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Supplementary Material

1. Improving the First Class of Hashing Algorithms: Maximum
Likelihood Estimators

The main goal is to prove Theorem 1 stated in the main paper. We restate the procedure
of maximum likelihood estimation here in this context.

Suppose we have k hashes, and define vik (equivalently vjk, vwk) to be the respective
values under the kth hash. Consider the kth triple given by (vik, vjk, vwk). There are only
five possible sets of triples: a) all elements are equal, b) two elements are equal and the third
is different, and c) all elements are distinct. Table 1 shows the different types of triples.

A B C D E

vis equal different equal equal distinct
vjs equal equal different equal distinct
vws equal equal equal different distinct

Table 1: Table of possible triples.

Suppose we count the triples in each set and denote this as nl, where l ∈ {A,B,C,D,E},
and pl the probability of observing a triple falling in the set l. We note that nA + nB + nC +
nD + nE = k.

Since we have pre-computed d(xi,w) and d(xj ,w), and f (1) is linear, we can invert this
function to find the corresponding ρh(xi,w), ρh(xj ,w). Moreover, we can write pA + pC =
ρh(xi,w), pA+pB = ρh(xj ,w), pA+pD = ρh(xi,xj), and pA+pB+pC+pD+pE = 1. Finally,
since d(xi,xj) is given by pA + pD, we write the log likelihood function `(pA, pB, pC , pD, pE)
in terms of pA and pD, and get

(1)`(pA, pD) = nA log(pA) + nB log(ρh(xj ,w)− pA) + nC log(ρh(xi,w)− pA)
+ nD log(pD) + nE log(1− ρh(xi,w)− ρh(xj ,w) + pA − pD)

as we want to compute the maximum likelihood estimate of p̂A + p̂D to give an estimate of
ρh(xi,xj).

Theorem 1 Suppose we have a hashing algorithm where the estimate of interest is given by

ρh(xi,xj) = E[f(Y (1))] (2)

where Y (1) is a Bernoulli random variable, f is a linear function, and the output of the
hashing algorithm takes discrete values. Suppose we add a weighted vector w, and compute
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the maximum likelihood estimate via (1). Then: a) this estimator is unbiased, and b) the
asymptotic variance of this estimator is always lower than or equal to the variance of the
estimate without using the MLE.

Proof In part a), the estimator is given by p̂A + p̂D. We can see that observe from
Table 1 that sets A and D correspond to when the hashed values vis = vjs for 1 ≤ s ≤ k,
and by definition, we have ρh(xi,xj) = P[vi = vj ], hence by the law of large numbers,∑k

s=1 1{vis=vjs}/k ≈ ρh(xi,xj) and hence this estimator is unbiased.
We now prove part b).
Recall that for random variables Y1, Y2, . . . , Yk, we have that

Var[
Y1 + . . .+ Yk

k
] =

1

k2

 k∑
s=1

Var[Ys] + 2
∑
s≥t

Cov(Ys, Yt)

 (3)

In the original case without any modifications, we have Ys := 1{vis=vjs} for 1 ≤ s ≤ k,
and each Ys are i.i.d. from a Bernoulli distribution.

Hence with k hashes, we must have

Var[
Y1 + . . .+ Yk

k
] =

1

k2

(
k∑

s=1

Var[Ys]

)
(4)

=
Var[1{vi=vj}]

k
(5)

=
(pA + pD)(pB + pC + pE)

k
(6)

Suppose we now look at our new estimator, where we make use of the pre-computed
values. From Equation (1), we can compute the partial derivatives to be

∂`

∂pA
=
nA
pA

+
nB

pA − ρh(xj ,w)
+

nC
pA − ρh(xi,w)

+
nE

1 + pA − pD − ρh(xi,w)− ρh(xj ,w)

(7)
∂`

∂pD
=
nD
pD
− nE

1 + pA − pD − ρh(xi,w)− ρh(xj ,w)
(8)

and Hessian matrix of second partial derivatives as

H =

(−nA

p2
A

− nB
(ρh(xj ,w)−pA)2

− nC
(ρh(xi,w)−pA)2

− nE
(1−ρh(xi,w)−ρh(xj ,w)+pA−pD)2

nE
(1−ρh(xi,w)−ρh(xj ,w)+pA−pD)2

nE
(1−ρh(xi,w)−ρh(xj ,w)+pA−pD)2

− nE
(1−ρh(xi,w)−ρh(xj ,w)+pA−pD)2

− nD

p2
D

)

=

(−nA

p2
A

− nB

p2
B

− nC

p2
C

− nE

p2
E

nE

p2
EnE

p2
E

−nD

p2
D

− nE

p2
E

)
(9)
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From the Hessian, we can compute the expected Fisher Information I of pA and pD given
by

