
Proceedings of Machine Learning Research 157, 2021 ACML 2021

Learning to Switch Optimizers for Quadratic Programming

Grant Getzelman grantget@gmail.com
Mathematics and Computer Science Division
Argonne National Laboratory
Lemont, IL 60439, USA

Prasanna Balaprakash pbalapra@anl.gov

Mathematics and Computer Science Division &

Leadership Computing Facility

Argonne National Laboratory

Lemont, IL 60439, USA

Editors: Vineeth N Balasubramanian and Ivor Tsang

Abstract

Quadratic programming (QP) seeks to solve optimization problems involving quadratic
functions that can include complex boundary constraints. QP in the unrestricted form is
NP-hard; but when restricted to the convex case, it becomes tractable. Active set and
interior point methods are used to solve convex problems, and in the nonconvex case various
heuristics or relaxations are used to produce high-quality solutions in finite time. Learning
to optimize (L2O) is an emerging approach to design solvers for optimization problems.
We develop an L2O approach that uses reinforcement learning to learn a stochastic policy
to switch between pre-existing optimization algorithms to solve QP problem instances. In
particular, our agent switches between three simple optimizers: Adam, gradient descent,
and random search. Our experiments show that the learned optimizer minimizes quadratic
functions faster and finds better-quality solutions in the long term than do any of the
possible optimizers switched between. We also compare our solver with the standard QP
algorithms in MATLAB and find better performance in fewer function evaluations.

Keywords: Reinforcement Learning, Learning to Optimize, Quadratic Programming

1. Introduction

Modern optimization solver design is a challenging process. One needs to combine various
mathematical intuitions with an extensive experimental process to produce novel algorithms.
Learning to optimize (L2O) (Li and Malik, 2016) is an emerging subfield of machine learning
where one attempts to learn a new optimization algorithm automatically. This approach has
many positive elements, such as reducing the need for new mathematical ideas to produce
improved solvers and providing a natural increase in quality that scales with data and
compute resources. A significant advantage of learned optimizers is that if one has a known
distribution of problems that need to be solved repeatedly, then learned optimizers can be
adapted to that distribution and improve the solution speed and quality.

Quadratic programming (QP) is the task of solving optimization problems for quadratic
functions with boundary conditions. Quadratic functions naturally arise in many settings,
from agriculture to finance. QP is also a hidden workhorse of optimization because many

© 2021 G. Getzelman & P. Balaprakash.



Getzelman Balaprakash

trust-region methods use quadratic functions as models for more complex functions (Conn
et al., 2009). In the trust-region case, the boundary conditions are that of an n-dimensional
sphere. In our case, we focus on simple box constraints. Moreover, because of the complexity
issues of nonconvex QP, it can be used as a model for hard optimization. Nonconvex QP
hardness comes from the fact that the number of local minima can grow at an exponential
rate, and there is no efficient way to guarantee that a local solution is a global one.

In this paper we develop an L2O approach that uses reinforcement learning to learn a
stochastic policy to switch between pre-existing optimization algorithms in order to solve
QP problem instances. In particular, our policy switches between three simple optimizers:
Adam, gradient descent (GD), and random search (RS). Because QP is a classic and broadly
applicable problem type, we use this as a conceptual framework to investigate the challenges
of learning optimizers that scale across dimensions and problem complexity while having
access to an endless amount of easily generated problem instances. We show that our
learned optimizer outperforms each classical optimizer in our training set and generalizes
well on the test problem instances.

L2O methods for solver design have attracted increasing attention within the artificial
intelligence/machine learning (AI/ML) community. Some studies have focused on automat-
ing the design of methods for continuous variables in an attempt to outperform widely used
approaches in deep learning such as stochastic gradient descent (Andrychowicz et al., 2016;
Li and Malik, 2017, 2016). Other work has focused on learning combinatorial optimiza-
tion heuristics that can outperform existing search methods (Chen and Tian, 2019; Khalil
et al., 2017; Barrett et al., 2019). Although these studies have shown promising results on
some tasks, they ignore centuries-long understanding of optimization theory. Our proposed
approach is therefore orthogonal to current research trends in the sense that, instead of
automating the optimizer design, we aim to improve the efficacy of existing solvers, which
have been carefully designed based on rigorous mathematical foundations.

2. Problem Setting

We focus on solving QP problems defined by the following distribution and varying dimen-
sion.

minimize
x

f(x) =
1

2
xTMx+ bTx

where Mi,j , bi ∼ uniform(−1, 1)

MT = M

−10 ≤xi ≤ 10

(1)

Thus, f : RN → R is an instance of a scalar value function we want to minimize, defined
by the matrix M and vector b. Each of the values of M, b follows the uniform distribution
above and thus defines the problem distribution. M is required to be symmetric, and each
entry x is bounded in magnitude by 10. These bounds were the first and only ones we
tested. We chose to exclusively use them under the principle that experimenter degrees of
freedom introduce bias. We can think of our distribution as having two problem classes. In
one problem class the eigenvalues of M are all either positive or negative, and in the second
problem class the eigenvalues have mixed signs. We conjecture that as the dimension of M



Learning to Switch Optimizers for Quadratic Programming

increases, the probability that M is indefinite increases. We have tested this experimentally,
and such a conjecture is supported by Wigner’s semicircle law (Tao, 2012). Moreover, if we
instead use the normal distribution in Eq. 1 for M, b, then the result is known (Dean and
Majumdar, 2008). Thus, the percentage of clearly convex quadratic problems decreases,
and the percentage of problems that are in the NP-hard class increases as the dimension
of M increases. This give us access to NP-hard problems without explicitly excluding
convex ones; but even though we are able to change the ratio of our problem classes, we are
unable to truly control the average hardness of our problem. The downside of this problem
distribution is that its dependence on dimension could add to the difficulty of generalization.
On the other hand, for a classical optimizer it could introduce difficulties in selecting an
effective budget for the search for high-quality local solutions in a fixed time horizon.

