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Abstract

Most existing multi-view clustering methods focus on the global structure or local structure
among samples, and few methods focus on the two structures at the same time. In this
paper, we propose a Multi-view Latent subspace Clustering based on both Global and
Local structure (MLCGL). In this method, a latent embedding representation is learned
by exploring the complementary information from different views. In the latent space, not
only the global reconstruction relationship but also the local geometric structure among the
latent variables are discovered. In this way, a unified affinity graph matrix is constructed
in the latent space for different views, which indicates a clear between-class relationship.
Meanwhile, a rank constraint is introduced on the Laplacian graph to facilitate the division
of samples into the required clusters. In MLCGL, the affinity graph also provides positive
feedback to optimize the learned latent representation and contribute to divided it into
reasonable clusters. Moreover, we present an alternating iterative optimization scheme
to optimize objective functions. Compared with the state-of-art algorithms, MLCGL has
achieved excellent experimental performance on several real-world datasets.

Keywords: multi-view, latent represent, global and local structure, rank constraint

1. Introduction

With the continuous development of science and technology, the same data is usually com-
prised of several different views (Kang et al. (2020); Huang et al. (2020); Lin et al. (2021)).
This is referred to as multi-view data, where each individual view constitutes a given task
but each view also has its biases. The multi-view learning technology aims to integrate com-
plementary information from different views to reduce the complexity of given task. And
how to effectively use multi-view data has become a critical challenge faced by researchers.

Clustering which assigns the data into different groups with similarity, is a fundamental
and important topic in machine learning. For multi-view scenarios, the traditional cluster-
ing algorithms usually process the view separately and choose the best result, or connect the
features of all views as single-view data. But these algorithms fail to utilize the complemen-
tary information of different views and may cause excessively high dimensions of the data to
be processed. To solve these problems, Kumar et al. (2011) introduced spectral clustering
into multiple views application, which co-regularized the clustering indicator to achieve the
same cluster membership on different views. And Peng and Cai (2021) captured the com-
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patible intrinsic information across different views through low-rank sparse representation.
Besides, (Xia et al. (2014); Zong et al. (2018); Nie et al. (2018)) explored the complemen-
tarity between views from the three aspects of Markov Chain, Spectral Perturbation, and
Procrustes Analysis, which enhanced the finally clustering performance.

How to explore the similarity relationships among samples is also a research hotspot
in multi-view clustering. In recent years, Huang et al. (2015) has pointed out that the
similarity among samples can be represented in the form of global relationship or local re-
lationship. The global relationship can be obtained by various manners, such as calculating
the distance between every two samples Liu et al. (2013), computing the self-representation
coefficient on training samples Ren and Sun (2020). The local relationship can be obtained
by computing k-nearest neighbors, the local geometric structure, and so on. Some subspace
clustering algorithms like Brbi¢ and Kopriva (2018) perform the clustering by exploiting
the global similarity among samples, it constructs the self-representation coefficient matrix
of each view to indicate the global structure, and then introduces a regularization term to
balance the global structure discrepancy between views. By contrast, the graph-based clus-
tering algorithms (Nie et al. (2017); Wang et al. (2019)) usually utilize the local structure
to build the affinity graphs and then perform clustering. They integrate the complemen-
tary information to build the shared graph, as a result, the clustering performance largely
depends on the quality of the graph.

These multi-view clustering algorithms mentioned above mostly perform learning in
the original space, but the original space usually has higher dimensions. To avoid this
problem, Wang et al. (2020) project the multi-view data into a common subspace, then
learn the common similarity graph from the local structure in the subspace. But, when
the original space data is projected into the subspace, the noise will also be projected
inevitably. To resist the influence of noise, Zhang et al. (2018) assumes that different views
are all originated from one underlying latent representation, and then through the self-
representation, the graph is learned to reflect the global structure of latent representation.
Inspired by Zhang et al. (2018), Chen et al. (2020) introduced rank constraints on the
Laplacian graph to implement the assignment of the sample points into designated clusters.
However, (Zhang et al. (2018); Chen et al. (2020)) did not consider the local neighbor
relationship in the latent space. Besides, (Huang et al. (2019a,b)) uses kernel tricks and
neural network to learning nonlinear relationships.