I = −E [H] (10)

=

E[nA]
p2A

+ E[nB ]
p2B

+ E[nC ]
p2C

+ E[nE ]
p2E

−E[nE ]
p2E

−E[nE ]
p2E

E[nD]
p2D

+ E[nE ]
p2E

 (11)

=

(kpA
p2A

+ kpB
p2B

+ kpC
p2C

+ kpE
p2E

−kpE
p2E

−kpE
p2E

kpD
p2D

+ kpE
p2E

)
(12)

= k

(
1
pA

+ 1
pB

+ 1
pC

+ 1
pE

− 1
pE

− 1
pE

1
pD

+ 1
pE

)
(13)

Now,
(
p̂A
p̂D

)
converges in distribution to a bivariate normal random variableN

((
pA
pD

)
, I−1

)
,

where

I−1 = 1

k
[(

1
pA

+ 1
pB

+ 1
pC

+ 1
pE

)(
1
pD

+ 1
pE

)
− 1

p2E

] ( 1
pD

+ 1
pE

1
pE

1
pE

1
pA

+ 1
pB

+ 1
pC

+ 1
pE

)
(14)

We can now write the variance of our new estimator as

Var[p̂A + p̂D] = Var[p̂A] +Var[p̂D] + 2Cov[p̂A, p̂D] (15)

=

((
1
pD

+ 1
pE

)
+
(

1
pA

+ 1
pB

+ 1
pC

+ 1
pE

)
+ 2

pE

)
k
[(

1
pA

+ 1
pB

+ 1
pC

+ 1
pE

)(
1
pD

+ 1
pE

)
− 1

p2E

] (16)

=

1
pA

+ 1
pB

+ 1
pC

+ 1
pD

+ 4
pE

k
[(

1
pA

+ 1
pB

+ 1
pC

+ 1
pE

)(
1
pD

+ 1
pE

)
− 1

p2E

] (17)

Finally, we want to show that the asymptotic variance of this estimator is always lower
than or equal to the variance of the original estimator, which is equivalent to showing that

(pA + pD)(pB + pC + pE)−
1
pA

+ 1
pB

+ 1
pC

+ 1
pD

+ 4
pE(

1
pA

+ 1
pB

+ 1
pC

+ 1
pE

)(
1
pD

+ 1
pE

)
− 1

p2E

≥ 0 (18)

Suppose we let

A := (pA + pD)(pB + pC + pE)

[(
1

pA
+

1

pB
+

1

pC
+

1

pE

)(
1

pD
+

1

pE

)
− 1

p2E

]
(19)

B :=
1

pA
+

1

pB
+

1

pC
+

1

pD
+

4

pE
(20)

We then want to show that A ≥ B for all values of pA, pB, pC , pD, pE .
The key idea here is to replace the “1" terms by pA + pB + pC + pD + pE whenever they

occur.



Note that A remains unchanged, because we can write

A :=
(pA + pD)

1

(pB + pC + pE)

1

[(
1

pA
+

1

pB
+

1

pC
+

1

pE

)(
1

pD
+

1

pE

)
− 1

p2E

]
(21)

and the pA + pB + pC + pD + pE terms cancel.
However, B now becomes

B :=
pA + pB + pC + pD + pE

pA
+
pA + pB + pC + pD + pE

pB
+
pA + pB + pC + pD + pE

pC

+
pA + pB + pC + pD + pE

pD
+

4(pA + pB + pC + pD + pE)

pE
(22)

Now, we need to show that A−B ≥ 0 for all 0 ≤ pA, pB, pC , pD, pE ≤ 1. We first write

A−B =
C

pApBpCpDpE
(23)

where

C = (pA − pD)2(pB + pC)pBpC + (pB − pC)2(pA + pD)pApD

+ pApE(pA(pB + pC)(pB + pC + pE)− 4pBpCpD) (24)

= αp2D + βpD + γ (25)

as a quadratic in pD by replacing pE by 1− pA − pB − pC − pD, with

α = (pA + pB)(pA + pC)(pB + pC) (26)

β = 2pA(pBpC(pB + pC − 2) + p2A(pB + pC) + pA(pB + pC − 1)(pB + pC)) (27)

γ = p2A(pA + pB − 1)(pA + pC − 1)(pB + pC) (28)

