Proceedings of Machine Learning Research 157, 2021 ACML 2021

Improving Hashing Algorithms for Similarity Search via MLE
and the Control Variates Trick

Keegan Kang KEEGAN KANG@SUTD.EDU.SG
Engineering Systems and Design Pillar, Singapore University of Technology and Design

Sergey Kushnarev SKUSHNA1@QJHU.EDU
Department of Applied Mathematics and Statistics, Johns Hopkins University

Wei Pin Wong WEIPIN _WONG@SUTD.EDU.SG
Science, Mathematics, and Technology Cluster, Singapore University of Technology and Design
Rameshwar Pratap RAMESHWARQ@IITMANDI.AC.IN
School of Computing and Electrical Engineering, IIT Mandi

Haikal Yeo YEOHAIKALQ@QGMAIL.COM
Independent

Yijia Chen YIJIA  CHEN@MYMAIL.SUTD.EDU.SG

Singapore University of Technology and Design

Editors: Vineeth N Balasubramanian and Ivor Tsang

Abstract

Hashing algorithms are continually used for large-scale learning and similarity search, with
computationally cheap and better algorithms being proposed every year. In this paper we
focus on hashing algorithms which involve estimating a distance measure d(x;, ;) between
two vectors x;, ;. Such hashing algorithms require generation of random variables, and we
propose two approaches to reduce the variance of our hashed estimates: control variates
and maximum likelihood estimates. We explain how these approaches can be immediately
applied to a wide subset of hashing algorithms. Further, we evaluate the impact of these
methods on various datasets. We finally run empirical simulations to verify our results.
Keywords: control variates, hashing algorithms, maximum likelihood estimation, statistical
techniques

1. Introduction

The first ever locality sensitive hashing algorithm established was minhash (Broder, 1997),
which looked at estimating the resemblance between any two documents. Since then, a wide
variety of hashing algorithms has been proposed in the literature (see Wang et al. (2014); Chi
and Zhu (2017) for most of the common hashing algorithms since 2017), including Shrivastava
(2016); Li (2019); Pratap et al. (2019) in recent times. We focus on two broad classes of
hashing algorithms which estimate some distance measure d(x;, ;) between two vectors
x;,x; € RP. For ease of notation, we define a generic hash function h on a set of objects
X C RP where for all ; € X, we have h: x; e RP — v; e R,1 <1 < n.

© 2021 K. Kang, S. Kushnarev, W.P. Wong, R. Pratap, H. Yeo & Y. Chen.



KANG KUSHNAREV WONG PRATAP YEO CHEN

Name Distance FOon(xiz;) | FP(vi,v5)
Minwise hashing Resemblance pn(xi, x;) NA
Sign random projections || Angular distance | 1 — wpp(x;, ;) /k NA
Random projections Inner product NA ViV

Table 1: Examples of f(V(:) and f)(-,-) in these two classes of hashing algorithms.

Our first class of algorithms has the property that for all ; € X, we have
Plh(xi) = h(z;)] = Ploi = vj] = pn(w:, ;) (1)

where pp(x;, ;) € [0,1] is some similarity measure defined on X, and we can approximate
d(z;,x;) from some fU)(pp(z;, ;) where f() is linear. Some examples include minwise
hashing (Broder, 1997; loffe, 2010; Li and Konig, 2010; Ji et al., 2013; Shrivastava, 2016) and
sign random projections (Charikar, 2002; Ji et al., 2012; Kang and Wong, 2018).

Our second class of algorithms has the property that for all &; € X, we have

B/ (h(a:), b)) = B (v1,07)] = d(wi, ). ?

Examples of such hash functions include random projections (Indyk and Motwani, 1998;
Li et al., 2006b, 2010; Li, 2019). We give examples of the two classes in Table 1.

In both classes, computing the actual distance between these vectors takes O(p) time.
Given N pairs of vectors, the total time taken is O(Np). If we hash these vectors k < p times,
then by the Law of Large Numbers, we can get an estimate of d(x;, ;) by computing either

the estimator f(l)(Zle he(xi)he(x;)/ k) or <Zf:1 F@ (hy (), ht(ccj))> /k. This reduces our
computational cost down to O(Nk).

If we think of Yt(l) := h¢(x;)he(x;) in the first class, and Y;(Q) = @ (hy(xi), hy(z5)) in
the second class as random variables, we immediately observe these three facts: First, Yt(l)
can be modelled as a Bernoulli random variable, regardless of the random process involved
in h(x). Second, the variance of these estimators are dependent on number of hashes, k,
rather than on initial dimension p. Third, techniques such as maximum likelihood estimators
(MLEs) (Casella and Berger, 2001) can be applied to Yt(l), and control variates (Lavenberg
and Welch, 1981) applied to Yt(2) to further reduce the variance of our estimates.

Our goal is to achieve significant variance reduction in estimating the pairwise similarities
without generating more i.i.d. copies of these random variables.

2. Related work

Both MLEs and control variates have been studied for variance reduction in similarity
estimation algorithms using sketching techniques. We mention a few notable works as follows
and contrast them with our contributions in this paper. Kang and Wong (2018) suggests
variance reduction using the MLE method in similarity estimations via SRP (Charikar, 2002),
as a contrast to antithetic sampling in Ji et al. (2013).



IMPROVING SIMILARITY SEARCH WITH MLE AND CONTROL VARIATES

In this paper, we generalise the MLE technique for a wide class of discrete hashing
algorithm ! such as MinHash (Broder et al., 1998), Winner-takes-all (WTA) (Yagnik et al.,
2011). The result of Kang and Wong (2018) can be thought of as a special case of this work.

For the control variate technique, we extend upon the special case of random projections
in Kang (2021) which can be applied to a wide class of random projection algorithms such
as signed full random projection (Li, 2019), sparse and very sparse random projection (Li
et al., 2006b; Kane and Nelson, 2014; Cohen et al., 2018), stable random projection (Li and
Hastie, 2008), as well as frequency estimators (Pratap and Kulkarni, 2021). While the control
variate technique can be seen as an analogue to the MLE technique for random projections
in Li et al. (2020), the control variate technique is much cleaner.

