 1

We found that Alg. 1 works poorly in our setting. The drawback comes from two points. The
first drawback is the property of the augmented space for 8. Practically, Alg. 1 suffers from
poor exploration in the parameter space since the dynamics of 6 is a Brownian motion,
which is completely random. Thus, to get reasonable performances, we need extensive
hyperparameter tuning. The second drawback comes from a lack of information about & in
the observation. This missing information results in too large uncertainty of the posterior
distribution of parameters. To solve these problems, we develop an approximation based
on variational inference and particle filtering.

3.4. Rao-Blackwellization filtering

Ideally, in Bayesian inference, problems which we discussed in Section 3.3 should be solved
by marginalizing out & and 6 from the joint distribution at each time steps. Then we use
the distribution of x where & and # are marginalized out for updating weights of particle
x. Then estimate # and 6 by using the conditinal distribution p(&|z) and p(f|x). This
ideal strategy is called Rao-Blackwellization (RB) filtering (Kantas et al., 2015). We apply
such a marginalized particle filtering as we explained in the below and our algorithm is
summarized in Alg. 3.

3.4.1. STEP I): INITIAL STATE CALCULATION

First, we focus on the initial state ¢ = 1. Then the posterior distribution is proportional to
the joint distribution given as

Py, z1, @1, 0) o< [ [ N(@ealforn (@), )N (yp |z, on)p(a1)p(1)p(0k)- (23)
k

Here, we omit p(¢),p(o) and p(y) for simplicity. Then we consider to approximate 1 by
RB filtering which needs to integrate out 5 and . When we assume that p(z1), p(Z1),
and p(6y) are the Gaussian distributions. We assume the linear condition for parameters in
ODE, that is, we can write the ODEs:

d
four(@) = can(@)a i + cop() (24)

=1
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and we define ci(z) := [c14(2),...,car(®)]". This assumption is not strong since it is
wide enough to cover many interesting nonlinear dynamics (Butcher, 2016) since nonlinear
dependency on the state x is available via cg(x).

Now all the distributions in the joint distribution are Gaussian and parameters in ODE
are linear dependency, we can integrate out @51 and 6 in p(yi,zx1,&k,1,0). Assume that
(k1) = N(Zr1|piy s 0y, ) and p(Or) = N(0k|pe, ., 00, ,). Then, we get the conditional
posterior analytically

p(¢k,1|xk,l>y1a 9) = N(ik,1|uik,1 ('rl)vo-ﬂ'ka (xl))v (25)
lu’ik,l($l) = ((Uﬂbk,l)_l + ’7];1)_1((Uik,1)_1uik,1 + '7];1fk,0(x1))7
Ui‘k,l(‘rl) = ((0'3'71@,1)71 + 7];1)71)7

and

p(Ok|zk,1, 1) = N(Ok|po, , (1), 00, , (1)), (26)
pio,, (21) = (0, (1) + )~ (Wi, (1) — cro(21)) 00, (z1)ck(21) + 09, , (1) 16, »

-1
0, (01) = (03] + (O3, +7) er(@)en@))

Since we cannot obtain explicite form for p(z 1|y1), we approximate it by particle filtering.
First, we draw S samples from the prior distribution p(z;). We then set the weights

w(()l) =1/Sforalll=1,...5. We update weights by using the marginalized likelihood:

w%l) x L(l)(:vgl))w(()l) H N(yk1l7k1, ok), (27)
k
_i(oa‘ckg +"/k+ck(x1)—r‘79k,1Ck(xl))il(/‘ik,l_(Ck(xl)“9k+ck’0($1)))2

1
LW () =]
k

\/QW(U@C’I + Ve + Ck(xl)Tagk,lck(xl))

Then, we get the approximation of the posterior:

TCADE }:ww —a). (28)

Using this, we calculate posterior samples of &1 and 6 by exact conditional distributions

Egs. (25), (26):
l
x&—mm v%“ e~ N(0,1), (29)
05 = to,., () + 1/ o0, e~ N(0,1). (30)