In summary, in most existing multi-view clustering algorithms, few methods simultane-
ously mine the local and global similarity of data while avoiding the curse of dimensionality.
To solve this issue, this paper proposes a novel algorithm named Multi-view Latent subspace
Clustering based on both Global and Local structure (MLCGL). In MLCGL, a common
latent representation is learned to capture the complementary information from different
views. In the latent space, the global self-representation and local neighbor relationships
are combined to construct a common affinity graph. In this way, the obtained affinity graph
can more clearly reflect the within-class and the between-class relation. Based on this, a
rank constraint is introduced on the Laplacian graph to group the data points in the latent
space into a specified number of clusters. The main contributions of this paper are:
(1) By learning the global and local structural relationships on the latent representation,
the within-class and between-class relation in the affinity graph will be clarified, which pro-
mote the latent representation to be divided into more reasonable clusters. 2) The common
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latent representation which fuses the complementary information can suppress the possible
noise while avoiding the curse of dimensionality. 3) An iterative optimization scheme is pre-
sented to solve our proposed model. According to the experimental results, our algorithm
can achieve the objective function convergence in a few iterations.

2. Related Work

2.1. Latent Multi-view Subspace Clustering (LMSC)

In LMSC Zhang et al. (2018), it is assumed that the multi-view data X" is converted from
a shared latent representation Y, that is XV = W"Y + EJ, whereE, is the reconstruction
error, and WV is the transform matrix. Then, LMSC reconstructs the latent representation
via self-representation: Y = YZ + E,.. Besides, LMSC introduced kernel norm constraint
coefficient matrix Z to capture the global structure of the latent representation. Therefore,
the overall objective function is:

min |[Eyll2,1 + Al[Erll21 + A2l Z][+
W)Y,Z,Ey,E\ (1)

st X=WY +E,Y=YZ+E, WW! =T

where X = [(XI)T7 T (XV)T]Tv W= [(Wl)T7 T (WV)T]Tv andEy - [(E;)Tﬂ ) (E;/)T]T
is the latent representation reconstruction error. Ai, Ay are the hyper-parameters which are
used to balance the different parts of the objective function. || -|[2,1,]|| - ||+ denote Iz jnorm
and nuclear norm, respectively.

2.2. Multi-view Clustering and Semi-supervised Classification with Adaptive
Neighbours (MLAN)

Since high-dimensional data contains low-dimensional manifold structure Nie et al. (2016),
MLAN Nie et al. (2017) introduces adaptive local structure to learn the inter-sample rela-
tionship for single view:

n
Hynz i = @jl3sij + ol [S|[F sV, 5{1=1,0< 55 <1 (2)
1/7]

where s; is a vector with j-th element as s; ; in similarity matrix S. The regular term ||S]|%
used to obtain an effective solution where ||-||2 and || ||r denote l3-norm and the Frobenius
norm respectively. And « is a hyper-parameter to balance the two terms. In addition,
MLAN promotes the division of sample points into reasonable clusters by introducing rank
constraints on the Laplacian graph L. Besides, MLAN believes that the quality of each
view in the original space is different. Therefore, the objective function in MLAN can be
formulated as:

n
ming, Y (wy Y ||z} — 23|Bsi; +Yllwo[3) + allS||F 3
v i

s.t.W,siTl =1,0<s; < 1,w$1 =1,0<w, <1,rank(Lg) =n—c
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where Ly = D — ((ST + 9))/2,D;j = >_;(8ij + sji)/2. Also, MLAN uses an optimization
trick to turn the view weight into an adaptive parameter, and the final objective function
is:

n
ming, Y jwy Y ||z — af|Bsi; + ol|S||%
v 1, (4)

stVi,s]1=1,0<s; <1,rank(Ls) =n—c

where w, = 1/\/2” l|z? — x;}H%sZ]

3. Proposed
Denote {X1,--- XV} € R%*" as multi-view data containing V views, each view has n
samples, and d, is the feature dimension of the v-th view. Denote {W1 ... WV }as the

corresponding transform matrices, and Y = {y;}!'; as the shared latent representation.
And T'r(-) denote the trace of the matrix.