We can complete the square in our quadratic at (25) and get

C = α

(
pD +

β

2α

)2

− β2

4α
+ γ (29)

and now we just need to show that that

−β
2

4α
+ γ ≥ 0 (30)

which is a term in pA, pB and pC . The left hand side of (30) gives

p2A(pB − pC)2(pApB(1− pA − pB) + pApC(1− pA − pC) + pBpC(1− pB − pC)− 2pApBpC)

(pA + pB)(pA + pC)(pB + pC)
(31)

but we note that since pA + pB + pC + pD + pE = 1, we can write the third factor of the
numerator of (31) as

pApB(pC + pD + pE) + pApC(pB + pD + pE) + pBpC(pA + pD + pE)− 2pApBpC (32)
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and hence note we have a common factor of pApBpC which cancels out when we expand (32)

(pApB + pApC + pBpC)(pD + pE) + pApBpC (33)

which is always non-negative. We can hence write (31) as

p2A(pB − pC)2((pApB + pApC + pBpC)(pD + pE) + pApBpC)

(pA + pB)(pA + pC)(pB + pC)
≥ 0 (34)

which implies that (25) is always non-negative, and thus

(pA + pD)(pB + pC + pE)−
1
pA

+ 1
pB

+ 1
pC

+ 1
pD

+ 4
pE(

1
pA

+ 1
pB

+ 1
pC

+ 1
pE

)(
1
pD

+ 1
pE

)
− 1

p2E

≥ 0 (35)

with equality when pB = pC and pD = pA(1− pA − pB)/(pA + pB).
This completes the proof.

1.1. Random Projections and Very Sparse Random Projections

We prove the following theorem

Theorem 2 Suppose w1, . . . ,wS are chosen to be pairwise orthogonal. With the estimator
vivj, we can write the control variate

Z =
∑
s,t

αs,tvwsvwt (36)

with αs,t = d(xi,ws)d(xj ,wt) + d(xi,wt)d(xj ,ws), with control variate correction ĉ = −1
2 .

Proof For each hash, our estimate of the inner product θ̂ can be written as

θ̂ = vivj + ĉ
∑
s,t

αs,t (vwsvwt − E[vwsvwt ]) (37)

The variance of our estimates can hence be written as

Var[θ̂] = Var[vivj + ĉ
∑
s,t

αs,tvwsvwt ] (38)

= Var[vivj ] + ĉ2
∑
s,t

α2
s,tVar[vwsvwt ] + 2ĉαs,t

∑
s,t

Cov(vivj , vwsvwt)

+ 2ĉ
∑

s,t,m,n

αs,tαm,nCov(vwmvwn , vwsvwt) (39)

Suppose we bring in ĉ into the αs, i.e. set α̃ = ĉα, and we map each of the tuples (s, t) to
k ∈ {1, 2, . . . , S(S − 1)/2}. Then we can rewrite the above equation to get

Var[θ̂] = Var[vivj +
∑
k

αkvwsvwt ] (40)

= Var[vivj ] +
∑
k

α2
k Var[vwsvwt ] + 2αk

∑
k

Cov(vivj , vwsvwt)

+ 2
∑
k,k′

αkαk′ Cov(vwmvwn , vwsvwt) (41)



Then if we take partial derivatives with respect to αs, we have for some arbitrary αk term

∂Var[θ̂]

∂αk
= 2αk Var[vwsvwt ] + 2Cov(vivj , vwsvwt)

+ 2
∑
k′ 6=k

αk′ Cov(vwmvwn , vwsvwt) (42)

Since we know the weighted vectors are chosen to be orthogonal to each other, then
Cov(vwmvwn , vwsvwt) = 0 if (m,n) 6= (s, t) (or (m,n) 6= (t, s)). Hence (42) simplifies to

∂Var[θ̂]

∂αk
= 2αk Var[vwsvwt ] + 2Cov(vivj , vwsvwt) (43)

and equating this to zero, we must have that

αk = −Cov(vi, vj , vwsvwt)/Var[vwsvwt ] (44)

Since vis are distributed multivariate normal, and xis and the weighted vectors are normalized
to unit length 1, then any

Cov(vivj , vkvl) = d(xj ,xk)d(xi,xl) + d(xj ,xl)d(xi,xk) (45)

and in general we get

αk = −1

2
d(xj ,xk)d(xi,xl) + d(xj ,xl)d(xi,xk) (46)

Since we brought ĉ into the αs, we thus have the optimal control variate coefficient and terms
to be

ĉ =
1

2
αi,j = d(xj ,xk)d(xi,xl) + d(xj ,xl)d(xi,xk) (47)

or in general, any form of

ĉ =
1

2
β αi,j =

1

β
d(xj ,xk)d(xi,xl) + d(xj ,xl)d(xi,xk) (48)

for any β ∈ R.
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