Here, we express samples of 0,(;) as 0,(6{)1 to express that these 6 incorporate the observation
at time t = 1. In this way, we marginalize & and 6, which does not relate to observed data
y directly. As we will see in experiments, this marginalization significantly improves the
naive particle filtering. We repeat a similar calculation after ¢ = 1 as we explain in the next
section.
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3.4.2. STEP II): STATE-SPACE TRANSITION

Next, we consider at ¢ = n and our goal is to derive the posterior distribution expressed as

P(fﬂk,m itk,na 9k|i7:n—17 Lin—1, y:n—l) X N(i‘k,n|f9,k(xn)a ’Yk)N(yk,n|$k,nu Uk)

X N([xk:,na :.Uk,n]—r |Ak‘,n—1 [ajk,n—la jjk‘,n—l]—ra Qk,n—l)Q(eku‘:nfla y:nfl)- (31)

Here, q(0|z.n—1,Y:n—1) is the posterior distribution of parameters until timen t = n — 1. If
q(0|z.n—1,y:n—1) is the Gaussian distribution, then since all the related distribution are the
Gaussian distributions, we can proceed the calculation almost in the same way as we had
done in Section 3.4.1. However, as calculated in Eq. (30), ¢(6|x,.n—1,¥:n—1) is an empirical
distribution and not the Gaussian distribution. Thus, we approximate this as Gaussian
distribution by calculating weighted mean and variance:

(32)

Hin—1 = n 10kn 10

l
Ek:,n—l = Z k n—1 ﬂk,n—l)T(el(@)nfl - ,uk,n—l) (33)

w
nll

and set this as ¢(Ok|®.n—1,Yn—1) = N(Ok|tkn—1, Lk n-1). Using the Gaussian distribution
not an empirical distribution significantly improve the efficiency of the algorithm. Then,
we can analytically calculate the conditional distributions in the same way as Section 3.4.1.
We can proceed RB filtering in the following steps; First, we update x&l_l to ac,(j)n using

SSM:

xg) = (Akn-1)1; xl(cl,)n—l + (Akn-1)19 :tl(fl,)n—l +1/(@rn-1);y6, €~ N(O,1). (34)

s

Next, we update weights:

wy) oc L (x] HN Yk, |Thns Ok), (35)
k
H e — 2 (ot +vktck(@n) T Sin—1ck(@n)) "Lk — (Ck (Tn) e, n—1+Ck,0(zn)))?
: V27(0} + 3 + ex(wn) T Sg 0(wn))

where u,lc and U%: is defined below. Then, we calculate the conditional distribution

i, = fia, (20) + /04, (x)e, €~ N(0,1), (36)
1

)+
o)+ TR T ke + v fre (@),

My, n(xn) = ((
en) 7%,

(
Tip (Tn) = (

1 = (Qrn-1)g Qrn—1)1) @ — Ha) + 1,

ot = (Qrn-1)gy — (Qkn-1)g; (Qkn—1)11 (Qkn—1)19)s
ta = (Akn—1)11 Thn—1 + (Akn—1)19 Thn-1,

o = (Akn—1)9y Thin—1 + (Akn—1)99 Thn—1
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Algorithm 3 RB filtering (Proposed)

Draw S particles from the prior p(z1) and set the all weights w(()l) =1/S.
Calculate wgl) by Eq. (27).
Calculate 6) and i) by Eq. (29), (30).
for t =t to ¢y do

1)Calculate l‘](f) q. (34).

2)Update weights by Eq. (35).