3.1. Latent Representation

We represent multi-view data by different mappings of the latent representation: XV =
W'Y 4+ EV, which E" is the reconstruction error. In this way, the intrinsic relation between-
views can be explored, and meanwhile the dimensionality of multi-view data can also be
reduced. Besides, the possible noise may also be suppressed White et al. (2012). By
minimizing the reconstruction error, the latent representation Y is encouraged to fully
represent multi-view data, namely:

|4
i XU —WY|5 stWIWr =T 5
miny _[[X7 = WY|[F st W W (5)

v=1

3.2. Local and Global Structure Learning

Generally, most graph-based and subspace-based clustering algorithms only learn the simi-
larity relationship separately from the local structure or the global structure, where cause
the learned similarity relationship cannot fully indicate the relationship between samples.
To this end, this paper will learn both local and global structure on the latent representation
simultaneously to obtain a more comprehensive and robust affinity graph.

To mine the local structure hidden in the latent space, our model constructs the objective
function as (6), meaning that the larger the Euclidean distance ||y; — y;||3 between two
points, the smaller the corresponding probability s;;:

: 2 T
uilss st.1Ts = 1.5
. Eij i — ysllasi; s i »8ij > 0 (6)

where S indicates the local similarity between samples, s; is the column vector of S, and
si; is the j-th element of s;.
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To further discover the global construction relationship in the latent space, our model
adopts the self-representation and assumes that Y = Y Z+ FEy. By minimizing the Frobenius
norm of the reconstruction error Ey, the reconstruction coefficient matrix Z can capture
the global structure for the latent representation:

min |[Y" — YZ||% st1Tz=1,2;>0 (7)

where Z indicates the global similarity between samples, z; is the column vector of Z, and
zj; is the j-th element of z;.

Therefore, we formulate the objective function (8) to learn the local and the global
structure on the latent representation:

mbgnz Hyl — yngsij + HY — YSH%; S.t.lTSi =1,5;>0 (8)
iJ

In the iterative optimization process, the learned affinity graph will also contribute the
latent representation to be divided into more reasonable clusters. The constructed graph
considers the strengthens of the global structure and the local structure simultaneously,
which achieves a balance of the two structure attributes. From the perspective of granularity,
the structural information embodied by S tends to be cluster granularity. In this way, the
unified graph induced by the similarity has a fuller diagonal block structure, which is also
verified by the experimental results section. In this paper, the learned graph S reflects
clearer distribution information between classes, so it is more conducive to subsequent

clustering.

3.3. Rank Constraint

Ideally, the number of connected components in S is equal to the cluster number. But in
fact, (8) usually cannot achieve this goal. In order to facilitate the learned affinity graph to
be divided into connected components of a specified number, according to Theorem 1 Mohar
et al. (1991), a rank constraint is introduced on the Laplacian graph Lg. That is, if rank
rank(Lg) = n — ¢ holds, the corresponding graph S consists of ¢ connected components.

Theorem 1

The multiplicity ¢ of the eigenvalue 0 of the Laplacian matriz Lg of S is equal to the
number of connected components in the graph with similarity matriz S.

