Proceedings of Machine Learning Research 157, 2021 ACML 2021

Augmenting Imbalanced Time-series Data via Adversarial
Perturbation in Latent Space

Beomsoo Kim BOMBSKIM@KAIST.AC.KR
KAIST, Daejeon, Republic of Korea

Jang-Ho Choi JANGHOCHOI@QETRI.RE.KR
ETRI, Daejeon, Republic of Korea

Jaegul Choo JCHOO@KAIST.AC.KR
KAIST, Daejeon, Republic of Korea

Editors: Vineeth N Balasubramanian and Ivor Tsang

Abstract

Success of training deep learning models largely depends on the amount and quality of
training data. Although numerous data augmentation techniques have already been pro-
posed for certain domains such as computer vision where simple schemes such as rotation
and flipping have been shown to be effective, other domains such as time-series data have
a relatively smaller set of augmentation techniques readily available. Data imbalance is a
phenomenon often observed in real-world data. However, a simple oversampling technique
may make a model vulnerable to overfitting, so a proper data augmentation is desired.
To tackle these problems, we propose a novel data augmentation method that utilizes the
latent vectors of an autoencoder in a novel way. When input data are perturbed in its
latent space, their reconstructed data retain properties similar to the original one. In con-
trast, adversarial augmentation is a technique to train robust deep neural networks against
unforeseen data shifts or corruptions by providing a downstream model with samples that
are difficult to predict. Our method adversarially perturbs input data in its latent space so
that the augmented data is diverse and conducive to reducing test error of a downstream
model. The experimental results demonstrated that our method achieves the right balance,
significantly modifying the input data to help generalization while retaining their realism.
Keywords: time-series data augmentation, adversarial augmentation, autoencoders, data
imbalance.

1. Introduction

Most successful applications of deep learning models are backed by a large amounts of qual-
ity data. Large datasets help models to learn more diverse features and decrease differences
the between training and test error by keeping models from overfitting. As a general ten-
dency, the performance of a model is improved by increasing the number of sample data. For
example, in one experiment a ResNet model trained on billions of images outperformed the
other models that had the same architecture, but were trained on smaller datasets Yalniz
et al. (2019).

However, in many cases, acquiring quality data is not a cheap process. While more and
more large and refined datasets are being made publicly available to promote research in
various domains, quality datasets still largely fall short when it comes to solving existing or

© 2021 B. Kim, J.-H. Choi & J. Choo.

Kim CHor CHOO

new practical problems. In particular, if one tries to train a model in a supervised manner,
the problem becomes worse. This is because acquiring labeled data is more costly than
acquiring unlabeled data. Most data is originally stored in an unlabeled format, unless
it has been gathered in order to compose a labeled dataset in the first place. Also, even
after labeling data, a dataset tends to exhibit other problems such as class imbalance. For
example, weather data collected from a warm region is much more likely to contain an
observation of rain than snow.

One popular approach to alleviate this problem is data augmentation, which is a way
of increasing the amount of data by leveraging the existing dataset. Numerous data aug-
mentation methods have been proposed for training deep learning models. For instance,
random cropping, resizing, and flipping methods can be applied to most models that receive
images as input. However, such domain-specific transformations cannot easily be applied
to other domains, such as speech recognition or natural language processing.

Recently, a domain-agnostic data augmentation method using autoencoders was in-
vented DeVries and Taylor (2017). The method does not rely on domain specific trans-
formation but simply perturbs, interpolates, or extrapolates between given samples in the
latent space of an autoencoder. The method was applied to five different datasets from
different domains and helped enhance model accuracies.

Another recent approach for data augmentation is adversarial augmentation Peng et al.
(2018); Zhang et al. (2019). Adversarial augmentation can be used to find the best aug-
mentation policy to perform image transformation along with the training process, rather
than generate new images from scratch. However, this approach requires a predetermined
set of domain-specific functions and cannot be easily transferred to other domains. Note
that without transformation functions that can guarantee the preservation of certain prop-
erties in an existing sample, the adversarial augmentation process may infinitely increase
the training loss and the target may not converge.

In this paper, we propose a novel method that combines the two aforementioned ap-
proaches, namely, data perturbation in latent space and adversarial data augmentation.
First, we convert an input vector into a latent vector using the encoder of an autoencoder.
Then we adversarially perturb the latent vector. The perturbed vector then goes through
a decoder and this results in a similar vector that is expected to give a larger loss value
than the original input vector when given to a target model. The method can be used for
vastly different datasets with little modifications. We apply this method to time-series data,
where there are fewer number of readily applicable data augmentation functions compared
to image data. Our method performed consistently better in the experiments than random
perturbation, as was suggested by DeVries and Taylor (2017).