3)Calculate 6} and & by Eqs (36),(37)

4)If the effectlve particle number Eq. (22) is low, perform resampling.

end for
(Option) Run backward smoothing

and

0 = o, (@) + \/ o0, (@))e, €~ N(O,1), (37)

v

10y (2n) = (0 + ) " (1 — ero0(n))oo, , (Tn)er(zn) + 0a, , (Tn)kn—14

09y, (Tn) = (Ek not T+ (ak + )~ lck(xn)ck(a:n)T)i

Now we get the approximation for ¢ = n. We repeat this update until t = N. Furthermore,
this algorithm is the forward filtering. Thus inference of the parameter of 8 at an early time
is not so accurate. This means that the posterior for z; and &; for small ¢ strongly depends
on our prior p(z) and p(z&). Thus, if we are interested in infer x; and &; for small ¢, we should
do backward filtering (smoothing). This is easily done since we reverse the calculation of
the conditional distribution and update weights for x in reverse order. See Appendix A.2
for the backward filtering (smoothing). Moreover, we use the Gaussian distribution for
p(z1) and use y; as a mean of the prior distribution. In summary, our algorithm is shown
in Alg. 3.

3.5. Hyperparameter tuning

In the previous section, we did not discuss hyperparameters, ¢, o, and v. As for ¢, which
is the hyperparameter of the kernel function, following Wenk et al. (2018), we estimate it
by running the GP regression before the gradient matching algorithm and maximizing the
marginal likelihood. In our setting, we maximize the marginal likelihood of SSM, in which
the ODE condition term is not included in the joint likelihood. Thus, we can calculate
the marginal likelihood analytically, which requires O(N) computational cost. Estimating
¢ separately from other parameters shows the state of the art performance and numerical
stability than the joint optimization with gradient matching (Dondelinger et al., 2013).

As for o and ~, if their prior distributions are the Gaussian distribution, then we can
easily integrate out them from the joint distribution and get the conditional distribution in
the same way as 6.
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4. Numerical experiments

We compared our method with the state-of-the-art method, FGPGM (Wenk et al., 2018).
FGPGM is MCMC based approach, and we discard the first 1000 samples as burn-in and
stop MCMC when obtained 1000 samples. About the wall clock time of MCMC, we mea-
sured the time from the beginning of the burn-in to finish sampling. Note that the time of
maximizing the marginal likelihood of GP regression is not included for both our algorithm
and FGPGM. All the detailed experimental settings are shown in Appendix B.

4.1. Lotka Volterra
The fist application of our algorithm is the Lotka Volterra system (Lotka, 1932),

71 = 0111 — Oam129,
fz = —93%2 + exxlxz. (38)

Thus, K = 2, and there are 4 parameters. This is used to study predator-prey interactions
and shows high non-linearlity. We follow the standard setting FGPFM (Wenk et al., 2018),
that is, true parameters are set as [0; = 2,02 = 1,03 = 4,04 = 1|. We generate the true
trajectory with the time interval 0.01 and add the observation noise with ¢ = 0.1 and
generate 400 data points.

First, we compared our proposed method (Alg.3) with the naive particle filtering (Alg.1)
to observe how marginalization works well. Here we only did forward filtering. For that
purpose, We observe the effective particle numbers. We compared the effective particle
number between the state-space model without ODE condition, naive particle filtering,
and our proposed method. The state-space model without ODE condition means the joint
likelihood does not include the ODE condition, p(Z|fg(z)). Since the state-space model
without ODE is equivalent to the original GP regression, its effective number of particles
must be almost as same as the true number of particles. The result is shown in the upper
row in Fig. 2 where 10000 particles are used. The state-space GP without ODE condition
has a high effective number of particles. The naive particle filtering suffers from a small
effective number of particles. Compared to it, our proposed method considerably improves
the effective number of particles. Moreover, thanks to the marginalization, we can reduce
the computational time. Next, we check the effectiveness of marginalizing out . Since
marginalization reduces uncertainty, we expect that it leads to improving the performance
of inference. The lower row in Fig. 2 shows this. When we use our method shown in the
red line, the parameter converges to the true value. On the other hand, in naive particle
filtering shown as the green line, the parameter does not converge when only using forward
filtering.