3. Learning to Switch Optimizers with Reinforcement Learning

We formulate the problem of switching optimizers as a Markov decision process (MDP),
where an autonomous agent seeks to maximize its reward by repeated interaction with its
environment (Sutton and Barto, 2018). Formally, an infinite-horizon MDP with discounted
returns is defined as a tuple, (S,A,P,P0,R, γ), where S is the state space, A is the action
space, P : S×A×S → [0, 1] is the state-action-state transition probability matrix, P0 : S →
[0, 1] is the distribution over initial states, R : S×A → R, is the immediate reward function,
and γ is a discount factor to bound the cumulative rewards and trade off how far- or short-
sighted an agent is in its decision-making. The autonomous agent learns how to map the
current state sk ∈ S to an action ak ∈ A, by repeated interaction with the environment to
minimize a performance measure, which is a function of the cumulative discounted rewards.
In the context of switching optimizer, given a training problem instance i ∈ I, the current
state sk is the state of the solver at iteration k; the action ak is the optimization update
step at iteration k, namely, θk; and the immediate reward is the change in the objective
function value of instance i, fi(x), which is to be minimized by the solver, relative to
the best objective value found so far, R(sk, ak = θk) = min

l<k
fi(xl; θl) − fi(xk; θk). The

interaction with the environment of instance i consists of running the solver with action
ak = θk, transitioning to a new solver state sk+1, and receiving a reward R(sk, ak). The
task is therefore to learn a stochastic policy π(ak|sk), which is optimal with respect to the
performance measure. That is,

π∗ ∈ arg min
π

C(π), (2)

where π ∈ Π is a stochastic policy, Π is a set of all possible policies for a given solver, and
C(π) is the overall selection criterion (empirical risk measure) that defines the best policy.
This is given by

C(π) = EI,C[c(π, i)] =

∫
I

∫
C
c(π, i) dPC(c|π, i) dPI(i), (3)

where I is a training set of optimization problem instances, c(π, i) is the cost of the best
solution found by running the solver configuration π on an optimization problem instance
i ∈ I, C denotes the possible values of c, PI is a probability measure over the set I, and PC

is a probability measure over C. Thus, C(π) is an expected value, where the expectation



Getzelman Balaprakash

is considered with respect to both PI and PC and the integration is taken in the Lebesgue
sense. We assume that the probability measures PI and PC are not explicitly available
and the analytical solution of the integrals is not tractable. Therefore, the integrals are
estimated in a Monte Carlo fashion on the basis of a training set of optimization problem
instances. Here, c(π, i) is

c(π, i) = Eπ,i[
∞∑
t=0

−γtR(st, a
π
t )]. (4)

Note that by minimizing C(π), the agent learns to maximize the total expected discounted
rewards, thus encouraging the agent to dynamically switch the optimizers to achieve the
highest decrease in fi(xk; θk).

Given the set of training instances I, we seek to find a stochastic policy π∗ that is
expected to have the best performance over a set of possible instances. The key assumption
is that training instances are representative samples from the whole set. We seek to learn
from a moderately sized set of training instances and generalize to a possibly infinite set
of unseen test instances. This generalization is justified by the assumption that the same
probability measure PI governs the selection of all the instances (Birattari et al., 2002):
those used for selection and those that will be solved afterwards. The training instances are
representative examples of the whole set of instances.

We specify the details of our implementation as follows. We use a discrete action space
of three choices for A, and we use a continuous observation space of scalars, in contrast
to previous methods that focused on tensor inputs. Our observed values are the norm of
the gradient, function value, step count, dimension, norm of M , norm of b, norm of x,
and average norm of all the gradients up to and including the current step. We run the
optimizer for a fixed 100 steps. We use the stable baselines framework (Hill et al., 2018) to
implement our agent with OpenAI Gym (Brockman et al., 2016). We use the proximal policy
optimization algorithm (Schulman et al., 2017) PPO2 from a stable baseline and the default
multilayer perceptron agent, since it has good performance with minimal hyperparameter
tuning. Our experiments with recurrent networks did not provide meaningful advantage to
the collection of hyperparameters we tested, and again maximizing the performance of the
optimizer by extensive hyperparameter tuning was outside our set of goals.

The last issue is how to combine Adam with the other optimization methods, because
Adam uses the gradient variance and mean as inputs. Clearly, averaging the gradients
after an RS step with those produced by Adam would provide little value. Thus, we reset
the mean and variance computation RS step is called. In the projected gradient case, we
compute the rolling gradient mean and variance and store those values in Adam. For the
reinforcement learning reward, we pass the improvement over the best-known value of our
objective function. This proved to be unstable in practice. We needed to normalize relative
to each problem in order to get reasonable sample efficiency. We also noticed that passing a
negative reward would result in early stopping. Thus we modified the reward in two ways.
First, if the reward value is below zero, we pass zero. If we let xAdam denote our best x
value produced by Adam after 100 steps, then our reward at time step t can be expressed



Learning to Switch Optimizers for Quadratic Programming

as follows:

R(sk, ak = θk) =

{
max{minl<kfi(xl;θl)−fi(xk;θk),0}

f(x0)−f(xAdam) , if f(x0)− f(xAdam) ≥ 1
max{minl<kfi(xl;θl)−fi(xk;θk),0}

Dim∗100∗10 , if f(x0)− f(xAdam) < 1.
(5)

The motivation to provide this sort of reward is to encourage exploration; otherwise, the
agent could have a wrong incentive to focus on getting as close as possible to one local
minimum. The normalization process is as follows. First, we run Adam for 100 steps with
the same starting point and divide each reward by the difference between the starting point
value and the best value found by Adam if that is larger than one. If the value is less
than one, we divide by the dimension of the problem times one hundred times the upper
bound on x. We find experimentally that this type of normalization reduces the sample
requirements for reinforcement learning by reducing the variance in rewards.