2. Related Work

2.1. Basic Augmentations for Time-series Data

This section introduces popular transformation functions for time-series data that do not
rely on deep learning models. Window warping transforms a given sequence by randomly
selecting a part of the sequence and speeding it up or down Le Guennec et al. (2016).
Normally, the data is warped using a spline interpolation of an order of three or greater. This
method can be seen as a one-dimensional variant for cropping and resizing augmentation

AUGMENTING IMBALANCED TIME-SERIES DATA VIA ADVERSARIAL PERTURBATION IN LATENT SPACE

for image data. Although it is only a simple function, many time-series models have shown
improved performances after applying this method.

Another augmentation method involves injecting small noises that follow certain distri-
butions into the input data. For example, Gaussian random noise or step-like trend noise
can be added to input data to synthesize new data from existing ones Wen et al. (2020).

SMOTE (Synthetic Minority Over-sampling Technique) is a widely used augmentation
method for imbalanced data Chawla et al. (2002). In SMOTE, two samples from a minority
class are interpolated to generate a new sample. This method is widely used in many
domains other than time-series. Note that this method is not always applicable to times-
series data. For example, averaging two sine waves with different periods does not in general
result in a sine wave. Also, the dataset to be augmented has to be labeled.

2.2. Model-based Augmentations

More advanced augmentation techniques that rely on deep learning models have been pro-
posed for time-series data. Recently, a domain-agnostic data augmentation method was
proposed by DeVries and Taylor (2017). First, the encoder of an autoencoder transforms
an input sequence into a latent vector. Then the latent vector is changed with either simple
random perturbation, interpolation, or extrapolation between given samples. As mentioned
earlier for SMOTE, interpolating two sequences involves some risk that the resulting se-
quence does not preserve some important properties of the original sequences. This problem
can be significantly alleviated if the interpolation is done in latent space not in input space,
since the decoder of an autoencoder tends to restore the desired property of the original
input sequence even after a significant perturbation.

On the other hand, a method called adversarial augmentation has been applied in many
situations. Adversarial augmentation is a broad term that refers to perturbing training
examples such that a downstream model gives a higher loss when fed with the perturbed
example. There are several motivations for applying adversarial augmentation in training.
Most notably, adversarial augmentation can be used to defend an adversarial attack Tramer
and Boneh (2019). An adversarial attack means applying small but critical perturbations
to input data, so that the perturbed input results in the model giving an incorrect output
with high confidence Goodfellow et al. (2014).

However, defense against an adversarial attack is not the only use case for adversarial
augmentation and there are numerous different motivations for using adversarial augmen-
tation for training. For example, adversarial augmentation can be used for improved gener-
alization with respect to unseen domains Volpi et al. (2018). Even more impressively, it has
been shown that adversarial augmentation can reduce test time error if applied properly
Peng et al. (2018); Zhang et al. (2019). One may think the idea of improving test error
by synthesizing data that causes larger loss in training seems contradictory. One necessary
assumption for this usage of adversarial augmentation is that the adversarially perturbed
data still is still realistic enough to be used as input for a downstream model.

Our method is mainly inspired by the adversarial augmentation method by Peng et al.
(2018); Zhang et al. (2019) among many different applications of adversarial augmentation
techniques. In this paper we use the adversarial augmentation to refer to such specific ap-
proaches. In their method, an augmentation model is jointly trained with a target training

Kim CHor CHOO

model. The objective of an adversarial augmentation model is simply to increase the train-
ing error of a target training model so that the target model does not overfit to the training
data, and generalizes to the test data well. The augmentation model performs image trans-
formation along with the training process, rather than generating new images from scratch.
In this setting, existing samples are perturbed using a given set of transformation functions.
The hyperparameters that control the functions are optimized to increase the training error
of a target model in the hope that it will decrease test errors at the end. Since this approach
require a predetermined set of domain-specific functions, one augmentation model cannot
be commonly used for vastly different domains. As stated earlier, one important obligation
is to keep input data from diverging to a completely different data after augmentation, since
the adversarial augmentation model will constantly try to increase training loss. Therefore,
a careful selection of the underlying transformation functions is required.

It is important to distinguish between adversarial augmentation and GAN. Although
adversarial augmentation was first developed as a defense mechanism against adversarial
attack, which is, in turn, inspired by GAN, GAN architecture is essential in adversarial
augmentation. In particular, a discriminator, a GAN component, is not needed. Also note
that adversarial augmentation is sometimes called, simply, adversarial training. We will
stick to the term adversarial augmentation in this paper so that adversarial augmentation
and GAN can be clearly distinguished.