Finally, we compared our algorithm with FGPGM in terms of parameter estimation
performance and computational time. The results are shown in Table. 1. We used 500
particles for our algorithm, and we only did forward filtering since it is enough to estimate
parameters. Moreover, to check the computational cost of MCMC, we subsampled 100 data
points from the original 400 data points such that the interval of subsampled points is equally
located in [0,4]. FGPGM(N=100) denotes this subsampled result, and FGPGM(N=400)
means all 400 data points are used. The result shows that our method is competitive with
FGPGM(N=400) but much faster. It is quite a natural result that the fully MCMC method
FGPGM(N=400) shows the best performance, and it needs vast computation.
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Table 1: parameter estimation (true 6 = [2,1,4,1])
Method  Proposed FGPGM(N=100) FGPGM(N=400)

time(s) 42 8601 50375
0, 1.85 + 0.12 2.03 £ 0.02 1.95 4+ 0.09
6 0.974+0.05 0.99 = 0.01 0.98 £ 0.01
s 3.90+0.35 3.74 + 0.06 3.96 + 0.03
6, 0.99+0.09 0.92 = 0.02 0.99 = 0.01

Naive particle filtering: Proposed method No ODE model

Number of effective particles
10000 "r r ml"i-.‘"r,..,"mrwnﬁ,ﬂ ‘ A P ”,","."‘",. AV
8000

6000
4000

2000
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Figure 2: Effectiveness of RB technique

4.2. The Fitz-Hugh Nagumo sytem
The second example is the Fitz-Hugh Nagumo sytem:

a1 = 01(x1 — 23 /3 + 22),

Ty = —ell(xl — 0y + O3x9), (39)
which was introduced FitzHugh (1961) and Marsden et al. (1993) to model a certain cell
dynamics. This is also often used as a benchmark dynamics in ODE parameters estimation
framework. In our experiments, we define true parameters as #; = 3,02 = 0.2,03 = 0.2,
1 = —1,2z9 = 1. Actually this ODE is not linear with respect to parameters. Thus, we
transform the second ODE about iy as @9 = —60]z1 + 05 + 052 to apply our method.
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Table 2: The performance and computational time
Method Proposed(N=400) FGPGM(N=100) FGPGM(N=200) FGPGM(N=400)

time(s) 3.2 1676 7717 48555
”‘ﬂgf@? 0.02 + 0.005 0.1+ 0.03 0.06 + 0.03 0.04 + 0.02

First, we compared our proposed method and FGPGM in terms of estimation perfor-
mance and computational cost. The true data is generated for the time interval ¢ € [0, 20]
with the time interval At = 0.05 and add the observation noise with o = 0.1. Thus there
are N = 400 data points. Here we checked the parameter estimation performance by con-
sidering the L2 distance between estimated parameters and true parameters. Table. 2 shows
the experimental results. In this table, we used 2000 particles for our proposed method.
Same as the previous experiment, FGPGM(N=100,200) means we sub-sampled 100, 200
data points from the original 400 data points for comparisons. In our algorithm, we only
performed forward filtering since using only forward filtering is enough to estimate param-
eter 6. Our method is extremely fast and shows competent performance with the FGPGM.
About FGPGM, as we increased the number of the data points, the accuracy was improved,
but we needed longer time computational time.

Next, we studied the computational cost with respect to the number of data points, the
number of particles in our proposed method. We increase the data points from N = 1000 to
N = 10000. We also increase the number of particles P. The result is shown in Appendix C,
and we confirmed that the computational cost of our algorithm grows linear about the
number of data points also linear to the number of the particles.

5. Discussion

We first discuss the relation between our proposed method and standard SSMs. In SSMs,
the dynamics of the underlying process are directly modeled, and parameters, which should
be estimated from data, appear in transition matrices. Then, the inference is conducted by
forward filtering and backward smoothing. Then parameters are estimated by EM algorithm
or augmented space methods (Sarkké, 2013). However, as we mentioned, the augmented
space method suffers from computational and theoretical difficulties (Kantas et al., 2015)
and the EM algorithm needs multiple filtering repetitions for the convergence.