3. Our Contributions

Our work goes beyond literature that looks at statistical properties of hashing algorithms
(Rusu and Dobra, 2007; Ahfock et al., 2017) by also incorporating structural information
of the dataset {x;}. We propose creating weighted vectors ws which point in the direction
of groups or clusters of vectors in the dataset, and hash them to get v,,,. More explicitly,
these weighted vectors w, should have small distances d(ws, x;), between vectors x; in the
dataset. We defer the discussion on how to create these vectors to Section 6. We propose
conditioning upon these weighted vectors to improve our estimates, by making use of the
true values d(ws, x;), d(ws, ;) which we pre-compute in advance, and the estimated val-
ues Zf:l 1{ht(ws):ht($i)}/k7 Zz]tczl ]‘{ht(WS):ht(wj)}/k (OI‘ similarly f(2) (U’ws? Ui)v f(z) (vws7 Uj))‘

Figure 1 shows the process pictorially for the second case.

@M@ @ d(@;, w) e f(2)(v?,vw'@

/ Vi Vo)
d(zi, z;) f(Q)(U@','Uj) d(z;, x;) @W@ f(2)(fui,vj)

o d(ag,w) F@ (0, v
@W@ @ : h(z;) - @

Existing procedure Using weighted information

Figure 1: Using one weighted vector w for which we know relevant information (shown in
blue) to estimate unknown d(x;, ;) (shown in red).

Our contributions are the following: 1) We outline the MLE and control variates ap-
proaches which lead to improved variance estimates of d(x;, ;). 2) We discuss the cases
where these two methods improve the variance reduction substantially, as well as potential
tradeoffs and limitations. 3) We validate our approach via empirical simulations.

1. We refer a hashing algorithm as discrete if it outputs integer valued hash values.



KANG KUSHNAREV WONG PRATAP YEO CHEN

A B C D E
vis || equal | different equal equal distinct
vjs || equal equal different equal distinct
vws || equal | equal equal | different | distinct

Table 2: Table of possible clashes between the hashed values vis, vjs, Vas-

In the next two sections, we assume that values d(ws, ;) (for s =1,...,5) have been
computed and stored for all x; € X, which is a once-off computational cost of O(npS) and a
storage cost of O(n.S).

4. Improving The First Class Of Hashing Algorithms: Maximum
Likelihood Estimators (MLE)

The MLE trick has been known since the 1940s (Deming and Stephan, 1940), and has been
used in Church et al. (2006); Li and Church (2007); Kang and Wong (2018) for specific hashing
algorithms. We extend this to classes of hashing algorithms where Plv; = v;] = pp (@i, x;).

There are two subcases. The first is where the hashed values are binary (e.g. sign random
projections (Charikar, 2002), min-maz hash (Ji et al., 2013), super-bit locality sensitive hashing
(Ji et al., 2012)), and the other where the hashed values are discrete (e.g. minhash (Broder,
1997), weighted minhash (Shrivastava, 2016)). We outline the discrete case here, which
extends the work in Kang and Wong (2018) to the general discrete case.

Suppose we have k hashes, and define v;1, vji, Vi to be the respective values of x;, x;, w

under the k' hash. Consider the kth triple given by (vik,Vjk, Vewk). There are only five
possible sets of triples: a) all elements are equal, b) two elements are equal and the third is
different, and c) all elements are distinct. Table 2 shows the different types of triples.

Suppose we count the triples in each set and denote this as n;, where | € {A, B,C, D, E'},
and p; the probability of observing a triple falling in the set I. We note that ), n; = k.

Since we have pre-computed d(x;, w) and d(zx;, w), and @ is linear, we can invert f() to
find pp (i, w), pp(x;, w). Moreover, we can write pa +pc = pp(i, w), pa+pB = pr(T;, w),
pa+pp = pr(xi, x;), and Y, py = 1. Finally, since d(x;, x;) is given by pa + pp, we write
the log likelihood function ¢(p4, pB, pc, P, PE) in terms of p4 and pp, and get

{(pa,pp) = nalog(pa) + nplog(pn(x;, w) — pa) + nclog(pp(wi, w) — pa) + nplog(pp)
+nglog(l — pp(xi, w) — pp(zj, w) + pa — pp). (3)

as we want to compute the MLE of ps + pp to give an estimate of pj(x;, x;).

The log-likelihood function can be reduced to a cubic in p4, and can be solved to give us
a value of pp. The following theorem tells us that the obtained MLE of pp(x;, ;) will be
more accurate than the estimate obtained without the MLE. Thus we can get a more precise
estimate of d(x;, ;) as well.

Theorem 1 Suppose we have a hashing algorithm where the estimate of interest is given by
pr(xi, ;) = E[f(YM)], where Y1) is a Bernoulli random variable, f is a linear function,
and the output of the hashing algorithm takes discrete values. Suppose we add a weighted



IMPROVING SIMILARITY SEARCH WITH MLE AND CONTROL VARIATES

vector w, and compute the mazximum likelihood estimate via (3). Then: a) this estimator
is unbiased, and b) the asymptotic variance of this estimator Var|pp(x;, ;)| mrE is always
lower than or equal to the variance of the estimator Var|ppy(x;, ;)] without the MLE.

We prove this theorem in the supplementary material.

We give two remarks on our method. For our method to work well, we need to choose a
weighted vector that is appropriate for the hashing algorithm we are using. In order to do so,
we need to examine our proof of part b) more carefully. The proof involves showing that
Var|py(x;, ;)] — Var|ps(x;, ;) Mg > 0, and we have shown that this is equivalent to

%4 (ps — pc)?((papB + PaPC + PEPC) (PD + PE) + PAPEPC)
(pa +pB)(PA + pC)(PB + PC)

>0 (4)

with equality when pp = po and pp = pa(1 —pa — pB)/(pa + pB). Equation (4) allows us
to “reverse engineer" and pick a choice of weighted vector to get the most variance reduction
based on the hashing algorithm we use.

