
Calibrated Adversarial Training

Appendix A. Proof

A.1. Proof for Theorem 1

Proof. We denote the set SR = {(X,Y)|∀(X,Y) ∼ D,∃X ′ ∈ B(X, ε) s.t. fθ(X ′)Y ≤ 0} and
SCaliR = {(X,Y)|∀(X,Y) ∼ D,∃X ′ ∈ B(X, ε) s.t. fθ(X ′)foracle(X ′) ≤ 0}.

Since SR ⊆ SCaliR =⇒ Rrob(f) ≤ Rcali(f), we only need to prove SR ⊆ SCaliR.

∀(X,Y) ∈ SR,

(1) if fθ(X)Y ≤ 0, then fθ(X)foracle(X) ≤ 0 =⇒ X ∈ SCaliR.
(2) if fθ(X)Y > 0, then ∃X ′ ∈ B(X, ε) s.t fθ(X ′)Y ≤ 0;

1)if foracle(X′)fθ(X′) ≤ 0 =⇒ X ∈ SCaliR
2)if foracle(X′)fθ(X′) > 0, then it must have :

∃X ′′ ∈ B(X, ε) s.t.fθ(X
′′)foracle(X

′′) ≤ 0; (15)

We prove Eq. 15 by the contradiction method. We assume:

∀X ′′ ∈ B(X, ε) s.t.fθ(X
′′)foracle(X

′′) > 0 is True. (16)

fθ(X)Y > 0, fθ(X′)Y ≤ 0 =⇒ the decision boundary of fθ

crosses the ε− norm ball of X.

fθ(X′)Y ≤ 0, foracle(X′)fθ(X′) > 0 =⇒ the decision boundary

of foracle crosses the ε− norm ball of X.

If Eq.16 is true, which implies that fθ and foracle have the

same prediction on any sample from the ε − ball of X.
=⇒ the decision boundaries of fθ and foracle will be

completely overlapped in ε − ball of X, which contradicts

the assumption of the Theorem 1 : the decision boundaries
of fθ and foracle are not overlapped.

Therefore Eq.16 is False .

=⇒ ∃X ′′ ∈ B(X, ε) s.t.fθ(X
′′)foracle(X

′′) ≤ 0;Eq. 15 is proved.
=⇒ X ∈ SCaliR.

By now, we proved ∀X ∈ SR =⇒ X ∈ SCaliR. Besides, ∃X ∈ SCaliR =⇒ X /∈ SR, e.g.
the sample X in Fig. 7(a)subfigure. Therefore SR ⊆ SCaliR is proved.

Besides going through a formal proof itself, we think it is useful to look into the provided
visualization of the decision boundary for a more intuitive understanding. According
the spatial relationship of decision boundaries of fθ and foracle, it can be separated into
intersection and non-intersection cases (no overlap case according to the assumption in

Huang Menkovski Pei Pechenizkiy

Theorem 1), which are showed in Fig. 3. From Fig. 3, for any sample (X,Y) from class 2,
if ∃X ′ ∈ B(X, ε) lies in the region filled with blue lines, it must have ∃X ′′ ∈ B(X, ε) lies
in the region filled with gray lines. However, if ∃X ′ ∈ B(X, ε) lies in the region filled with
gray lines, it is possible that ∀X ′ ∈ B(X, ε) do not lie in the region filled with blue lines.
Therefore SR ⊆ SCaliR.

Model’s decision boundary

Oracle classifier’s decision boundary

Class1

Class2

X



(a) Intersect1

Model’s decision boundary

Oracle classifier’s decision boundary

Class1

Class2

(b) Intersect2

Model’s decision boundary

Oracle classifier’s decision boundary

Class1

Class2

(c) Non-Intersect1

Model’s decision boundary

Oracle classifier’s decision boundary

Class1

Class2

(d) Non-Intersect2

Figure 7: Visualization of fθ and foracle decision boundaries. Region filled with gray lines:
{X ′|fθ(X ′)foracle(X ′) ≤ 0}. Region filled with blue lines: {X ′|fθ(X ′)Y ≤ 0, Y = class2}.

A.2. Proof for Theorem 2

Theorem 2 (Upper Bound) Let ψ be a nondecreasing, continuous and convex function:[0, 1] −→
[0,∞]. Let Rφ(f) := Eφ(fθ(X)Y) and R∗φ := minf Rφ(f), R(f) := E(fθ(X)Y) and

R∗ = minf R(f). For any non-negative loss function φ such that φ(0) ≥ 1, any measurable

fθ : X −→ R and any probability distribution on X × {+1,−1}, we have:

Rcali(f)−R∗ ≤ ψ−1(Rφ(f)−R∗φ) + E

[
max

X′∈B(X,ε)
foracle(X′)=Y

φ(fθ(X ′)Y)
]
. (6)

Proof.