Therefore, by introducing rank constraint, equation (8) is reformulated as:

: 12 _vgl2 Ty q o _
mSmsz: llyi —yjllasi; + 1Y =Y S|z stls; =1,s; >0,rank(Ls) =n—c 9)
3.4. Full Objective Function

Combining the aforementioned insights into analysis, we write the objective function of
MLCGL as:

\%
minge y,sr Y [[X0 = WY (R +a ) [y — ysll3si + BIY — YS|[3 (10)
v=1 1,7

st1Ts; = 1,5 >0, weltwe = I,rank(Ls) =n —c
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where o and 3 are the hyper-parameters used to control the weight of the local structure
term and the global structure term, respectively. Because of the rank constraint, it is difficult
for us to solve the objective function (10). Define o; as the i-th smallest eigenvalue on Lg,
since Laplace matrix Lg is a positive semi-definite matrix, namely o; > 0, rank(Lg) = n—c
is equivalent to Y ;_; 0; = 0. According to Ky Fan’s theorem Fan (1949):

c

(L) = min Tr(FTLoF 11
;Uz( s)= min Tr(F'LsF) (11)

where F' is the low-dimensional embedding matrix.
Thus the final objective function of MLCGL can be formulated as:

14
minye y,5p Y |IXY = WY E+a ) |l —ysll5si

+BIIY =Y S|} +~Tr(FTLsF)

st1Ts;=1,8; >0, W TW? = FTF =1

where v is used as a hyper-parameter to balance the proportion of rank constraints. When
«v is large enough, the optimization objective function (12) will make rank(Ls) = n—c hold.

3.5. Optimization

To address the objective function (12), we introduce an alternating optimization scheme to
solve this problem.

Update F'

When W@, Y and S are all fixed, the problem of objective function (12) is equivalent
to the following;:

min Tr(FTLsF) st FTF=1 (13)

The optimal solution F' can be obtained by c eigenvectors of Lg corresponding to the ¢
smallest eigenvalues.

Update W

When the other variables are fixed, the problem of objective function (12) is equivalent
to the following:

1%
. v v 2 vTyrrv

— .t = 14
Hvlvlgl§ IX? =W*Y|lE stWo" W =1 (14)

v=1
Let X = [(XDT,--- (XTI, W = [(WHT,... (WY)T]T| then (14) can be rewritten as:

: _ 2 Ty —
mv[l/nHX WY||z stW W =1I (15)

Since ||A]|r = ||AT||F, so (15) is equivalent to:

min IXT —yITwT||Z2 stWIw =1 (16)
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According to Theorem 2 Wahba (1965), the constraint condition needs to be R R = RRT =
I, but in Zhang et al. (2018), it is mentioned that relaxing the constraint to RT R = I can
also obtain an optimal solution. From this, we can solve W by Theorem 2.

Theorem 2

Given the objective function ming ||Q—GR||%, s.t. RT R = RRT = I, the optimal solution
is R = UVT, where U and V are left and right singular values of SVD decomposition of
GTQ.

Update Y

When the other variables are fixed, the problem of objective function (12) is equivalent
to the following:

14
: XV — vy 2 a2 Y -Y 2
Hgnvgll\ WY} + E lyi — yjll55:5 + Bl S|l (17)
= i,

And Y ||lyi — y;l13sij = Tr(Y LsYT), so (17) can be rewritten as:
1,

min ||X — WY} +aTr(YLsYT) + B[y — VS| ()
Take the derivative with respect to Y and set it to zero:
WIWY —WTX +aY(Ls + LL) + B(Y(I - S)(I - 8)T) =0 (19)
Because of Lg = LY , Equation (19) is rewritten as:
WIWY +Y x (2aLs + (I — S)(I — S)T)=wTX (20)

Equation (20) is a standard Sylvester equation which has a unique solution by the Bartels-
Stewart algorithm and there has a similar solution in Hu et al. (2014) or solved by MATLAB
toolkit.