4. Experiments

Our goal in the experimental evaluation is to evaluate the efficacy of the RL-based switch-
ing optimizer on the QP problems and show that the switching optimizer outperforms
each of the optimizers when considered in isolation and the widely used MATLAB QP
solver quadprog. The code for all our experiments can be found at github.com/Grant-E-
G/switching opt.

4.1. Setup and description

We generate each problem sampled from the appropriate n-dimensional distribution as
stated above. For training, we mix problems of different dimensions as follows. First,
we select uniformly from the set of possible problem dimensions {5, 10, 15}, and then we
produce a new problem based on the chosen dimension. We run our trainer for 8e7 steps
on 800,000 unique quadratic problems. We then generate 10,000 new test problems for
each test and evaluate on those. We run two types of tests: one in which all problems
share the same dimension and the second a mixed-dimensional case where the problems
are uniformly generated from a set of dimensions just as in training. In each test, we use
this fixed number of problems, so in the {5, 10, 15} mixed test we generate only 10,000 test
problems, not 30,000. We give greater experimental details in our supplement.

Evaluating the performance of our trained agent presents some challenges, because prob-
lems of the same dimension can have wildly different local and global minima. Another
problem is that most random starting points have different closest local minima. Moreover,
we want to evaluate our agent’s performance with respect to our distribution; we want to
see that our agent performs well on most problems, not just on a few outliers. We address
these issues in multiple ways. First, when we test our optimizers, we generate unique prob-
lems and starting-point pairs both sampled from a uniform distribution. We then feed each
pair into our optimizers. If we instead used independently randomly generated starting
points for each solver, we would need to increase our test cases dramatically as we have an
unknown extra variance due to initialization. Since we are pairing problems and starting
points, any unfairness needs to be seen at a distributional level, because we are looking at
distributional performance measures. When we began training RLSO using uniformly ran-
dom initialization, we decided to fix that hyperparameter instead of having another possible

https://github.com/Grant-E-G/switching_opt
https://github.com/Grant-E-G/switching_opt


Getzelman Balaprakash

experimenter degree of freedom with the issues it would cause. Second, we use the idea of
matched differences. Given the same problem and starting point, we subtract one solver
from our learned solver iteration-wise. Concretely, this means that if our learned solver is
better at a given timestep, then the reported value should be negative. Smaller negative
values mean a larger performance gap in favor of our learned optimizer, and larger positive
values mean a performance gap in favor of the alternative optimizer.

We also fix the step size of both Adam and gradient descent, since these values could
both be considered hyperparameters controllable by the machine learning agent. We follow
our general goal of reducing complexity by fixing them.

4.2. Comparison between RL-based switch and individual optimizers

Here, we show that our RL-based switch optimizer (RLSO) obtains better solution quality
in shorter computation time compared with RS, GD, and Adam on our training set of
dimensions.

We trained our RLSO on a uniform mixture of {5, 10, 15}-dimensional problem instances,
and we then evaluated on the same dimensions but with new testing data. Unlike in training,
however, we break testing into one testing set for each dimension. Figure 1 shows the mean
performance for our optimizers attempting to minimize the quadratic problem instances. We
compute the average performance with raw scores, not normalized ones. Thus, we average
the value of the quadratic problem at each time step. Explicitly, if we index our quadratic
problem by i, then at time step j we have the following formula: 1

10000

∑
i fi(xi,j), where

xi,j is our x value for the ith problem at time step j. We note that GD on average rapidly
converges to a local minimum whereas Adam on average has a much slower convergence rate
but finds a better local solution. RS is both slower and significantly worse than all methods
tested, and we note that RS scales poorly with dimensions such that the performance gap
increases. RLSO, on the other hand, finds higher-quality solutions with the speed of GD
and outperforms all other optimizers on average. In our training set of dimension {5, 10, 15},
as dimensions of the problem increase, the average performance gap between GD, Adam,
and RLSO stays at the same relative scale. However, the absolute value of the performance
difference increases with dimension in favor of RLSO.

(a) (b) (c)

Figure 1: Average performance of the (a) 5-, (b) 10-, and (c) 15-dimensional problem
instances up to 100 iterations.



Learning to Switch Optimizers for Quadratic Programming

We also explore the distributional properties of our RLSO by generating box plots. Be-
cause of space constraints, we show plots of relative performance only to Adam, since it
was the second-best solver experimentally in our particular problem setting with our chosen
hyperparameters. We use the matched difference and then look at the the distributional
properties. At time step j, we compute fi(xi,j,RLSO)− fi(xi,j,Adam) and compute the quar-
tiles Q1, Q2, Q3, mean over the set of all fi., where we have subindexed x by the problem,
time step, and solver, respectively.

We see that RLSO in 5, 10, and 15 dimensions outperforms not only on average but in
75% of all test problems at each iteration. From this information we conclude that RLSO
is not just producing high-quality outliers but is outperforming generally. We also note
that as the dimension of our problem increases, the range between Q1 and Q3 increases in
absolute terms. Thus, in higher dimensions, RLSO more frequently produces significantly
better solutions at each iteration.

Figure 2: Box plot of the 15-dimensional test. RLSO outperforms Adam on average at each
iteration, as demonstrated by the negative mean relative performance (green triangles).
Furthermore, the third quartile is always below zero, indicating that RLSO outperforms
Adam 75% of the time.