2.3. Other Related Work

It is known that combining a discriminator from the GAN architecture can improve the
reconstruction performance of an autoencoder. For example, Pathak et al. (2016) reports
that an autoencoder tends to output relatively blurry images compared to an original image
when trained to minimize only reconstruction loss. This is because the autoencoder prefers
to output a safer value without considering consistency between pixels. To prevent this,
adversarial loss can be added as another optimization target. With a discriminator, an
autoencoder tends to reconstruct high frequency details better.

3. Method

3.1. Autoencoder for Augmentation

Typically, autoencoders are used to extract a more abstract representation of a set of data
by reducing the dimension. There are a few points that make autoencoders a suitable
ingredient for data augmentation.

The fact that the autoencoder architecture comes with decoders as well as encoders by
definition makes them suitable for our method, in contrast to other representation learning
techniques. Perturbing input data in its latent space without reconstructing it in the original
space cannot strictly be seen as a data augmentation technique. It also makes qualitatively
assessing the augmented data hard in practice, since typically it is harder to analyze input
data in its latent space.

Also, autoencoders can be used to augment both labeled and unlabeled data. One can
adopt a policy of simply attaching the same label to the augmented sample by assuming
that it is not drastically different from the original one, so that the class needs to be

AUGMENTING IMBALANCED TIME-SERIES DATA VIA ADVERSARIAL PERTURBATION IN LATENT SPACE

changed. This is contrasted with other augmentation techniques such as SMOTE, which is
only applicable to a labeled dataset.

There are also cases where doing perturbation in the latent vector space of an autoen-
coder is safer than in the input space. For example, adding independent random noises for
each time dimension of a time series data ignores the correlation between different times.
However, this problem does not happen when perturbing a latent vector if the autoencoder
is designed such that its latent space does not contain the time dimension of the input data.

When selecting an autoencoder architecture, it is important not to choose an archi-
tecture with too complex a model with respect to a given set of data. This is because
an autoencoder may learn the copying task without actually learning useful representation
of the data and generalize poorly when encoding and reconstructing unseen data. Theo-
retically, an autoencoder with a one-dimensional latent vector can do exact copying of an
arbitrary number of samples when given a nonlinear encoder and a decoder with enough
capacity Goodfellow et al. (2016). If an autoencoder is only capable of exact copying, the
perturbation in the latent space results in completely unrelated data, and therefore cannot
be used for our data augmentation method.

3.2. Adversarial Loss to Capture High Frequency Details

As explained in Section 2.3, an autoencoder tends to produce only a rough outline of the
predicted object and fails to capture any high frequency detail if it is trained solely to
optimize a reconstruction objective Pathak et al. (2016). Depending on the domain, this
can be a serious hurdle to augmenting existing data. For example, a picture with a high
resolution contains significantly more information than a corresponding lower resolution one,
in the sense of both entropy and file size on a physical device. We adopted this architecture
in our method.

real/fake loss

T

recon loss |[¢——------- +| Discriminator

r

A

Decoder

latent vector

Encoder

Figure 1: An autoencoder with a discriminator.

Kim CHor CHOO

Since our method uses an extended architecture with a discriminator, our method can
be considered a GAN variant. In this case, the autoencoder corresponds to a generator
of a GAN. Therefore, several optimization techniques developed for GAN training can be
applied to our method as well.

The two time-scales update rule (TTUR) is a technique for applying different learning
rates to the generator (in our case, the autoencoder) and the discriminator of a GAN Heusel
et al. (2017). Typically, a smaller learning rate is used for the generator and a larger learning
rate is used for the discriminator.

Also, we used a cost-sensitive penalty for the discriminator. We associated a large cost
for classifying a real sample as a fake one, compared to classifying a fake sample as a real
one. No cost was associated for correct classifications.

Settings AE recon AE adv Disc real Disc fake
AE 0.0798 0.2661 0.2784 0.2402
Enhanced 0.0484 0.0114 0.0150 0.8055
No TTUR 0.0635 0.0154 0.0268 0.8019

No cost-sensitivty 0.0545 0.2536 0.2807 0.2546

Table 1: Autoencoder and discriminator losses

We conducted a detailed experiment to evaluate the effect of applying each technique.
Table 1 shows loss changes after applying GAN enhancement techniques. Here, row en-
hanced refers to an autoencoder enhanced with TTUR, and cost-sensitivity settings. The
following rows provide ablation study results. For example, 'No TTUR’ in the table refers
to an autoencoder trained using only using cost-sensitivity. All of the ablation studies ended
up worsening the autoencoder reconstruction performance, which suggests that every tech-
nique helped improve the autoencoder. The dataset and model settings were the same as
the ones for adjacent problem in the experiment section.