Compared to them, our gradient matching SSM is slightly different. First, we interpolate
the time series data by GP, then a true dynamics given by ODEs is incorporated into the
joint likelihood in the same way as the expert model. Then ODEs are not related to SSM
of GP, and thus, parameters do not appear in the transition matrix in SSM. Our proposed
method estimates parameters of the dynamics by conditional distributions and particle
approximation for the states. For that purpose, we integrated out about parameters 8 and
2. This results in an efficient and computationally fast algorithm.

When focusing on the kernel function, different kernel functions result in different SSMs.
Intuitively, when we increase v of the Matérn kernel, the dimension of the state of the
corresponding SSM becomes larger (Solin et al., 2016). Since each dimension of the SSM
corresponds to a time derivative of the state (e.g, [x,%,&,...]), we can incorporate higher-
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order time derivatives in SSM by using a Matérn kernel with large v. We can use those high-
order kernels (v > 3/2) in our formulation. However, since we assume that the underlying
ODE is a first-order ODE (& = f(x)), we need to integrate out higher-order time derivative
terms in SSMs. This is analytically available since all the related distributions in our SSMs
are Gaussian distributions.

Compared to other gradient matching algorithms, as we discussed in Section 1, our
algorithm shows linear order computational complexity about the number of the data points.
Moreover, we confirmed that our algorithm is remarkably fast in wall clock time. This is
achieved by the novel combination of the state space model reformulation of the Gaussian
process. Moreover, we developed an algorithm by analytically marginalized out & and 6,
which results in efficiency, cheap computational cost, and stability. Since our algorithm
is much faster than MCMC based gradient matching methods, thus we believe that our
algorithm can be used combined with MCMC based methods. For example, first, we run
our algorithm, which requires a small computational cost. Then, we can use the solution of
our algorithm as an initial distribution or proposal distribution of MCMC based methods.

Finally, our algorithm can be used in an online setting. However, for that purpose,
we need to develop the method of determining hyperparameters of a kernel function. We
believe that this is an interesting direction for future work.

6. Conclusions

In this work, we proposed a novel scalable algorithm for learning parameters in ODEs. Our
algorithms enjoy O(N) computational cost, which is a significant reduction compared to
the cost of O(N3) in existing methods. We reformulate the GP-based gradient matching
as the state-space model-based approach, then proposed the Rao-Blackwellization filtering
to approximate the posterior distributions. Our algorithm is not only scalable to the data
size but also much faster than existing methods measured in wall-clock time.
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Appendix A. Derivation of the Rao-Blackwellization method

A.1. Calculation of marginalization
Here, we present the exact calculation of marginalization. In this section, we consider time
t = n for simplicity.

Our purpose is to eliminate the effect of the & and 6 by marginalization. For that
purpose, we use the Gaussian distribution property. First, from the state-space model, we
have

p(ﬂfk,m ik,n’xk,nfly i'k,nfl)

_ N( x < (Ak,nfl)ll xk,nfl + (Ak,nfl)lg i'k,nfl > < (Qk,nfl)ll (Qk,nfl)lg >)
P s .

(Ak,n—l)zl Tkp—1+ (Ak,n—1)22 ik,n—l (Qk,n—l)Ql (Qk,n—l)QQ
Then, using the conditional distribution of the Gaussian distribution, we have

(40)

P(EnlTin) = N(Ernl (Qrn1)y; (Qra—1)11 @hn — Ha) + s (Qkn—1)gy — (Qrn—1)g (Qrn—1)11 (Qrn—1) 1)
p(ajk,n) = N(xk,n| (Ak,n—l)n Tkpn—1 + (Ak,n—l)lg ik,n—la (Qk,n—l)n)-

For simplicity, we express
p(i'k,n|xk,n) = N(ik7n|ﬂ]1€, Uli) (41)
Then by using the integration formula of the Gaussian distribution, we have

1

2%(0% + k)

. . . 1y - _
/ ity N (| f0 (20), ) N (k| 104, 01) = e~ 3 (kM) (o (@n))”,

(42)

In conclusion, the true conditional distribution that incorporate the ODE condition and the
SSM model is given as

Plaralern) = Nkl ((00) ™+ 2 ) 7 (0n) " i+ 7 fro(@n)), ((00) 7+ 7).