Update S

When the other variables are fixed, the problem of objective function (12) is equivalent
to the following:

minge Y |[yi — y;ll3si5 + BIIY = YS||% +1Tr(FT L F)
i (21)
S.t.lTSi = 1,8ij >0

Equation (21) is rewritten as:

mingaTr(Y LsY ') + BTr(K — 2K S 4+ STKS) 4+ ~Tr(FTLgF)
S.t.lTSi =1, Sij > 0

where K = YTV and (22) can be rewritten in a column-wise manner as:

min b Sei+ B(Kii — 2K.;S.; + SLKS, ;) st1ls; =1, >0 (23)



ZHOU CAI XU YANG

% + "YHfi,: - fj,:’ %

where b;; = al|yi: — yj.:

. Further, (23) is equivalent to:

min BSLKS, ; + (] —2BK.;)S.; st1ls;=1,s;>0 (24)

Equation (24) is a quadratic programming problem, which can be solved by the related
algorithm in Kang et al. (2017) or MATLAB toolkit.

3.6. Complexity Analysis

Algorithm 1 MLCGL

Input: multi-view data {X! --- X V}, the dimension d of latent representation Y,
the cluster number ¢, and the hyper-parameters «, 3, .

Initialize: Initialize S, W =0, and Y is a matrix with random values.

While not convergence, do:

1: update F' according to (13).

2: update W according to (16).

3: update Y according to (20).

4: For each column vector of S, update according to (24).

End

Output: S,W,Y, F.

The whole iteration process of MLCGL is shown in Algorithm 1. In every single iteration,
the complexity of update F is O(cn?), the complexity of update W is O(d? >_ d, +(>_ d,)?).
The complexity of solving the Sylvester equation when updating Y is O(d3). The com-
plexity of quadratic programming is O(n?), so updating S requires O(n*). Because of
d < > dy,c < n, the total complexity of a single iteration is about O(n* + (3. dy)?). The
complexity to initialize S is O(Vncd) d= max(dl, ,dy). Suppose total iterations is t, the
total complexity is about O(tn* + ¢(3. d,)? 4+ Vned).

4. Experiment

In this section, we evaluate the performance of MLCGL on five real-world datasets. And
Table 1 describes the details of the datasets. We compare the proposed MLCGL with the
multiple state-of-art algorithms. And we use five evaluation metrics: F-score, Precision,
Recall, NMI (normalized mutual information), and ARI (adjusted rand index) to measure
the clustering performance.

4.1. Datasets Description

MSRC-v1 Winn and Jojic (2005): A picture dataset, which contains 210 samples in 7
categories such as trees, buildings, and airplanes. In our experiment, four views are used,
which are CM feature, GIST feature, LBP feature, and GENT feature.
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Table 1: Dataset Describe

Dataset Numbers c dq do ds dy
MSRC-v1 210 7 24 512 256 254
Caltech101-5 240 5 782 144 213
3Sources 169 6 3560 3631 3068
Prokaryotic 551 4 438 3 393
WebKB 203 4 1703 230 230

Caltech101-5': A picture dataset, which contains 101 types of objects such as faces,
animals, and landscapes. This experiment uses a subset of the original dataset, which
contains 240 samples in 5 categories. The used views are Gray feature, HOG feature, and
LBP feature.

3Sources?: A news articles dataset collected from three online sources: BBC, Reuters,
and The Guardian. This experiment used 169 news of the original 948 articles. All articles
are in the bag-of words representation.

ProkaryoticBrbi¢ et al. (2016): This data set contains 551 samples in 4 categories. All
samples are described as heterogeneous, including data and different genomic representa-
tions. Three views used in this experiment are textual description, proteome composition,
and an indicator denoting the presence/absence of gene families in a genome.

WebKB?: This dataset contains 203 web pages in 4 categories. Each web-page is
described by the content of the page, the anchor text of the hyper-link, and the text in its
title.

4.2. Compare Method

Co-Regularized Spectral Clustering (Co-reg)Kumar et al. (2011): It assumed the cluster
membership among views are consistent, and co-regularizes the membership to obtain the
common clustering indicator.