4.3. Interpolation

Here we show that our RLSO generalizes to new unseen problem instances with dimensions
that are in between the training problems’ dimensions. RLSO finds better solutions and in
a shorter number of iterations than the other solvers do.

We examine how our previously trained RLSO (see Sec 4.2) performs on 7- and 12-
dimensional problems. The experimental design is the same as in Sec 4.2, and all of the
metrics are evaluated in the same way. Figures 3 and 4 show our mean performance and
distributional performance over time, respectively. We see nearly identical relative perfor-
mance between solvers as in the 5, 10, 15-dimensional test problems, but at a different scale
due to changes in the underlying dimensions. RLSO minimizes faster and to an overall
better solution. RS performs the worst, and its relative performance becomes much worse
as the dimension increases. The distributional results are similar to those of Sec. 4.2 in the
relative performance but at a different scale due to the change in dimensions. We again



Getzelman Balaprakash

see that RLSO outperforms Adam on 75% of the test problems at each iteration for both
7 and 12 dimensions. Overall, for this type of generalization, RLSO performs as well as in
our training set of dimensions.

(a) (b)

Figure 3: Mean performance of RLSO, SGF, Adam, and RS over 100 iterations for the (a)
7- and (b) 12-dimensional test cases. A more negative “mean objective value” indicates a
better performance.

Dimension Score - Adam Score - GD Score - RS

5, 10, 15 mixed -211.67 σ = 278.16 -390.74 σ = 835.64 -1124.73 σ = 828.92
5 -59.76 σ = 76.6 -118.05 σ = 244.84 -249.11 σ = 114.98
7 -109.93 σ = 123.09 -198.24 σ = 389.66 -513.63 σ = 177.74
10 -203.7 σ = 204.42 -362.75 σ = 676.09 -1030.89 σ = 271.53
12 -273.63 σ = 273.02 -487.49 σ = 881.58 -1437.72 σ = 345.27
15 -387.85 σ = 367.2 -690.09 σ = 1205.36 -2138.52 σ = 440.8
18 -490.57 σ = 473.99 -926.75 σ = 1563.3 -2908.15 σ = 554.38
20 -571.96 σ = 549.95 -1087.58 σ = 1805.58 -3467.52 σ = 633.57
25 -739.99 σ = 779.21 -1579.81 σ = 2525.38 -4971.17 σ = 858.13
30 -876.39 σ = 1030.1 -2093.5 σ = 3295.68 -6607.67 σ = 1111.48
40 -1036.85 σ = 1621.53 -3184.2 σ = 4865.87 -10231.74 σ = 1731.03
50 -1042.84 σ = 2286.78 -4640.76 σ = 6756.92 -14186.0 σ = 2407.18
60 -712.25 σ = 3040.49 -6020.77 σ = 8691.89 -18340.04 σ = 3169.99
70 -182.36 σ = 3904.73 -7620.58 σ = 10878.37 -22686.6 σ = 4062.02
80 704.14 σ = 4897.9 -9077.15 σ = 12842.79 -27069.39 σ = 5035.23
90 1906.22 σ = 5857.77 -10731.48 σ = 15027.85 -31566.18 σ = 6036.55
100 3341.96 σ = 6933.57 -12368.93 σ = 17453.67 -36111.59 σ = 7074.06

Table 1: Full switching agent’s mean score over time (computed using Eq. 6) with stan-
dard deviation σ. Negative scores are better. For larger dimensions, the same relative
performance requires larger values in magnitude. Thus, having a similar score in 25 dimen-
sions and 60 dimensions represents a much worse performance gap. Note that performance
remains strong against both GD and RS



Learning to Switch Optimizers for Quadratic Programming

(a)

(b)

Figure 4: Box plot of the (a) 7-dimensional and (b) 12-dimensional test cases. At each
iteration, RLSO outperforms Adam on average, as demonstrated by the negative mean
relative performance (green triangles). Moreover, the third quartile is always below zero,
indicating that RLSO outperforms Adam 75% of the time
.

Dimension Score - Adam Score - GD Score - RS

5, 10, 15, 25 mixed -352.04 σ = 513.53 -689.1 σ = 1531.57 -2094.48 σ = 1874.89
5 -60.0 σ = 77.81 -112.85 σ = 236.03 -250.96 σ = 115.89
7 -108.25 σ = 121.2 -203.47 σ = 400.28 -513.67 σ = 179.33
10 -204.54 σ = 207.73 -363.62 σ = 668.03 -1031.7 σ = 277.8
12 -278.43 σ = 267.13 -496.46 σ = 867.33 -1442.15 σ = 339.49
15 -390.65 σ = 369.16 -715.58 σ = 1222.02 -2133.8 σ = 438.94
18 -509.01 σ = 471.85 -925.36 σ = 1543.87 -2924.54 σ = 545.41
20 -584.88 σ = 544.76 -1127.59 σ = 1839.29 -3481.33 σ = 618.5
25 -772.94 σ = 759.98 -1610.89 σ = 2550.82 -4994.5 σ = 827.0
30 -962.49 σ = 976.35 -2121.95 σ = 3309.67 -6698.99 σ = 1043.53
40 -1217.75 σ = 1551.69 -3480.17 σ = 5011.33 -10392.43 σ = 1633.4
50 -1339.72 σ = 2229.7 -4997.26 σ = 6817.12 -14495.64 σ = 2346.82
60 -1298.46 σ = 2988.18 -6521.53 σ = 8661.62 -18889.76 σ = 3136.89
70 -984.16 σ = 3889.82 -8353.74 σ = 10736.68 -23485.81 σ = 4055.27
80 -427.65 σ = 4845.61 -10113.63 σ = 12758.81 -28198.62 σ = 5070.45
90 496.99 σ = 5905.6 -12341.07 σ = 15140.01 -33005.72 σ = 6057.65
100 1650.91 σ = 7032.15 -13989.36 σ = 17142.8 -37789.73 σ = 7209.86

Table 2: Retrained RLSO’s mean score over time (computed using Eq. 6) with standard
deviation σ. Negative scores are better. For larger dimensions, the same relative perfor-
mance requires larger values in magnitude. RLSO-Adam’s score improves significantly after
retraining in the 40–100 dimension range. Note that performance also improves compared
with that of both GD and RS.