To give an example, we can see that in Table 1, we estimate our angular distance between
x;, x; with sign random projections using the estimate 1 — 7(p4 + pp)/k using our notation.
Since we want to avoid the case where pp = pc (with no variance reduction), this implies
our weighted vector must have high angular similarity with both x;, x;, to avoid the case of
pB ~ pc. In general, choosing the best weighted vector for each hashing algorithm is not
easy, but can be done via some heuristics.

Our second remark is that we necessarily need to run a root finding process to get a
better estimate, and implementing such a root finding process in high level programming
languages such as Matlab can take up a considerable amount of time, unless the code is
written in a low level programming language like C++.

5. Improving The Second Class Of Hashing Algorithms: Control Variates

We briefly review control variates (see Lavenberg and Welch (1981) for full treatment).
Suppose we have a random number generator that generates a random variable Y, and
we want to estimate E[Y]. Suppose we use the same random numbers from the generator
to generate a random variable Z, but we know the true mean E[Z] = uz. For any c,
we have that (Y 4+ ¢(Z — pz)) is an unbiased estimator of Y. The variance is given by
Var[Y + ¢(Z — pz)] = Var[Y] + ¢ Var[Z] + 2¢ Cov (Y, Z).

We can find the value of ¢ = —%}[/é]z) which minimizes the variance by completing the
2
square, and hence get the lowest variance Var[Y + ¢(Z — puz)] = Var[Y] — %

In this case, Z is called a control variate, and ¢ is a control variate correction. We observe
that the theoretical variance of (Y + ¢(Z — puz)) is always lower than the theoretical variance
of Y, with equality if there is no correlation between Y and Z.

For our second class of hashing algorithms, we thus set ¥ = f(2) (vi,vj) which is an
approximation of d(x;, ;) that we want to find. We set Z to be a linear combination of
estimates we already know and can compute, and choose the number of weighted vectors wy,



KANG KUSHNAREV WONG PRATAP YEO CHEN

of which the general case is given by

Z = o1 fP(vi,v) + aa fP(vj,05) + > as o f P (vi, we) + > o f D (ws, v;)

s s (5)
+ Z a5,sf(2) (Ujv ws) + Z a6,sf(2) (ws, Uj) + Z a7,s,tf(2) ('ws; wt)-
s S s,t

If £@ is symmetric, the expression for Z will have only five terms.

As control variates always guarantee a variance reduction, the goal is to find the values
of o which maximizes this variance reduction. In practice, we do not consider all « terms, as
we may omit the terms f(2)(-,-) which involve values of d(z;, ;) which is being estimated.

To compute the control variate correction ¢, we need to find an expression for an arbitrary
E[f®) (v;,v;) f®) (vg, v7)], which will be used to compute Cov(Y, Z) and Var[Z]. With these
Cov(Y, Z)?

Var[Z]

In the next two subsections we give two examples of how to compute ¢, both which
are dependent on the form of f)(v;,v;): one where (f® (v;,v;), f® (vk,v;)) converges to a
bivariate normal, and the case where (£ (v;,v;), f® (vg,v;)) do not.

values we then can find the values of as which maximize the variance reduction

5.1. Control variates where (f®(v;,v;), f? (v, v;)) converge to a bivariate
normal distribution

In this section, we look at both random projection (Indyk and Motwani, 1998; Li et al.,
2006a) and very sparse random projection (Li et al., 2006b). For the random projection case,
given two real-valued vectors x;, x; € RP normalized to length 1, we generate a random
matrix Rpy; with entries in R being i.i.d N(0,1). We then compute vectors v;, v; given by
v; =x! R,vj = a:;-FR.

For the very sparse random projection case, the only modification is that the entries in the
random matrix R, are drawn independently from the scaled Sparse Bernoulli distribution,

1, with probability i,
i =1/ 0, with probability 1 — %, (6)
—1, with probability %,

with s > 1 being a parameter of our choice.

We note that the control variate terms vy, vy, always remain the same regardless of the
pair we want to estimate, and only requires stored values of a; for each pair.

Both random projection and very sparse random projection aim to estimate the inner
product d(x;, x;) = a:;fpmj between any two vectors x;, ;. Denote v;; and v;; to be the tth



IMPROVING SIMILARITY SEARCH WITH MLE AND CONTROL VARIATES

element of v; and v; respectively. For both cases, for all ¢, it can be shown that

[P 4
Elvivjd] =B | @ikrhs Y, @i 0rhs (7)
Lk=1 k=1

p
=B > wipwjn(rie)’ + D @ikt 0 (rearyy ;)

| k=1 kK
p
_— Z (L‘i,k(L'j’kE[Tk,f] + Z a:Lk:];j,k/IE[rk,trk/’t] (8)
k=1 k#k'
p
= Ziﬁzkiﬁgk = d(z;, ), (9)

b
Il
—

where d(x;, x;) is the dot product between @;, ;. The above equality holds as E[r? ] =1,
and E[ryr,s ] = 0 for k # k', Similarly, Efvf] = Y h_y a7y, = llaeall.
For ordinary random projections, we have that for 1 <t < k the tuple is bivariate normal:

( Zji > ~ N (< 8 > ! < d(aci z;) d(wi{ =) )) : (10)

This allows us to make use of the multivariate normal distribution (Li et al., 2020). We
can keep on adding extra weighted vectors w, ..., ws, where vy, = w! R, and the hashes
will be distributed as multivariate normal (by themselves or in the limit)

si’t 1 d(x;, x;) d(x;,wi) ... d(x;,ws)
gt d(x;, x; 1 d(x;,w e d(xg, ws
Vuoy ~N|o, ( . ]) . ( J 1) ' ( J. ) (11>
; . d(xi, ws) d(zj,ws) dlwi,ws) ... 1
ws,t

and we can find the control variate correction for special weighted vectors, which we state as
a theorem below.