Robust Multi-View Spectral Clustering (RMSC)Xia et al. (2014): This algorithm in-
troduces the standard Markov chain to clustering.

Multi-View Clustering with Adaptive Neighbors (MLAN)Nie et al. (2017): Adaptively
learn view weights and dynamically learn the local structure of the data.

Latent Multi-view Subspace Clustering (LMSC)Zhang et al. (2018): Assume that multi-
view data are all mapped from the shared latent representation.

Multi-view Low-Rank Sparse Subspace Clustering (MLRSC)Brbi¢ and Kopriva (2018):
Learn the global structure via self-representation on each view, and weigh the discrepancy
of different views through a regularization term.

Weighted Multi-View Spectral Clustering (WMSC)Zong et al. (2018): Dynamically
learn the weights of different views through the spectral perturbation theory. And according
to the view’s weight, the clustering results of spectral clustering tends to be consistently on
different views.

1. http://www.vision.caltech.edu/Imagepatasets/Caltech101/
2. http://mlg.ucd.ie/datasets/3sources.html
3. https://lings.soe.ucsc.edu/data
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Graph-based Multi-View Clustering (GMC)Wang et al. (2019): Dynamically learn the
local structure and the view weight of different views, then integrate the local structure into
a shared similarity graph according to the weight.

4.3. Clustering Results Comparison

Table 2 to Table 6 show the clustering comparison performance respectively yielded by
eight different methods on five datasets. For each metric, higher values indicate better
performance. And the best result values are bold.

From the clustering experiment results in Table 2 to Table 6, it can be seen that com-
paring the multiple algorithms proposed recently, MLCGL can always achieve excellent per-
formance on different datasets. Specifically, on the MSRC-v1 and Caltech101-5 datasets,
MLCGL achieves the best performance in all clustering performance metrics. In particular,
on MSRC-v1, MCLGL’s performance improvements over the second-best method more than
5%, while on Caltech101-5, the increasement has reached about 10%. On 3 Sources and
Prokaryotic, only the recall of MCLGL failed to achieve the optimal performance, while the
remaining performance metrics all greatly exceed the comparison algorithms. On WebKB,
MCLGL achieves the optimal performance in the three clustering performance indicators,

while the other two metrics are close to the best.

Table 2: MSRC-v1

Method F-score Precision Recall NMI ARI
Co-reg 0.481+0.033  0.453+0.037  0.5144+0.033  0.515+0.031  0.39240.040
RMSC 0.674+0.033  0.656+0.035  0.693+0.031  0.705+0.026  0.70540.039
MLAN  0.698+0.001  0.638+0.001  0.7714+0.001  0.7524+0.001  0.64440.001
LMSC 0.739+0.022  0.730+0.031  0.7484+0.025  0.7654+0.030  0.69640.041

MLRSSC 0.528+0.026  0.518+0.027  0.537+0.017  0.566+0.014  0.45040.026
WMSC  0.663+0.014  0.640+0.034  0.687+0.011  0.693+0.012  0.606+0.013

GMC 0.675+0 0.612+0 0.753+0 0.714+0 0.616+0

MLCGL 0.806+0.005 0.79240.005 0.820+0.006 0.820+0.006 0.774+0.006

Table 3: Caltech101-5

Method F-score Precision Recall NMI ARI
Co-reg 0.630+0.013  0.615+0.017  0.647+0.010  0.6184+0.013  0.53540.017
RMSC 0.681+0.011  0.646+0.008  0.71840.021  0.7024+0.012  0.59640.011
MLAN 0.609+0 0.521+0 0.732+0 0.617+0 0.490+0
LMSC 0.745+0.002  0.7484+0.002  0.74240.002  0.736+0.004  0.6824+0.002

MLRSSC 0.718+0.006  0.657+0.019  0.794+0.013  0.74440.007  0.64040.009
WMSC  0.662+0.013  0.638+0.011  0.687+0.021  0.691+0.011  0.57440.010