Getzelman Balaprakash

4.4. Extrapolation

Here we test on {18, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100}-dimensional problems and show
that our RLSO performs well on unseen dimensions larger than our training data up to 80-
dimensional problems (see Table 1). RLSO initially is faster and finds better solutions; but
in dimensions higher than 80, RLSO’s relative performance decays. Since we are dealing
with NP-hard problems, we expect all methods to have worse performance in solution
quality as our problem dimension increases.

Our experimental setup is the same as in Sec. 4.2. Because of space constraints, we
show only summary statistics of our experiments in a tabular format and describe some
distributional properties. We use the following formula to compute our scores for the table:

1

10000

1

100

∑
i

∑
j

fi(xi,j,RLSO)− fi(xi,j,solver), (6)

Where fi is our collection of functions in our test set and j indexes our iteration number.
We then compute the standard deviation across the inner sum.

From Table 1 we see that RLSO consistently outperforms both GD and RS. RLSO
also outperforms Adam in the 18–60-dimensional range. We note that the box plots of
our experiments show that RLSO outperforms Adam at all iterations up to 50 dimensions
in the majority of test problems, but again we have been unable to include all of those
plots. We begin to see our learned optimizer perform worse on average at 60-dimensional
problems. Even then, RLSO is outperformed by Adam by a small amount in the step
range of approximately 17–40 when we look at our box plots for that experiment. For 80-
dimensional problems or higher, Adam is clearly outperforming on average in the medium
and long term. Our optimizer consistently outperforms GD and RS for all dimensions we
tested.

We next test whether our performance is due to a problem of generalizing to large-
dimensional problems from small training examples or whether there is an intrinsic issue
with our optimizer. We address this concern by simply increasing the collection of dimen-
sions of our training set from {5, 10, 15}-dimensional to {5, 10, 15, 25}-dimensional problems
and retraining our previously trained agent. For our retraining experiment, we reload our
trained model and train it on a new 800,000 quadratic problem uniformly generated from
{5, 10, 15, 25}. We show the summary statistics of this experiment in Table 2. We ob-
serve next to no difference in performance in the 5- to 25-dimensional range between the
retrained RLSO and the original agent. Minor improvements are noticeable in the 30- to 50-
dimensional test problems regarding quartile behavior; after that, the retrained optimizer
is better on average in the 60-dimensional test cases. Likewise, our long-term behavior is
better on average or equal up to 90-dimensional test problems. Thus, our extrapolation
results before retraining are likely a product of our training data size and not some issues
with our approach.

4.5. Comparison with two switching cases

Next we investigate the value added by each static optimizer. An initial conjecture after
some exploratory experiments was that RS functioned as an option to restart at a new
point if the current search did not seem promising enough. Our second hypothesis was



Learning to Switch Optimizers for Quadratic Programming

that Adam and GD with the specific hyperparameters we set to static values would provide
access to different convergence behaviors to local minima. We believed that GD was faster
but less accurate and Adam had better long-term behavior (slow convergence to better local
solutions), thus motivating our desire to switch between the two. Given those conjectures,
we trained three other agents, but this time with only two options to choose from: Adam
& GD, Adam & Random and GD & Random. Next, we performed the same experiments
with interpolation, retraining, and extrapolation as above.

Switching between Adam and GD We show the summary statistics in the leftmost
subtable of Table 3. The overall performance was significantly worse, even after retrain-
ing, than that of our initial three switching optimizers in extrapolation. From a purely
theoretical point of view, with perfect optimization our agent should never have an issue
doing as well as any of the static optimizers in expectation. However, it seems clear from
this experiment and others that the agents are learning behavior in low dimensions that
do not generalize well without retraining. On the other hand, the only way our switching
optimizer could outperform our best static optimizer, Adam, with access only to Adam
and GD, is by correctly exploiting the advantages of one static solver over the other in
some step-dependent fashion. Furthermore, by investigating the action distribution of our
various agents, we do see a change in behavior across dimensions and step numbers. More
important, none of the learned optimizers completely ignores one of the possible sets of
available actions.

Table 3: Summary statistics for our restricted switching optimizers. Left: data for Adam
and GD; right: data for Adam and RS. We can see that Adam and RS perform unexpectedly
poorly in high dimensions. However, both of these restricted RLSOs still outperform GD
and RS.