Rcali(f)−R∗ = E(X,Y)∼D1{∃X ′ ∈ B(X, ε) s.t. fθ(X ′)foracle(X ′) ≤ 0}
= E(X,Y)∼D1{∃X ′ ∈ B(X, ε) s.t. fθ(X ′)foracle(X ′) ≤ 0, fθ(X)Y ≤ 0}

+ E(X,Y)∼D1{∃X ′ ∈ B(X, ε) s.t. fθ(X ′)foracle(X ′) ≤ 0, fθ(X)Y > 0} −R∗

= E(X,Y)∼D1{fθ(X)Y ≤ 0} −R∗

+ E(X,Y)∼D1{∃X ′ ∈ B(X, ε) s.t. fθ(X ′)foracle(X ′) ≤ 0, fθ(X)Y > 0}
≤ ψ−1(Rφ(f)−R∗φ) + E(X,Y)∼D1{∃X ′ ∈ B(X, ε) s.t. fθ(X ′)foracle(X ′) ≤ 0, fθ(X)Y > 0}

≤ ψ−1(Rφ(f)−R∗φ) + E(X,Y)∼D1{∃X ′ ∈ B(X, ε) s.t. fθ(X ′)foracle(X ′) ≤ 0}
≤ ψ−1(Rφ(f)−R∗φ) + E(X,Y)∼D max

X′∈B(X,ε)
1{fθ(X ′)foracle(X ′) ≤ 0}

≤ ψ−1(Rφ(f)−R∗φ) + E(X,Y)∼D max
X′∈B(X,ε)

φ(fθ(X ′)foracle(X ′))

Let foracle(X ′) = Y, then,

Rcali(f)−R∗ ≤ ψ−1(Rφ(f)−R∗φ) + E(X,Y)∼D max
X′∈B(X,ε)

foracle(X′)=Y

φ(fθ(X ′)Y)

Calibrated Adversarial Training

Algorithm 1 Calibrated adversarial training
Input: neural network fθ, neural network gϕ, training dataset (X,Y) ∈ D.
Output: adversarial robust network fθ
for epoch = 1 to T do

for mini-batch=1 to M do

Generate X ′ = X + δ using PGD or C&W∞ attack
Obtain X ′cali using Eq. 10
Update θ by back-propagating Eq. 13
Update ϕ by back-propagating Eq. 14

end for

end for

The first inequality holds when φ is a classification-calibrated loss Zhang et al. (2019);
Bartlett et al. (2006). Classification-calibrated loss contains the cross-entropy loss, hinge
loss, KL divergence and etc.

Appendix B. Training Strategy

There are two neural networks to be trained: fθ and gϕ. fθ is the neural network that we
want to obtain and gϕ is the auxiliary neural network for generating soft maskM . In practice,
we train these two neural networks in turn. Specifically, in each step, we firstly update fθ
using Eq. 13, then update gϕ using Eq. 14. More details can be found in Algorithm 1.

The pseudocode of our method is showed in Algorithm 1.

Appendix C. Implement Details

C.1. MNIST

We copy the model architecture for fθ from https://adversarial-ml-tutorial.org/adversarial_
training/.

Model architecture for fθ and gϕ: The architecture of fθ and gϕ are showed in
Table 5.

Table 5: Model architecture (MINST)

fθ gϕ

Layer name Neurons Layer name Neurons

Conv layer 32 Conv layer 64

Conv layer 32 Conv layer 128

Conv layer 64 Conv layer 128

Conv layer 64 Up sampling (28*28)

FC layer (7*7*64)X100 Conv layer 1

FC layer 100X10 Sigmoid -

https://adversarial-ml-tutorial.org/adversarial_training/
https://adversarial-ml-tutorial.org/adversarial_training/

Huang Menkovski Pei Pechenizkiy

Hyper-parameters settings for training our method: Epochs:40, optimizer:Adam,
The initial learning rate is 1e-3 divided by 10 at 30-th epoch. we set k = 150 for CW∞ loss
in CATcw. Other hyper-parameters are described in Section 5.1.1.

C.2. CIFAR-10/CIFAR-100

Model architecture for gϕ: The architecture of gϕ is showed in Table 6.