GMC 0.688+0 0.619+0 0.776+0 0.718+0 0.599+0

MLCGL 0.851+0.012 0.847+0.013 0.8554+0.010 0.832+0.012 0.813+0.015
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Table 4: 3Sources

Method F-score Precision Recall NMI ARI
Co-reg 0.4904+0.041  0.5344+0.064 0.454+0.032 0.5184+0.038  0.3514+0.057
RMSC 0.3934+0.011  0.4174+0.022 0.372+0.017 0.4654+0.009  0.223+0.025
MLAN 0.683+0 0.609+0 0.777+0 0.6894+0 0.571+0
LMSC 0.410+0.003  0.4944+0.002 0.350£0.003 0.387+0.005  0.269+0.003

MLRSSC 0.5724+0.024  0.656+£0.030 0.508+0.028 0.620+0.017  0.46340.029
WMSC 0.430+0.016  0.4244+0.014 0.435+£0.020 0.4714+0.015  0.2544+0.017
GMC 0.605+0 0.484+0 0.805+0 0.621+0 0.4434+0
MLCGL 0.771+0.019 0.7671+0.049 0.7784+0.030 0.74740.008 0.700+0.028

Table 5: Prokaryotic

Method F-score Precision Recall NMI ARI
Co-reg 0.452+0.007  0.55240.009  0.3834+0.007  0.284+0.013  0.191+0.011
RMSC 0.562+£0.019  0.660+0.011  0.4894+0.016  0.39440.021 0.341+£0.020
MLAN 0.57740.005  0.444+£0.009 0.8274+0.008 0.239£0.010 0.13240.006
LMSC 0.605£0.022  0.673+0.027  0.5334+0.031  0.4344+0.017  0.38940.033

MLRSSC 0.591+0.056  0.725+0.068  0.499+0.048  0.437£0.039  0.38940.082

WMSC 0.500£0.031  0.58540.027  0.4364+0.019  0.388+0.030  0.245+0.011
GMC 0.461+0 0.447+0 0.476+0 0.193+0 0.091+0

MLCGL 0.67140.020 0.75740.022 0.603£0.013 0.4874+0.015 0.494-+0.035

Table 6: WebKb

Method F-score Precision Recall NMI ARI
Co-reg 0.60440.056  0.6404+0.040 0.579+0.087 0.3434+0.034  0.373+0.072
RMSC 0.5914+0.014  0.6074+0.017 0.576+£0.010 0.2814+0.012  0.338+0.025
MLAN 0.668=+0 0.559+0 0.831+0 0.402+0 0.373+0
LMSC 0.683+0.006 0.729+0.006 0.641£0.006 0.473+£0.007  0.49740.010

MLRSSC 0.71440.028  0.648+0.046 0.792+0.037 0.468+0.056  0.490+0.064
WMSC 0.4744+0.014  0.5744+0.011 0.403+£0.017 0.287+0.015  0.221+0.013
GMC 0.688=+0 0.582+0 0.840+0 0.413+0 0.417+0

MLCGL 0.7234+0.014 0.670£0.005 0.790+£0.052 0.513+0.011 0.518+0.031

4.4. Parameter Analysis

Table 7 shows the optimal parameters of MLCGL on each dataset.Fig. 1 presents the re-
lationship between the dimension of the latent representation Y and the clustering perfor-
mance metric NMI. From the experimental results of the above datasets, the dimensionality
of the latent representation has a great influence on the algorithm clustering performance.
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Compared with the high dimensionality of the original space, the dimensionality of the
latent representation is basically between 10 and 50, which indicated that the original di-
mensionality may contain too many redundancy and possible noise. After learned the latent
representation, the dimensionality of the multi-view data is significantly reduced and the
noise is effectively suppressed.