3.3. Adversarial Augmentation

After an autoencoder with a discriminator finishes training we use the model as a module
for adversarial augmentation. In the adversarial augmentation phase an input sample is
augmented by perturbing its latent representation. We refer to the module that is in charge
with perturbation of latent vectors perturbation module. The perturbation module has
learnable parameters, whose objective is to maximize the training loss of the downstream
model. The parameters are jointly updated with the parameters of the downstream model.
Note the perturbation module is not used at all in autoencoder and discriminator training
phase. On the other hand, the autoencoder is not trained in adversarial augmentation
phase.

The perturbation module consists of an affine layer, a standardization layer, and re-
scale layer. The affine layer transforms given a latent vector and an additional randomly
generated vector. The output dimension of affine layer should be the same as that of the
latent vector, such that the resulting noise vector can be added element-wise.

The output of the affine layer is standardized by the standardization layer so that the
resulting value does not grow or shrink indefinitely. In other words, the standardization

AUGMENTING IMBALANCED TIME-SERIES DATA VIA ADVERSARIAL PERTURBATION IN LATENT SPACE

hd

Predictor prediction loss

Y
Perturbation module

Decoder

Standardize

F 3

-
+

t latent vector J

f

Encoder

T—f

Figure 2: Adversarial augmentation using autoencoder and perturbation module.

layer makes the parameters of affine layer scale-invariant. We used the layer normalization
Ba et al. (2016) without including learnable parameters for the standardization in our
experiments.

The standardized perturbation vector has a limitation, in that the scale of each element
does not reflect the statistics of the latent vector to which it will be added. For example,
the absolute average value of the first element in the latent space is ten times as large as
that of the second element. In this case, letting each element in the perturbation vector has
the same scale causes the perturbations in certain positions of the latent vector to become
relatively insignificant. To tackle this issue we re-scale the standardized perturbation vector
using the standard deviation of each element of the latent vector. That is to say, the scale
of each element in the perturbation vector is proportional to that of the latent vector.

Although using standardization when generating a perturbation vector guarantees the
parameter of the affine layer will be scale-invariant, the parameters still can grow excessively.
In a typical neural network training, each parameter is naturally bounded to a reasonably
small number as the training goes on. This is not always the case for adversarial objective
training. In this case, weight normalization Salimans and Kingma (2016) may be needed
to prevent floating-point overflow or underflow. Note that weight normalization was not
originally developed for solving such problems, but rather for the decoupled optimization
of direction and scale parameters.

Our adversarial augmentation method has an uncommon characteristic that is not often
observed in other augmentation methods. Since the perturbation module and the down-
stream model, which is named Predictor in the illustration above, are jointly trained, the
augmen- tation function is nonstationary as the training goes on. Clearly, it is hard to
guarantee that the most effective augmentation function in an early training phase will also
be the most effective one in a later training phase. Dynamically changing the augmentation

Kim CHor CHOO

function opens up new possibilities that have not been actively explored before in the data
augmentation literature.

3.4. Architectural Details

The encoder of the autoencoder we used in our experiments is composed of 1-dimensional
convolution layers. The convolutional layers have kernel size four, stride two, and padding
size one. The encoder consists of four convolutional layers and the output channels for
hidden dimensions are 64, 64, 128, and 256. On all layers except for the first one, batch
normalization is followed. For an input with 32 timesteps, the corresponding latent vector
has two timesteps and 128 channels. The decoder consists of five transposed convolutional
layers. The first transposed convolution has kernel size one and its output channel size is
500. The four following transposed convolutional layers have kernel size 4, stride two, and
padding size one, which corresponds to the settings for four encoder layers. The channel
sizes for the latter four layers are 256, 128, 64, and the same channel size of the input data,
which in our experiment was six. Like the encoders, all the decoder layers except for the first
layer are followed by batch normalizations. The discriminator for the autoencoder consists
of four affine layers. Between each affine transformations dropout with 0.4 probability was
applied Srivastava et al. (2014).

In the affine layer of the perturbation module, we composed two smaller affine functions
without adding an intermediate non-linear transformation. The output dimension of the
first small affine function is smaller than the input dimension. The reason for using two
affine functions rather than a single large affine function is to prevent overfitting by reduc-
ing the number of parameters. In our experiments, latent vectors have 512 elements and
random noises have 100 dimensions. The hidden dimensions between the two small affine
transformations is 100. For the re-scaling layer, a running variance of the latent vectors was
used.