Theorem 2 Suppose wi, ..., ws are chosen to be pairwise orthogonal. With the estimator
v;v;j, we can write the control variate
Z = Z Qs Vg Ve (12)
s,t
with ay = d(z;, ws)d(xj, wy) + d(x;, wy)d(xj, ws), with control variate correction ¢ = —3.

We prove this in the supplementary material. In fact, so long (v;¢,v;:) converges to
a bivariate normal in distribution, such as very sparse random projections, or Tug-of- War
sketch (Alon et al., 1999; Pratap et al.), we can still apply our result in Theorem 2.

Moreover, we can now apply the following corollary from Kang (2021) which we restate
slightly for the case where (£ (v;,v;), £ (vg, v;)) converge to a bivariate normal distribution
to exactly quantify our variance reduction.

Corollary 3 The control variate correction given our choice of control variates Z =
D st Os,tUw, VU, gives a variance reduction of 3 Cov(Y, 2).



KANG KUSHNAREV WONG PRATAP YEO CHEN

5.2. Control variates for other distributions of (f® (v;,v;), f® (v, 1))

We now look at sign full random projections (Li, 2019) as an example. Sign full random
projections aims to estimate the inner product d(x;, ;) := :cl-Ta:j between two vectors
x;, x;. Suppose we compute and store values 0; ., d(x;, w), the angle and inner product
between all vectors ; and w. Theorem 3 in Li (2019) leads to the estimator E[sgn(v;)v;] =

(i) = B (0 07)].

Lemma 4 Suppose our vectors are normalized. Denote d(x;,x;) to be the dot product
between x;, xj, and 8; ; to be the angle between x;, x;. Then we have that

Elsgn(v;) sgn(v;)vgvy]

d(wkaml)a when i = j, k 7é L
1, when it = j, k=1,

=\ d(zg,x) (1 — 20%) , wheni# j,k #1, (13)
(1—@), when i # j,k = 1.

Proof It is easy to see that when i = j, E[sgn(v;) sgn(v;)vgv;| reduces to Efvgy], which we
know the value of from ordinary random projections. When i # j, we can decompose

Elsgn(v;) sgn(vj)vrv] = E[P[sgn(v;) = sgn(v;)]vvi] (14)
— E[P[sgn(v;) # sgn(vj)]vgvi] = <1 — 297;‘7> Elvkvy].

We demonstrate how to find acceptable control variates for sign full random projection
using Lemma 4. In the context of Li (2019), only the signs of v;s are stored.

To find acceptable control variates Z, we necessarily need to check that the terms we use
in Z result in computable Cov(Y, Z) and Var[Z].

Consider the following cross term:

™

Cov(FO (vi, v, O (vy.07)) = d(ai, ;) (1 - 29) (15)

which consists of the term 0y, ;; which we do not know, and are unable to find (if we
could find this, we might as well spend the effort to find d(z;, x;) instead).
Hence any acceptable control variate Z can never contain both of f(2) (vi,v3) or f @) (vj,v5)
in any scalar multiple, since Var[Z] requires using the expression Cov(f® (v;,v;), f (v;,v;)).
In fact, if we cycle though the terms in Z, and omit terms which give us an expression
of Cov(Y, Z) or Var[Z] which we do not know, or unable to compute, we get two potential
control variates

71y = a1 fP (05, v0) 4+ a2 f@ (v, vj) + a3 f@ (v, V) (16)
Ly = f(2) (Uw, U'w) (17)



IMPROVING SIMILARITY SEARCH WITH MLE AND CONTROL VARIATES

Since variance and covariance are linear operators, we repeatedly apply Lemma 4 to get

Cov(¥. 1) —an (d(wj’w) - 2d(mi,w)d(mi,mj)> o, ((1 B zew> B Zd(mjvw)d(mi,iﬁj)>

™ ™ ™
20; 2d(zx;, x;
+as <<1 - w) d(xzj,w) — (@i ;) wj)) ,
T T
(18)
2d(x;, w)* 2d(x;, w)? 2
Var[Zy] = o2 <1 - d(w’w)> + ol <1 - M) + ol <1 - )
™ ™ ™
20; 2d(x;, w)d(x;,
+ 2100 <<1 — ,w) d(:cj, w) — (a: w) (:13] w)> (19)
T T
20;
+ 2c0qa3 | 1 — ’ + 2a2a3d(wj, w),
™
and similarly
20; 2d(x;, x; 2
Cov(Y, Z3) = <<1 - *“’) d(z;, w) — M) . Var[Zy] =1- - (20)
™ T T
We thus have two control variate estimators of the form (Y + ¢(Z; — pz,))
. T Cov(Y, Zy)
dev.(zi, ;) = \/;Sgn(vi)vj T Varlz] (2 — E[Z]) (21)
with our variance reduction is still given by %[ZZT)Q
We further note that while the term d(x;, ;) occurs in ¢ = —%}(éﬁt), we can can think
of some —%@ﬁl) = g(d(=;,x;)) and hence we can substitute the naive estimate of d(x;, x;)

into ¢ as a proxy for the true value of d(x;, x;), and use this to compute cic,v_(a:i, x;).
This means that instead of computing the naive estimate of the k& hashed values

d(zi, ) ~ \/j <Z Sgn(l}?”) (22)

t=1

we can instead use the approximation

r it)Ujt " sen(vi)v;
dey (i, ;) ~ \/? <Zt:1 Sg/?(vlt) j ) tg <Z g(];)]t> (Z — pz) (23)

t=1

to give a better estimate of the inner product between x; and x;.
Cov(Y,Z1)?