Table 6: Model architecture gϕ (CIFAR-10/CIFAR-100)

Layer name Neurons

ResNet-18 without FC layer -

Up Sampling (32*32)

Conv layer 3

Sigmoid -

Hyper-parameters for training our method: For CIFAR-10, we use SGD optimizer
with momentum 0.9, weight decay 5e-4 and an initial learning rate of 0.1, which divided by
10 at 100-th and 120-th epoch. Total epochs:140.

For CIFAR-100,we use SGD optimizer with momentum 0.9, weight decay 5e-4 and an
initial learning rate of 0.1, which divided by 10 at 100-th and 110-th epoch. Total epochs:120.

we set k = 50 for CW∞ loss in CATcw. Other hyper-parameters are described in
Section 5.1.1.

Baselines We run the official code for baselines and all hyper-parameters are set to the
values reported in their papers.

• AT, which is described in Section 3.2. We adopt the implementation in Rice et al.
(2020) with early stop, which can achieve better performance. we use the implementa-
tion in Rice et al. (2020). https://github.com/locuslab/robust_overfitting.

• Trades Zhang et al. (2019).It separates loss function into cross-entropy loss for
natural accuracy and a regularization terms for robust accuracy. The official code:
https://github.com/yaodongyu/TRADES.

• MART Wang et al. (2020). It incorporates an explicit regularization into the
loss function for misclassified examples. The official code: https://github.com/
YisenWang/MART.

• FAT Zhang et al. (2020). It constructs the objective function based on adversarial
examples that close to the model’s decision boundary. We adopt FAT for TRADES as
a baseline since it achieves better performance. The official code:
https://github.com/zjfheart/Friendly-Adversarial-Training.

All trained models in our experiments are trained in a single Nvidia Tesla V100 GPU and
selected at the best checkpoint where the sum of robust accuracy (under PGD-10) and
natural accuracy is highest.

https://github.com/locuslab/robust_overfitting
https://github.com/yaodongyu/TRADES
https://github.com/YisenWang/MART
https://github.com/YisenWang/MART
https://github.com/zjfheart/Friendly-Adversarial-Training

Calibrated Adversarial Training

Appendix D. Experiments on CIFAR-100

This section shows the performance of our method on CIFAR-100. The test settings are the
same as Table 2 and Table 3. Results are reported in Table 7. From Table 7, we can see
that our method improves natural accuracy and robust accuracy compared with AT, which
further shows the evidence that our method are effective in achieving natural and robust
accuracy.

Table 7: Evaluation on CIFAR-100 (PreAct ResNet-18).

Models Natural FGSM PGD-20 PGD-100 C&W∞ Avg

AT 55.13 29.77 27.51 27.01 25.91 33.06

CATcent(β1 = 0.05) 58.52 31.45 28.93 28.48 25.55 34.59

CATcent(β1 = 0.1) 59.77 30.33 27.16 26.62 24.17 33.61

CATcw(β1 = 0.05) 58.9 31.51 29.11 28.5 26.25 34.85

CATcw(β1 = 0.1) 60.37 31.04 28.31 27.88 25.67 34.65

Appendix E. Analysis for Hyper-parameter β

In this section, we conduct experiments for hyper-parameter β with varying from 1 to 5.
Test settings are the same as Figure 6. Results are showed in Table 8. Besides, we also
report results for hyper-parameter β1 with varying from 0.05 to 0.3.

From Table 8, it can be observed that β also controls a trade-off between natural accuracy
and robust accuracy. The larger β value leads to a larger robust accuracy but with a smaller
natural accuracy. By comparing with β1, we can see that adapting β1 can achieve a better
trade-off than adapting β. Therefore, for our method, we suggest to fix β to large value,
e.g., β = 5, then adapt β1 to achieve the trade-off that we want.

Table 8: Impact of hyper-parameter β.

CATcent CATcw

βa Nat PGD-20 β1
b Nat PGD-20 βa Nat PGD-20 β1

b Nat PGD-20

5 84.1 55.6 0.05 84.1 55.6 5 84.2 55.2 0.05 84.2 55.2

4 85.0 54.6 0.1 85.8 54.1 4 84.5 55.1 0.1 85.3 54.9

3 85.4 53.7 0.2 87.0 52.6 3 85.5 53.5 0.2 86.9 52.8

2 86.4 51.7 0.3 88.0 51.1 2 86.3 52.6 0.3 88.1 51.5

1 86.8 51.1 - - - 1 87.6 50.8 - - -

a : Model is trained with fixing β1 : 0.05. b : Model is trained with fixing β : 5. Nat denotes Natural accuracy.