Table 7: Best parameters of each datasets

Dataset d « 15} 0%
MSRC-v1 50 0.5 0.5 10
Caltech101-5 40 1 0.5 10
3Sources 20 10 0.01 0.5
Prokaryotic 10 0.005 0.005 10
WebKB 10 0.01 1 10

082 0.745
0.83
0.74
s s s
Z 0815 =082 = 0735
0.73

0 50 100 "0 20 40 60 80 100 0 10 20 30 40 50
Dimensionality of Latent Y Dimensionality of Latent Y Dimensionality of Latent Y

(a) MSRC-v1 (b) Caltech101-5 (c) 3Sources
0.5
0.52
s 5%
04 0.48
0.35 0.46
0 10 20 30 40 50 0 10 20 30 40 50
Dimensionality of Latent Y Dimensionality of Latent Y
(d) Prokaryotic (e) WebKB

Figure 1: Dimensionality of latent Y vs NMI.

Figure. 2 shows the relationship among hyper-parameters «, 3, and clustering metric
NMI, where « affects the preservation of the local structure, and § affects the preservation
of the global structure. From the experiments on different datasets, we can see that on
Caltech101-5 and 3Sources datasets, the clustering performance is greatly affected by the
local structure. For WebKB, the performance is greatly affected by the global structure,
and for MSRC-v1 and Prokaryotic, the global structures and local structures have similar
influence on clustering performance.

Figure. 3 gives the relationship between the hyper-parameter v and the clustering per-
formance metric NMI, where v denotes the influence of the rank constraint introduced on
the Laplacian graph on MLCGL. From the experimental results shown in Fig. 3, in the
existing parameter range, different hyper-parameters v have little effect on the clustering
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performance. Then, if we extend the parameter search range, another hyper-parameter ~y
may be searched to obtain better clustering performance.

0010
0,005 alpha

o

(c) 3Sources

(d) Prokaryotic (e) WebKB

Figure 2: Hyper-parameter o and 8 vs NMI.

075 075 065
0.01 05 1 5 10 0.01 05 1 5 10 001 05 1 5 10

gamma gamma gamma

(a) MSRC-v1 (b) Caltech101-5 (c) 3Sources

05
= =
Soes 05

04

035 045
0.01 05 1 5 10 0.01 05 1 5 10

gamma gamma

(d) Prokaryotic (e) WebKB

Figure 3: Hyper-parameter v vs NMI.

4.5. Similarity Graph Comparison

In Fig. 4, MLAN trends to learn the local structure in the original space, LMSC learns
the global structure in the latent space, and MLRSSC learns the global structure in the
original space. Observing the similarity graph in Fig. 4, the diagonal blocks of MLCGL are
denser than others, indicating that our method MLCGL encourages us to lean a denser and
distinct diagonal blocks with ¢ connected components.
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) MLAN ) LMSC ) MLRSSC ) Ours

Figure 4: Similarity graph of compare method on Caltech101-5.

4.6. Convergence Analysis

Figure. 5 shows the convergence curves of the objective function in different datasets. Ob-
viously, MLCGL can quickly converge within the first 10 iterations.
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Figure 5: Convergence curve of each datasets.

From the experimental results shown above, it’s concluded that MLCGL can learn the
local structure and global structure on the latent representation simultaneously. By intro-
ducing the rank constraint in the Laplacian graph, MLCGL can further make the clustering
performance obtained on the latent representations more reasonable. The convergence curve
also presents the efficiency of the algorithm solution.

5. Conclusion

In this paper, we proposed an algorithm named Multi-view Latent subspace Clustering
based on both Global and Local structure. MLCGL learns latent representation, similarity
graph, and cluster indicator simultaneously in a single model. Experimental results on
multiple real-world datasets also prove the excellent performance of MLCGL. But for large-
scale datasets, we do not have an effective solution. In the following work, we will try to
obtain a robust low-dimensional representation in the framework of Contrastive Learning.
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