7 and substitute the estimated value
ar[Zl]

In the case of t = 1, we need to find arg max
1,002,003

/5 sen(vi)vj into d(x;, ;) in the expression Y7.
On the other hand, instead of substituting the naive estimate of d(x;, ;) into our control
variate as a proxy for the actual d(x;,x;), if we had a closed form version of g~ ', then



KANG KUSHNAREV WONG PRATAP YEO CHEN

we could instead rearrange Equation (23) and treat dov (zi, ;) = d(w;, ;), and express

A~

d(x;, ;) in terms of all the other constants we know.
For example, if we do this when ¢ = 2, our estimator simplifies to

. (1—2)sgn(z)y — (1 B 29;11,) d(x;, w)sgn(w)w — /2

d(z, ;) = \/g _ %\/% ~2 (sgn(w)w - \/g)

We note that there is no guarantee that rearranging the general form of Equation (23) will
work for all hashing algorithms, but this is a heuristic which works for most cases.

We give a remark on our control variate estimators. In both the sign full random
projection case and the random projection case, we had to look at all possible v;v; terms,
and compute the covariance between each possible pair. This would allow us to build our
weighted control variate estimator which would allow us to “optimize cleanly", in order to
get a better variance reduction. Unlike our first MLE technique which allowed us to focus on
the five sets and to always get the same cubic always, our weighted control variate estimator
will depend on the algorithm involved.

(24)

6. Analysis of Estimators

We first note that the weighted vector technique we use rely on the same hashed infor-
mation for the weighted vector(s) for all pairs. In the original hashing method without
any weighted vector(s), we would look at & hashed values for ;, and k hashed values for x;.
Using our method, while we are further looking at an extra k hashed values for our weighted
vector, these hashed values are always the same regardless of the pair we look at.
Hence the computational time (or additional length) of the hashed weighted vectors just
need to be computed once, and is negligible.

The estimators we have presented rely on computing the actual distances between the
weighted vectors w, and ;s in our original dataset. Choosing these weighted vectors carefully
are required, to avoid using too many weighted vectors.

For the MLE trick, the choice of weighted vectors depends on the type of hashing algorithm
- in particular how f0)(pp,(2;, ;) is computed. The analysis of (4) would determine how
these weighted vectors are chosen.

Conversely, for the control variate trick, the choice of our control variate terms first
depends on the joint distribution of (£ (v;,v;), f® (vg,v;)). If this distribution converges to
the bivariate normal, we can directly apply results from Kang (2021) to choose appropriate
weighted vectors, control variate correction, as well as quantify the variance reduction.

On the other hand, if (f® (v;,v;), f® (v, v1)) does not, then we have to construct the
control variates on our own, similar to Equation 5. To do so, we need to check which
terms in Equation 5 we are able to find, and this requires us to compute the expression
E[f@ (vi,v;) f® (vg, ;)] for any arbitrary 4, j, k, 1. This allows us to quickly build our control
variate expression, and omit terms that we cannot compute. However, this is dependent on
the algorithm itself, as we have shown in the sign full random projections case.

Both these cases will allow us to get the variance reduction of COV#}[IZZ]F

The additional computational time to find the hashed estimates involves either generating
the values of Table 2 for binary / discrete data, or adding the control variate correction



IMPROVING SIMILARITY SEARCH WITH MLE AND CONTROL VARIATES

to each estimate. This could take up to an additional O(k) time in the discrete case, or
additional O(1) time (reading stored values of as from a table) for the control variate case.

7. Our Experiments

We perform our experiments on two publicly available datasets, the MNIST (Lecun et al.,
1998) test dataset, as well as the NIPS dataset (Lichman, 2013; Perrone et al., 2016). The
MNIST test dataset consists of n = 10,000 observations in R"*, and the NIPS dataset
consists of n = 5811 observations in R'14%3. We center the MNIST dataset, and normalize
each vector to have unit length. We convert the NIPS dataset to be binary. We choose
our t weighted vectors to correspond to the top ¢ singular vectors for the MNIST dataset,
and heuristically choose the weighted vector for the NIPS dataset to be a vector with high
resemblance to most vectors. The technical specifications for the workstation we used for our
simulations are as follows: Intel E5-2690v3 (2.60GHz, 12 cores) and we run our simulations
on parallel cores.

a1 | oL
bl By
2 EEJjJEUJEUJJJIEﬁi ° ﬁz@jﬂjEuﬂiﬂHHEHH 0z {MMM hﬁhﬁ%{wﬂ} H 2 jfniﬂﬁﬂﬂiﬁﬂﬂ{ﬁ%E

0 0 0
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Number of hashes k Number of hashes k Number of hashes k Number of hashes k

Figure 2: Average time taken for MLE and control variate techniques with selected hashing
algorithms.

7.1. Experiment 1 (sanity check): Running time

Proposed methods use the weighted vector to improve estimates of distances given a hashing
algorithm, and necessarily will take up additional computational time. This additional
computational time is independent of the hashing algorithm, as we assume that we have the
stored hashed values of the weighted vector, and the stored known distances between the
weighted vectors and the pairs of vectors we want to find the estimate of.

We hence choose to use the following hashing algorithms with one weighted vector: sign
random projections (SRP) (Charikar, 2002) (binary case MLE), minwise hashing (MH) (Broder,
1997) (discrete case MLE), random projection (RP) (Indyk and Motwani, 1998) (control
variates), and sign full random projection (SFRP) (Li, 2019) (control variates) with both
control variate estimators discussed above. We compare the time taken for the original
estimate without our techniques, and the time taken using our techniques. We also use
Li’s MLE algorithm (Li-MLE) for random projections (Li et al., 2006a) as a baseline for the



KANG KUSHNAREV WONG PRATAP YEO CHEN

random projection case, as this is an algorithm in hashing literature which also makes use of
numerical methods to solve a cubic.