RLSO: Adam and GD only RLSO: Adam and RS only

Dimension Score - Adam Score - GD Score - RS Score - Adam Score - GD Score - RS

5, 10, 15, 25 mixed -145.42 σ = 446.22 -480.75 σ = 1356.72 -1899.46 σ = 1761.39 -32.15 σ = 398.22 -383.29 σ = 1590.65 -1762.79 σ = 1576.39
5 -19.18 σ = 60.71 -73.69 σ = 227.51 -210.19 σ = 129.25 -31.41 σ = 75.18 -86.85 σ = 245.34 -224.43 σ = 115.38
7 -36.36 σ = 101.75 -130.28 σ = 368.19 -440.93 σ = 210.6 -41.56 σ = 125.51 -129.49 σ = 407.05 -445.82 σ = 177.78
10 -77.21 σ = 178.64 -232.75 σ = 618.61 -901.39 σ = 326.16 -46.72 σ = 208.59 -207.73 σ = 705.78 -876.47 σ = 268.69
12 -110.31 σ = 232.34 -324.82 σ = 801.61 -1279.52 σ = 410.55 -47.34 σ = 271.82 -264.06 σ = 924.31 -1219.39 σ = 333.84
15 -169.39 σ = 326.45 -476.37 σ = 1111.24 -1920.29 σ = 535.8 -40.1 σ = 362.45 -331.74 σ = 1257.03 -1790.73 σ = 418.25
18 -220.7 σ = 440.83 -647.74 σ = 1411.7 -2634.45 σ = 681.03 -28.67 σ = 448.44 -463.05 σ = 1670.95 -2448.66 σ = 521.35
20 -251.54 σ = 532.88 -761.29 σ = 1611.92 -3150.8 σ = 784.43 -14.43 σ = 510.16 -549.11 σ = 1941.95 -2917.15 σ = 583.28
25 -321.64 σ = 784.82 -1163.38 σ = 2270.41 -4541.38 σ = 1088.18 19.14 σ = 669.91 -830.31 σ = 2714.89 -4203.11 σ = 731.11
30 -385.0 σ = 1086.42 -1583.15 σ = 2904.94 -6114.47 σ = 1422.46 57.5 σ = 829.12 -1134.13 σ = 3468.62 -5665.52 σ = 895.07
40 -395.16 σ = 1832.61 -2585.81 σ = 4318.27 -9598.73 σ = 2296.22 151.48 σ = 1171.86 -1970.63 σ = 5193.29 -9026.96 σ = 1220.0
50 -246.61 σ = 2759.43 -3797.87 σ = 5817.81 -13424.65 σ = 3287.45 268.82 σ = 1453.98 -3282.46 σ = 6999.78 -12894.06 σ = 1516.93
60 57.38 σ = 3847.75 -5371.03 σ = 7490.82 -17541.63 σ = 4468.25 408.77 σ = 1806.53 -4888.4 σ = 9124.39 -17217.32 σ = 1846.58
70 399.14 σ = 4974.45 -6870.58 σ = 8990.63 -22076.33 σ = 5702.67 593.39 σ = 2164.3 -6663.37 σ = 11146.38 -21956.68 σ = 2172.3
80 1159.67 σ = 6220.38 -8872.08 σ = 10713.05 -26636.19 σ = 7095.49 747.89 σ = 2433.59 -9067.86 σ = 13376.8 -27058.83 σ = 2494.53
90 1901.38 σ = 7377.76 -10686.87 σ = 12455.67 -31543.13 σ = 8332.7 936.19 σ = 2770.54 -11630.04 σ = 15703.27 -32502.3 σ = 2841.04
100 2900.73 σ = 8808.37 -12832.01 σ = 14403.12 -36527.55 σ = 9916.24 936.19 σ = 2770.54 -11630.04 σ = 15703.27 -32502.3 σ = 2841.04

Switching between Adam and Random Search Next, we compared our three-case
switching optimizer to a switching optimizer with access only to random search and Adam
as its possible actions. Since Adam was our best static optimizer that generalizes better
to higher dimensions, the only way that this learned optimizer could outperform Adam
would be if RS added value. Experimentally we see in the right subtable of Table 3 better
performance in the low-dimensional range from 5 to 20, and we see that the action distri-
bution favors Adam over RS in high dimensions. The particulars of the action distribution



Getzelman Balaprakash

show what looks like an initial searching phase, then a period of near-100% Adam and
an increase in random actions again later in the tail. This agent seems to switch to using
Adam almost exclusively as the dimension of the problem increases after an initial switching
period. Given this result, we suspect that our agent cannot predict when restarting would
be valuable or that restarting randomly is so unlikely to produce a better starting point
on average that doing so is not worthwhile. A possible resolution to this issue would be to
train an agent that has access to a more classical learned optimizer and use that as a way
to find better-restarting locations.

Switching between GD and Random The last agent that we trained is restricted
to using only GD and random search. This agent overall has the closest performance
to our full 3-case switching optimizer; and before retraining the experiment on higher-
dimensional data, the results were comparable. Unfortunately, because of space we cannot
show those results here. By looking at both action distributions, however, one can see that
the learned agents are not the same, since our 3-case switcher uses Adam 10–20% of the
time depending on step number and dimension. Moreover, after retraining both agents, the
3-case switcher’s performance is slightly better. We conjecture that GD could be exhibiting
oscillatory behavior near a local minimum and that both restarting by RS and using Adam
to get better local convergence are equally valid options in a lower dimension. In higher
dimensions restarting provides less value, which results in the full 3-case switcher outdoing
the restricted switcher.

Table 4: Retrained GD and RS agent’s mean scores over time (computed using Eq. 6) with
standard deviation σ. Note that this restricted agent’s scores are good but, after retraining,
the original full 3-case RLSO outperforms.