Appendix F. Difference Between Pixel-level Adapted and Instance-level

Adapted Adversarial Examples

It is assumed that we want to find adversarial examples on the decision boundary. As showed
in Figure 8, given the maximum perturbation bound is ε. Instance-level adapted adversarial

Huang Menkovski Pei Pechenizkiy

examples will reduce ε to ε′ and find the adapted adversarial examples x′0 while pixel-level
adapted adversarial examples may find x′1 or x′2 as long as it is on the decision boundary
within the ε-ball. In other words, pixel-level adapted adversarial examples could lead to
more diversified adversarial examples.

x

Decision boundary Class1 Class2 Adversarial

Examples

x

Decision boundary Class1 Class2 Adversarial

Examples

'

1x
'

0x '

2x


'

Figure 8: Illustration of the difference between pixel-level adapted and instance-level adapted
adversarial examples.

Appendix G. Analysis for Differences Between the Proposed General

Objective Function (Eq. 7) and the General Objective

Function in Zhang et al. (2019)

The general objective function derived on the upper bound of robust error is expressed as
follows Zhang et al. (2019):

min
θ

E(X,Y)[φ(fθ(X)Y) + max
X′∈B(X,ε)

φ(fθ(X ′)Y)/λ]. (17)

By comparing Eq. 17 and Eq. 7, the main difference is that there is an extra constraint
foracle(X ′) = Y for the inner maximization in our proposed general objective function.
Therefore, we heuristically analyze the decision boundaries learned by these two general
objective functions according to whether the constraint foracle(X ′) = Y is active or not:

• Given the oracle classifier’s decision boundary does not cross the ε-ball of input X,
then the foracle(X ′) = Y is an inactive constraint for the inner maximization and
the proposed general objective function will be equivalent to Eq. 17. As showed
in Figure 9(b)subfigure, by minimizing the general objective function, the decision
boundary would be transformed from black solid line to gray solid line in order to
classify adversarial examples (red points) as “Class 2”.

Calibrated Adversarial Training

• Given the oracle decision boundary crosses the ε-ball of input x, then the foracle(X ′) =
Y is an active constraint. As showed in Figure 9(a)subfigure, the constraint foracle(X ′) =
Y is active for input x1. Therefore, the example generated by the inner maximization
in the proposed general objective function will be x∗1 (orange point) while the example
generated by the inner maximization in Eq. 17 will be x′1 (red point). By minimizing
the general objective function, the decision boundary learned by the proposed general
objective function could be the gray line since it try to classify X∗1 as “Class 2” while
the decision boundary learned by Eq. 17 could be the red line since it try to classify
x′1 as “Class 2”.

Intuitively, our proposed general objective function will push the learned decision boundary
to be near the oracle classifier’s decision boundary while the general objective function
in Zhang et al. (2019) will push the learned decision boundary to be near the boundary of
ε-ball.





Model’s decision boundary Oracle classifier’s decision boundary

1x

2x

Class1 Class2

By the general objective

function (Ours)

By the general objective

function (Zhang et al., 2019)

'

1x
*

1x

(a) Active




Model’s decision boundary Oracle classifier’s decision boundary

1x

2x

Class1 Class2

By the general objective

function (Ours)

By the general objective

function (Zhang et al., 2019)

(b) Inactive

Figure 9: Illustration for the decision boundaries learned by the proposed general objective function
and the general objective function in Zhang et al. (2019). The gray line in Figure 9(a)subfigure
denotes the decision boundary learned by our proposed general objective function. The red line
in Figure 9(a)subfigure denotes the decision boundary learned by the general objective function
in Zhang et al. (2019). The gray line in Figure 9(b)subfigure denotes the decision boundary learned
by our proposed general objective function or by the general objective function in Zhang et al. (2019).

Appendix H. The Loss Functions for Other Variants of Adversarial

Training

Table 9: Loss functions of other variants of adversarial training.

Methods Loss Function

AT Madry et al. (2017) L(fθ(X ′), Y)
ALP Kannan et al. (2018) L(fθ(X ′), Y) + λ · ‖fθ(X ′)− fθ(X)‖
MMA Ding et al. (2019) L(fθ(X ′), Y) · 1(fθ(X) = Y) + L(fθ(X), Y) · 1(fθ(X) 6= Y)

Trades Zhang et al. (2019) L(fθ(X), Y) + λ ·KL(P (Y |X ′)||P (Y |X))
MART Wang et al. (2020) BCE(fθ(X ′), Y) + λ ·KL(P (Y |X ′)||P (Y |X)) · (1− P (Y = y|X))

Huang Menkovski Pei Pechenizkiy