We repeatedly compare the time taken to compute distance estimates of two vectors
from the MNIST dataset and the NIPS dataset for 1000 iterations over every k hashes
from k = {100, 300,...,4900}. Each error bar in Figure 2 was computed at the intervals
k = {100, 300, ...,4900}, but shifted slightly for better comparisons.

MNIST

NIPS

MNIST
I.Ifl)J 0.15 —=—SRP 0.08% —s—MH —e—2.bit MH —&—4bitMH 0.3 —o_SFRP
= +-- SRP-MLE 0.06 1} * MH-MLE #+- 2.t MH MLE - 4-bit MH MLE + SFRP-CVA
T 0.1 —6—SBLSH . —6— SEMH -bi —<—5-bit MH = *--- SFRP-CV2|
° *--- SBLSH-MLE 0.04 *--- SEMH-MLE 2+ 5-bit MH MLE 0.2
&0.05 v >
4 3
g 0.02 e .
P R PO 0.1 *
% 500 1000 1500 2000 2500 3000 100 200 300 400 100 200 300 400 500 20 40 60 80 100
= —=—SRP —e—MH * —e— 2-bit MH —&— 4-bit MH 0.03 P\ SFRP
e L - SRP-MLE »- # MH-MLE Fx w26 MHMLE -+ 4-bit MH MLE A SFRP-CV1
w10 —o—SBLSH 2| —o—SEMH Koy | —o—3bit MH —5—5-bit MH 0.02 SFRP-CV2
=) «sacsime|] 10 n SEMHMLE|| -2 - 3-bit MHMLE -+ 5-bit MH MLE
2 1906004 coc
H 2, Seeee x
g b 0.01 Ty
.a;> TR, P i enea Tty
(=] 500 1000 1500 2000 2500 3000 100 200 300 400 500 100 200 300 400 500 20 40 60 80 100

Number of hashes k

Number of hashes k

Number of hashes k

Number of hashes k

Figure 3: Experiment 2: Average RMSE and deviations for all pairwise estimates with
selected hashing algorithms. The average RMSE is of all 49,995,000 pairs for the
MNIST test dataset, and 16,880,955 pairs for the NIPS dataset.

w RP - MNIST SpRP-5 - MNIST SpRP-10 - MNIST SpRP-28 - MNIST
05 E— —>— CV-10 veclors 82 ——FRP —— ovioveoos]] 09 E— —— oviowecos|] 09 ——FP —>— CV-10 veclors
s04 ——LiMLE  —# CV-15vectors - ——LME  —+ CVi5vectors|| 0.4 ——LME  —+ CV-5vectors|] 0.4 —6—LiMLE  —+ CV-15 vectors
T 03 —+ CV-ivector —= CV-20vectors|{ 0.3 —+ CV-ivector —= CV-20vectors|{ (.3 —+ CV-lvector —= CV-20vectors| (0.3 —+— V-1 vector =+ CV-20 vectors
CV-5 vectors N CV-5 vectors V-5 vectors N CV-5 vectors
802 0.2 3 0.2 0.2
5
20.1 I 0.1 ESp—x 0.1 -
bu, 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
= T < V10 vectors ——RP %= GV-10 vectors —=—RP < CV-10 vectors ——RP < GV-10 vectors
o ——LiMLE  —# CV-15vectors —6—L-MLE  —# CV-15vectors <o L-MLE  —* CV-15 vectors ——LiMLE  —+ CV-15 vectors
- P CV-1vector - CV-20vectors S CV-1vector = CV-20 vectors e CV-1 vector  —+— CV-20 vectors < CV-1vector —&— CV-20 vectors
g V-5 vectors V-5 vectors V-5 vestors N V-5 vectors
g EN 3 B ¥s o
= S S
8 R N 2
= SE=E=t 10 ==3 10-2 = =f
[
[=] 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100

Number of hashes k

Figure 4: Experiment 3: Average RMSE and deviations for all 49,995,000 pairwise estimates

Number of hashes k

Number of hashes k

Number of hashes k

with random projections and very sparse random projections on the MNIST test
dataset. We use t = {1, 5,10, 15,20} weighted vectors.

It can be seen that while our techniques take more time than the original algorithm, the

order of time is roughly the same. We note that our MLE algorithm for the first class of

hashing algorithms takes slightly more time, perhaps similar to how Li’s MLE algorithm
works in the random projection case, but our control variate estimators are faster compared

to the MLEs.



IMPROVING SIMILARITY SEARCH WITH MLE AND CONTROL VARIATES

7.2. Experiment 2 and 3: Average RMSE with weighted vectors

Experiment 2 looks at the RMSE of all pairwise estimates of distances using a sample of
these hashing algorithms from 1997-2019 with one weighted vector: minwise hashing (MH)
(Broder, 1997), sign random projections (SRP) (Charikar, 2002), b-bit minwise hashing (b-bit)
(Li and Konig, 2010), super-bit LSH (Ji et al., 2012), simple and efficient weighted minwise
hashing (SEMH) (Shrivastava, 2016), and sign full random projections (SFRP) (Li, 2019). We
use dotted lines to denote our techniques. We use different hashes depending on the hashing
algorithm. For example, the output of SRP is 1 bit, hence each hash value corresponds to 1
bit of information.

Experiment 3 looks at the RMSE of all pairwise estimates of distances for random
projections (RP) (Indyk and Motwani, 1998) and very sparse random random projections with
scale factor s from s = {5, 10,28} (SpRP-s) (Li et al., 2006b) using multiple weighted vectors
and to illustrate Theorem 2. We additionally compare our results with Li’'s MLE (Li-MLE)
(Li et al., 2006a).

In both experiments, we plot the error bars / standard deviations of the RMSE in
separate plots due to difference in magnitudes. In general, our techniques always improve
our estimates with lower RMSE or do no worse, albeit perhaps in the binary case where the
deviations in our RMSE is almost similar to the original estimate as in Figure 3. Figure 4
shows that one weighted vector does marginally worse than Li’s MLE in the long run, but
multiple control variates always improves the estimate. If we know the distribution the
random variables come from and can come up with appropriate control variate corrections,
we can get better and better estimates with more weighted vectors.