Dimension Score - Adam Score - GD Score - RS

5, 10, 15, 25 mixed -372.68 σ = 513.86 -722.92 σ = 1584.12 -2121.98 σ = 1879.46
5 -59.28 σ = 74.55 -117.52 σ = 246.22 -251.07 σ = 113.97
7 -114.76 σ = 125.53 -207.53 σ = 401.56 -519.72 σ = 180.59
10 -207.79 σ = 206.83 -365.44 σ = 664.59 -1034.56 σ = 269.8
12 -281.46 σ = 269.07 -509.45 σ = 885.7 -1448.58 σ = 336.55
15 -402.2 σ = 366.73 -712.18 σ = 1217.57 -2149.52 σ = 436.76
18 -523.15 σ = 472.27 -958.36 σ = 1566.09 -2933.61 σ = 539.75
20 -608.57 σ = 542.7 -1137.22 σ = 1853.89 -3495.36 σ = 605.23
25 -795.56 σ = 755.43 -1615.45 σ = 2524.61 -5020.0 σ = 811.08
30 -973.88 σ = 990.18 -2311.18 σ = 3394.68 -6688.25 σ = 1056.68
40 -1237.38 σ = 1567.67 -3430.15 σ = 4992.78 -10449.07 σ = 1641.02
50 -1314.71 σ = 2259.39 -4908.63 σ = 6734.34 -14483.15 σ = 2368.15
60 -1153.02 σ = 3116.67 -6390.82 σ = 8732.64 -18794.29 σ = 3203.42
70 -744.7 σ = 4123.61 -8022.7 σ = 10767.18 -23248.71 σ = 4238.39
80 18.68 σ = 5172.69 -9680.52 σ = 12920.85 -27793.53 σ = 5307.09
90 1083.3 σ = 6262.26 -11466.37 σ = 15054.57 -32435.11 σ = 6423.54
100 2599.92 σ = 7358.91 -13065.83 σ = 17162.49 -36902.39 σ = 7567.48

4.6. Comparison with QP solvers in MATLAB

We compare our RLSO with the standard QP solvers in MATLAB. We use three solvers:
active set, interior point, and a trust-region reflective (TRR). Both the active set and
interior point solvers are for convex QP problems and thus perform exceptionally poorly



Learning to Switch Optimizers for Quadratic Programming

on our problem distribution because of the relative infrequency of convex problems. The
TRR algorithm is a generic algorithm for optimizing a function by iteratively minimizing
proxy models of the underlying function. Building a proxy model is costly in terms of many
function evaluations and scales quadratically with problem dimensions.

We used 100 newly generated test problems to reduce compute time, and we show the
box plot of the final value after 100 iterations. Because nonconvex quadratic problems
increase in frequency with dimension in our problem distribution, and because the TRR
proxy model building step requires over 100 function samples for a single iteration, we stick
to low-dimensional problems of size 5, 10, and 15. We see in Figure 5 that the interior point
algorithm fails due to our problem distribution not containing enough convex problems
with the necessary numerical robustness. Active set also fails after not being able to find
a convex subproblem to address. We also see that RLSO is slightly better on average and
distributionally better than TRR for all dimensions tested.

(a) (b) (c)

Figure 5: Box plots for the final solution found by RLSO, and MATLAB’s active set, interior
point, and trust-region algorithms.

5. Related Work

Prior work on learned optimization can be seen in various research going back at least
30 years but may not always be conceptually framed as optimization problems. Learning
update rules for artificial neural networks (ANNs), which is implicitly learning optimiza-
tion algorithms, was explored in (Bengio et al., 1990, 1995; Chalmers, 1991), but these
approaches focused on the biological analogy of ANNs. A recurring theme in both the
older literature above and in newer results is using genetic algorithms Metz et al. (2020) to
search for optimizers. A majority of the recent work focuses on the use of recurrent neural
networks (RNNs) to parameterize a stepwise update rule (Andrychowicz et al., 2016; Chen
et al., 2017). RNNS have some natural advantages and include the possibility of the learned
optimizer being able to generalize across both input and output dimensions. Modern ar-
chitectures are essentially chaining the output of per-tensor inputs such as the gradient,
or entry-wise mean of the gradient processed by an RNN into another RNN that produces



Getzelman Balaprakash

the update step Metz et al. (2020). The overall result is that optimizing the optimizer is a
challenging task (Metz et al., 2019; Chen et al., 2020).

In contrast, our method naturally scales across dimensions without requiring an input
RNN to learn low-dimensional representations for arbitrarily sized inputs, and our optimiza-
tion problem is reducible to a standard reinforcement learning problem. In many respects,
our work is a cross between Li and Malik (2016) in how we deal with the reinforcement
learning task and Awad et al. (2020) work in Squirrel, a switching-based hyperparameter
optimizer. Our work is the first learning to optimze approach that focuses on a optimization
of QP problem instances.

Prior work on QP sought to assess the difficulty of solving the problem globally and
to determine which algorithms, in particular, are best. QP naturally bifurcates into two
problem cases: the convex case and the nonconvex case. The convex case occurs when
all eigenvalues of the defining matrix Q are non-negative, in which case we call Q positive
semidefinite. The nonconvex case can be further reduced into two cases. In one case, Q has
both negative and positive eigenvalues, and it is called indefinite. In another case, when
Q has all nonpositive eigenvalues, we call it negative semidefinite. The convex case is well
behaved and can be solved in polynomial time. The nonconvex case is in general NP-hard;
and to determine what causes the difficulty in finding global solutions, researchers have
looked at subproblems that retain the NP-hardness property. In the general indefinite
case, Murty and Kabadi (1987) showed that verifying that a feasible solution is a local
minimizer is NP-hard. Vavasis (2009) reviewed the complex issues of QP and a collection
of restrictions that are still NP-hard. In particular, QP with box constraints or simplicial
constraints is still NP-hard. Pardalos and Vavasis (1991) showed that in the indefinite
case, even possessing one negative eigenvalue is enough for the problem to be NP-hard. A
result that gives more intuition about the nature of the problem can be found in (Pardalos,
1991). It provides a simple construction of an indefinite QP such that the number of local
minima is 2m, where m is the number of negative eigenvalues. This example uses only box
constraints as well. Thus, while we have not explicitly shown that our problem distribution
is in the NP-hard set, we believe it is likely the case.

6. Conclusion

Our experiments show that combining solvers using a learned heuristic can outperform the
individual solvers and result in a variant that outperforms the sum of its parts. Given that
our chosen problem is an NP-hard global optimization problem, it should be possible to
generalize this work to optimizing neural networks or other stochastic problem settings.
Further work could address the issues with restart policy and replace it with a more intel-
ligent strategy. Two natural choices for different domains are to learn a biased restarting
step as its own subproblem for the learned agent or in the quadratic programming case to
learn a restart step, that is, a biased selector of an active step method.