(43)
Next, from the marginalization about & we have
P 1) ;e_%(0'}%4"71@)71(M;lc_fk,G(mn))Qp(gk_). (44)
2m (o}, + k)
Then, we get
(2, 0) o H e 2@k T S0 (@) (g, . (45)
k (Uk + k)
We assume the linear condition for the parameter, that is, we can write the ODEs:
fro(x Zde/ )0ar + cro(), (46)

d'=1
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and we define ci(x) := [cx1(2),...,cka(x)]T And assume that p(6x) = N(Ok|ue,, Ze,)-
Then from the conditional distribution formula of the Gaussian distribution, we have

P(Or|rn) = N(Okltto, (2,) Xog(zn))s (47)
Hoy () = (0% + 7)1k — Ch0(@n)) S0, (1) Ck (Tn) + Sy () 1o

~1
Yo, (2n) = (Ee_kl + (U;i + ’Vk)_lck(xn)ck(:vn)T>

and we can analytically integrate about 6,

/p(ﬂﬂk,n, Ox)p(01)doO

6_%(Ullc‘i"‘fk‘i‘ck(wn)Tzé‘ka(wn))71(:U‘;le_(ck(x”)liek +ci,0(zn)))?
= . (48)
V27(0h + %+ x(wn) T g, k()

Then, we obtain the update equation for the particle filter using the above marginalized
distribution:

e—%(U}C-I-’Yk-FCk(mn)TEek i (2n) ™ (g — (e (@n) oy, +er,0(2n)))?

\/27r(ali + Yk + ck(zn) T X0, cr(2n))

For t = 1, since we do not have the distribution which comes from the SSM. Thus, when
we marginalize our , we do not include the transition distribution. Instead, we have a
prior distribution for &, thus we include p(&, 1) into the marginalization.

(49)

L™ () =[] N(Wknlwkn, ox)
K

A.2. Backward filtering (smoothing)

We need to calculate p(zgn—1, Tk n—1|Tkn, Tkpn) from p(xg n, Trn|Tkn—1,Zkn—1). This is
easily done since this transition distribution is the Gaussian distribution, and its transition
matrix has an inverse matrix. Thus,

p(xk:,n—la i;k,n—l |xk:,n7 xk,n) = N(:Ek,n—la ik,n—l |A];711,1 [kaa :tk,n]—ra Ak,n—le,n—lAl—lﬁ—,nfl)-
(50)

Then we replace the mean and variance of p(xy r, Lk n|Tkn—1, Tk n—1) in Section A.1 with
this new conditional distribution. Then we can get the backward filtering (smoothing).

Appendix B. Experimental settings

In this section, we additionally describe experimental settings.

If the dynamics is stationary, it is recommended to use a prior distribution of P(z1,41),
which is specified by the Matérn kernel, that is P(x1,41) ~ N([z1,41]"|0, Px). However,
since ODE is not the stationary dynamics, we simply use p(x1) = N(z1|y1|]) and we use
the marginal distribution of N ([z1,1]"]0, Ps) for the prior of i.

Fig.(3) is the example of the fitting after backward filtering. The left side is by the
baseline naive particle filtering Alg.1, and the right side is our proposed filtering. We found
that naive particle filtering suffers from high bias which comes from the significantly low
effective number of particles in the algorithm.
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Appendix C. Additional experiment

The data generation setting is the same as Section 4.2 in the main paper except for At in
t € [0,20]. We decrease the interval time from At = 0.02 to At = 0.002. This means that
the number of data points increases from N = 1000 to N = 10000. Even N = 1000, it is
almost impossible to finish inference using FGPGM. We measured the computation time to
finish our algorithm for forward filtering in our Algorithm. The result is shown in Fig.4. In
the figure, P means how many particles we use in our algorithm. As we had expected, the
computational cost grows linear about the number of data points also linear to the number
of the particles. Thus, we confirmed that our algorithm is scalable to the number of data
points and much faster than the standard existing method.
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