8. Discussion and Future Work

We have shown that by treating the estimates of distances in these hashing algorithms as
random variables, we can improve these estimates by conditioning on weighted vectors and
using statistical techniques.

To reiterate, our work is not to “prove one variance bound for all algorithms", but rather
to show that we can characterize the types of hashing algorithms in order to allow us to
use these statistical techniques. We have shown how we can use the form of () (pp, (x4, x;)),
@ (v;,v;), the distribution of (£ (v;,v;) f@ (v, 1)), and E[f @ (v;, v;) £ P (vg, v1)] to choose
appropriate weighted vectors for variance reduction, as well as to quantify this reduction..

Control variates and MLEs are very generalizable and should new hashing algorithms
surface in the literature, these characterizations allow us to apply these techniques to yield
better performance (Pratap et al.; Pratap and Kulkarni, 2021) in both computational time
and the reduced variance of estimators.

We hope that our work can pave the way for combining future statistical techniques with
hashing algorithms, leading to improved accuracy with a slight trade-off in computational
speed. Future work can include coming up with a generalizable formula for multiple weighted
vectors in the MLE case, or designing the “best" control variates for other hashing algorithms,
or even modify them not just based on the distribution involved for the hashing algorithm,
but of the data itself.



KANG KUSHNAREV WONG PRATAP YEO CHEN

Acknowledgments

This work is funded by the Singapore Ministry of Education Academic Research Fund Tier 2
Grant MOE2018-T2-2-013. The computational work for this article was partially performed
on resources of the National Supercomputing Centre, Singapore (https://www.nscc.sg).

References

Daniel Ahfock, William J Astle, and Sylvia Richardson. Statistical properties of sketching
algorithms. arXiv preprint arXiv:1706.03665, 2017.

Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the
frequency moments. Journal of Computer and system sciences, 58(1):137-147, 1999.

Andrei Z Broder. On the resemblance and containment of documents. In Compression and
Complexity of Sequences 1997. Proceedings, pages 21-29. IEEE, 1997.

Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael Mitzenmacher. Min-wise
independent permutations (extended abstract). In Proceedings of the Thirtieth Annual
ACM Symposium on the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998,
pages 327-336, 1998. doi: 10.1145/276698.276781. URL https://doi.org/10.1145/
276698.276781.

George Casella and Roger Berger. Statistical Inference. Duxbury Resource Center, June
2001. ISBN 0534243126.

Moses S Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings
of the thiry-fourth annual ACM symposium on Theory of computing, pages 380-388. ACM,
2002.

Lianhua Chi and Xingquan Zhu. Hashing techniques: A survey and taxonomy. ACM
Computing Surveys (CSUR), 50(1):1-36, 2017.

Kenneth W. Church, Ping Li, and Trevor J. Hastie. Conditional random sampling: A
sketch-based sampling technique for sparse data. In In NIPS, pages 873-880, 2006.

Michael B. Cohen, T. S. Jayram, and Jelani Nelson. Simple analyses of the sparse johnson-
lindenstrauss transform. In 1st Symposium on Simplicity in Algorithms, SOSA 2018,
January 7-10, 2018, New Orleans, LA, USA, pages 15:1-15:9, 2018. doi: 10.4230/OASIcs.
SOSA.2018.15. URL https://doi.org/10.4230/0ASIcs.S0SA.2018.15.

W Edwards Deming and Frederick F' Stephan. On a least squares adjustment of a sampled
frequency table when the expected marginal totals are known. The Annals of Mathematical
Statistics, 11(4):427-444, 1940.

Piotr Indyk and Rajeev Motwani. Approximate Nearest Neighbors: Towards Removing the
Curse of Dimensionality. In Proceedings of the Thirtieth Annual ACM Symposium on
Theory of Computing, STOC 98, pages 604613, New York, NY, USA, 1998. ACM. ISBN
0-89791-962-9. doi: 10.1145/276698.276876. URL http://doi.acm.org/10.1145/276698.
276876.



https://doi.org/10.1145/276698.276781
https://doi.org/10.1145/276698.276781
https://doi.org/10.4230/OASIcs.SOSA.2018.15
http://doi.acm.org/10.1145/276698.276876
http://doi.acm.org/10.1145/276698.276876

IMPROVING SIMILARITY SEARCH WITH MLE AND CONTROL VARIATES

Sergey loffe. Improved consistent sampling, weighted minhash and 11 sketching. In Data
Mining (ICDM), 2010 IEEE 10th International Conference on, pages 246-255. IEEE, 2010.

Jiangiu Ji, Jianmin Li, Shuicheng Yan, Bo Zhang, and Qi Tian. Super-bit locality-sensitive
hashing. In Advances in Neural Information Processing Systems, pages 108-116, 2012.

Jianqgiu Ji, Jianmin Li, Shuicheng Yan, Qi Tian, and Bo Zhang. Min-max hash for jaccard
similarity. In Data Mining (ICDM), 2013 IEEE 13th International Conference on, pages
301-309. IEEE, 2013.

Daniel M. Kane and Jelani Nelson. Sparser johnson-lindenstrauss transforms. J. ACM, 61
(1):4:1-4:23, 2014. doi: 10.1145/2559902. URL https://doi.org/10.1145/2559902.

Keegan Kang. Correlations between random projections and the bivariate normal. Data
Mining and Knowledge Discovery, pages 1-32, 2021.

Keegan Kang and Wei Pin Wong. Improving Sign Random Projections With Additional Infor-
mation. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pages 2484-2492 Stockholmsmaéssan, Stockholm Sweden, 10-15 Jul 2018. PMLR. URL
http://proceedings.mlr.press/v80/kangl18b.html.