Acknowledgments

This material is based upon work supported by the U.S. Department of Energy (DOE),
Office of Science, Office of Advanced Scientific Computing Research, under Contract DE-



Learning to Switch Optimizers for Quadratic Programming

AC02-06CH11357. We gratefully acknowledge the computing resources provided by the
Joint Laboratory for System Evaluation (JLSE) at Argonne National Laboratory.

References

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau,
Tom Schaul, Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient
descent by gradient descent. arXiv preprint arXiv:1606.04474, 2016.

Noor Awad, Gresa Shala, Difan Deng, Neeratyoy Mallik, Matthias Feurer, Katharina
Eggensperger, Andre’ Biedenkapp, Diederick Vermetten, Hao Wang, Carola Doerr, et al.
Squirrel: A switching hyperparameter optimizer. arXiv preprint arXiv:2012.08180, 2020.

Thomas D Barrett, William R Clements, Jakob N Foerster, and Alex I Lvovsky. Exploratory
combinatorial optimization with reinforcement learning. arXiv:1909.04063, 2019.

Samy Bengio, Yoshua Bengio, and Jocelyn Cloutier. On the search for new learning rules
for ANNs. Neural Processing Letters, 2(4):26–30, 1995.

Yoshua Bengio, Samy Bengio, and Jocelyn Cloutier. Learning a synaptic learning rule.
Citeseer, 1990.

Mauro Birattari, Thomas Stützle, Luis Paquete, Klaus Varrentrapp, et al. A racing algo-
rithm for configuring metaheuristics. In Gecco, volume 2, 2002.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. Openai gym, 2016.

David J Chalmers. The evolution of learning: An experiment in genetic connectionism. In
Connectionist Models, pages 81–90. Elsevier, 1991.

Tianlong Chen, Weiyi Zhang, Zhou Jingyang, Shiyu Chang, Sijia Liu, Lisa Amini, and
Zhangyang Wang. Training stronger baselines for learning to optimize. Advances in
Neural Information Processing Systems, 33, 2020.

Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial
optimization. In Advances in Neural Information Processing Systems, pages 6278–6289,
2019.

Yutian Chen, Matthew W Hoffman, Sergio Gómez Colmenarejo, Misha Denil, Timothy P
Lillicrap, Matt Botvinick, and Nando Freitas. Learning to learn without gradient descent
by gradient descent. In International Conference on Machine Learning, pages 748–756.
PMLR, 2017.

Andrew R Conn, Katya Scheinberg, and Luis N Vicente. Introduction to derivative-free
optimization. SIAM, 2009.

David S Dean and Satya N Majumdar. Extreme value statistics of eigenvalues of gaussian
random matrices. Physical Review E, 77(4):041108, 2008.



Getzelman Balaprakash

Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, Rene
Traore, Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plap-
pert, Alec Radford, John Schulman, Szymon Sidor, and Yuhuai Wu. Stable baselines.
https://github.com/hill-a/stable-baselines, 2018.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinato-
rial optimization algorithms over graphs. In Advances in Neural Information Processing
Systems, pages 6348–6358, 2017.

Ke Li and Jitendra Malik. Learning to optimize. arXiv preprint arXiv:1606.01885, 2016.

Ke Li and Jitendra Malik. Learning to optimize neural nets. arXiv:1703.00441, 2017.

Luke Metz, Niru Maheswaranathan, Jeremy Nixon, Daniel Freeman, and Jascha Sohl-
Dickstein. Understanding and correcting pathologies in the training of learned optimizers.
In International Conference on Machine Learning, pages 4556–4565. PMLR, 2019.

Luke Metz, Niru Maheswaranathan, C Daniel Freeman, Ben Poole, and Jascha Sohl-
Dickstein. Tasks, stability, architecture, and compute: Training more effective learned
optimizers, and using them to train themselves. arXiv preprint arXiv:2009.11243, 2020.

K.G. Murty and S.N. Kabadi. Some NP-complete problems in quadratic and nonlinear
programming. Mathematical programming, 39(2):117–129, 1987.

Panos M Pardalos. Global optimization algorithms for linearly constrained indefinite
quadratic problems. Computers & Mathematics with Applications, 21(6-7):87–97, 1991.

Panos M Pardalos and Stephen A Vavasis. Quadratic programming with one negative
eigenvalue is NP-hard. Journal of Global optimization, 1(1):15–22, 1991.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

Terence Tao. Topics in random matrix theory, volume 132. American Mathematical Soc.,
2012.

Stephen A Vavasis. Complexity theory: Quadratic programming., 2009.

The submitted manuscript has been created by UChicago Argonne, LLC, Op-
erator of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Depart-
ment of Energy Office of Science laboratory, is operated under Contract No.
DE-AC02-06CH11357. The U.S. Government retains for itself, and others act-
ing on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, distribute copies to the pub-
lic, and perform publicly and display publicly, by or on behalf of the Govern-
ment. The Department of Energy will provide public access to these results of
federally sponsored research in accordance with the DOE Public Access Plan.
http://energy.gov/downloads/doe-public-access-plan

https://github.com/hill-a/stable-baselines
http://energy.gov/downloads/doe-public-access-plan

	Introduction
	Problem Setting
	Learning to Switch Optimizers with Reinforcement Learning
	Experiments
	Setup and description
	Comparison between RL-based switch and individual optimizers
	Interpolation
	Extrapolation
	Comparison with two switching cases
	Comparison with QP solvers in MATLAB

	Related Work
	Conclusion