S. S. Lavenberg and P. D. Welch. A Perspective on the Use of Control Variables to Increase
the Efficiency of Monte Carlo Simulations. Management Science, 27(3):322-335, 1981.
ISSN 00251909, 15265501. URL http://www. jstor.org/stable/2631207.

Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. In Proceedings of the IEEE, pages 2278-2324, 1998.

Ping Li. Sign-full random projections. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 42054212, 2019.

Ping Li and Kenneth W. Church. A Sketch Algorithm for Estimating Two-Way and
Multi-Way Associations. Comput. Linguist., 33(3):305-354, 2007. ISSN 0891-2017. doi:
10.1162/coli.2007.33.3.305. URL http://dx.doi.org/10.1162/coli.2007.33.3.305.

Ping Li and Trevor J Hastie. A unified near-optimal estimator for dimension reduction in
l-alpha (0<alpha <2) using stable random projections. In Advances in Neural Information
Processing Systems, pages 905-912, 2008.

Ping Li and Christian K&énig. b-Bit minwise hashing. In Proceedings of the 19th international
conference on World wide web, pages 671-680. ACM, 2010.

Ping Li, Trevor Hastie, and Kenneth Ward Church. Improving Random Projections Using
Marginal Information. In Gabor Lugosi and Hans-Ulrich Simon, editors, COLT, volume
4005 of Lecture Notes in Computer Science, pages 635—-649. Springer, 2006a. ISBN 3-540-
35294-5.



https://doi.org/10.1145/2559902
http://proceedings.mlr.press/v80/kang18b.html
http://www.jstor.org/stable/2631207
http://dx.doi.org/10.1162/coli.2007.33.3.305

KANG KUSHNAREV WONG PRATAP YEO CHEN

Ping Li, Trevor J. Hastie, and Kenneth W. Church. Very Sparse Random Projections. In
Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’06, pages 287-296, New York, NY, USA, 2006b. ACM. ISBN
1-59593-339-5. doi: 10.1145/1150402.1150436. URL http://doi.acm.org/10.1145/
1150402.1150436.

Ping Li, Michael W Mahoney, and Yiyuan She. Approximating higher-order distances using
random projections. In Proceedings of the Twenty-Sixth Conference on Uncertainty in
Artificial Intelligence, pages 312-321. AUAI Press, 2010.

Y. Li, Z. Kuang, J. Y. Li, and K. Kang. Improving random projections with extra vectors to
approximate inner products. IEEE Access, 8:78590-78607, 2020.

M. Lichman. UCI Machine Learning Repository, 2013. URL http://archive.ics.uci.
edu/ml.

V. Perrone, P. A. Jenkins, D. Spano, and Y. W. Teh. Poisson Random Fields for Dynamic
Feature Models. ArXiv e-prints: 1611.07460, 2016.

Rameshwar Pratap and Raghav Kulkarni. Variance reduction in frequency estimators via
control variates method. In Proceedings of the Thirty-Seventh Conference on Uncertainty
in Artificial Intelligence, UAI 2020, virtual online, July 27-30, 2021, volume 124 of
Proceedings of Machine Learning Research, pages 799-808. AUAI Press, 2021. URL
https://auai.org/uai2021/pdf/uai2021.92.pdf.

Rameshwar Pratap, Bhisham Dev Verma, and Raghav Kulkarni. Improving Tug-of- War
sketch using Control-Variates method, pages 66-76. doi: 10.1137/1.9781611976830.7. URL
https://epubs.siam.org/doi/abs/10.1137/1.9781611976830.7.

Rameshwar Pratap, Debajyoti Bera, and Karthik Revanuru. Efficient sketching algorithm
for sparse binary data. In Jianyong Wang, Kyuseok Shim, and Xindong Wu, editors, 2019
IEEE International Conference on Data Mining, ICDM 2019, Beijing, China, November
8-11, 2019, pages 508-517. IEEE, 2019. doi: 10.1109/ICDM.2019.00061. URL https:
//doi.org/10.1109/ICDM.2019.00061.

Florin Rusu and Alin Dobra. Statistical analysis of sketch estimators. In Proceedings of
the 2007 ACM SIGMOD international conference on Management of data, pages 187-198.
ACM, 2007.

Anshumali Shrivastava. Simple and efficient weighted minwise hashing. In Advances in
Neural Information Processing Systems, pages 1498-1506, 2016.

Jingdong Wang, Heng Tao Shen, Jingkuan Song, and Jiangiu Ji. Hashing for similarity
search: A survey. arXiv preprint arXiv:1408.2927, 2014.

Jay Yagnik, Dennis Strelow, David A. Ross, and Ruei-Sung Lin. The power of comparative
reasoning. In IEEE International Conference on Computer Vision, ICCV 2011, Barcelona,
Spain, November 6-13, 2011, pages 2431-2438, 2011. doi: 10.1109/ICCV.2011.6126527.
URL https://doi.org/10.1109/ICCV.2011.6126527.



http://doi.acm.org/10.1145/1150402.1150436
http://doi.acm.org/10.1145/1150402.1150436
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://auai.org/uai2021/pdf/uai2021.92.pdf
https://epubs.siam.org/doi/abs/10.1137/1.9781611976830.7
https://doi.org/10.1109/ICDM.2019.00061
https://doi.org/10.1109/ICDM.2019.00061
https://doi.org/10.1109/ICCV.2011.6126527

	Introduction
	Related work
	Our Contributions
	Improving The First Class Of Hashing Algorithms: Maximum Likelihood Estimators (MLE)
	Improving The Second Class Of Hashing Algorithms: Control Variates
	Control variates where (f(2)(v_i,v_j), f(2)(v_k,v_l)) converge to a bivariate normal distribution
	Control variates for other distributions of (f(2)(v_i,v_j), f(2)(v_k,v_l))

	Analysis of Estimators
	Our Experiments
	Experiment 1 (sanity check): Running time
	Experiment 2 and 3: Average RMSE with weighted vectors

	Discussion and Future Work