4. Experiment

4.1. Problem Formulation

We used the KDD CUP 2018 dataset, a public air quality dataset that comes from the
KDD CUP Challenge 2018 '. We selected six common air quality features, PM2.5, PM10,
NOg, CO, O3, and SO4 for our experiments. The observations are hourly and come from 35
different observatories. Each observatory owns the records, which were observed every one
hour from January 1, 2017 to January 31, 2018. Observatory information was not included,
and observations from all the observatories were treated in the same way. The first 80% of
the observations in time were used for training and the latter ones were used for testing.
With this setting we formulated two regression problems. First is what we named
adjacent. In this formulation, an input is 32 consecutive hourly observations and the cor-
responding prediction target is the mean PM 2.5 value for the next six hours from the last
observation. Similarly, we defined another problem we named daily. In this formulation, a
prediction target value is also the mean PM 2.5 value for the next six hours from the last
observation. An input consists of five chunks and each chunk consists of six consecutive

1. http://www.kdd.org/kdd2018/

http://www.kdd.org/kdd2018/

AUGMENTING IMBALANCED TIME-SERIES DATA VIA ADVERSARIAL PERTURBATION IN LATENT SPACE

Method MSE-macro MAE-macro
AE anti-adversarial scale 0.3 0.4601 0.4753

AFE anti-adversarial scale 0.1 0.4197 0.4322

AE anti-adversarial scale 0.03 0.3645 0.3999

AE random scale 0.3 0.3548 0.3955

AE random scale 0.1 0.3533 0.3939

AE random scale 0.03 0.3531 0.3937

AE adversarial scale 0.3 0.4435 0.4713

AE adversarial scale 0.1 0.3339 0.3767

AE adversarial scale 0.03 0.3422 0.3860

Table 2: Comparison of autoencoder-based adversarial augmentations and other schemes

hourly observations. The first observations of the chunks are spaced part by 24 hours, hence
the name daily.

Although the problems we formulated are not classification problems, we labeled each
sample to measure the degree of dataset imbalance and macro-averaged performances. We
classified a sample whose target PM2.5 (ug/m?) value was larger than 150 as a minor class.
The ratios of minor classes in adjacent and daily problems were 5.8% and 5.0% respectively.

When measuring performances, we associated higher weights for errors in the minor
class data, to avoid under-representation of the minor class due to its small sample size.
In other words, we first separately measured errors such as root-mean-square error for the
major and minor classes and then macro-averaged them. This simulates a situation where
the number of minor class and major class samples are equal.

4.2. Prediction Model

To measure the effectiveness of different augmentation settings, a downstream prediction
model was picked and commonly used. We designed a 2-layered GRU model with 15
hidden dimensions. Although it had a simple architecture, it showed superior performances
compared to the 1-dimensional ResNet, which is a commonly used architecture for time
series research Wang et al. (2017).

4.3. Results

Note that all the results provided here are averages of ten runs with different random seeds.

First, we confirmed the effect of applying an adversarial objective in a perturbation
module. To this end, we set different objectives for the perturbation module. We conducted
experiments on adjacent problem where we augmented 80% of the minor class data that
prediction model received as input.

Table 2 shows the performances of augmentation schemes with different objectives on
adjacent problem. The top three rows in Table 2 had anti-adversarial objectives. In other
words, the goal of the perturbation module was to reduce training error as much as possible.
On the other hand, the middle three rows were not trained at all and simply had gaussian
random noises added. Note that, in this case, only the re-scale layer of perturbation module
was applied. Scales in Table 2 are hyperparameters that were applied after the re-scale

Kim CHor CHOO

Method RMSE-macro RMSE-major RMSE-minor MAE-macro MAE-major MAE-minor
no oversample 32.3337 19.3603 41.4260 22.2224 11.4704 32.9697
oversample 4 29.0988 21.1376 35.3084 19.7390 12.5932 26.8800
translation no oversample 32.2180 19.4070 41.2206 22.2082 11.5418 32.8745
translation oversample 4 29.4237 20.9871 35.9280 19.9388 12.2506 27.6270
warping no oversample 32.4036 19.2136 41.6005 22.4365 11.4799 33.3931
warping oversample 4 29.2733 20.9871 35.6846 19.7390 12.3363 27.1417
AE adversarial no oversample 31.9889 19.4419 40.8511 21.9941 11.4561 32.5320
AE adversarial oversample 4 28.1781 22.0033 33.2245 18.8160 12.8881 24.7392

Table 3: Augmentation experiment on adjacent problem.

Method RMSE-macro RMSE-major RMSE-minor MAE-macro MAE-major MAE-minor
no oversample 25.8272 16.4430 32.6147 17.7445 10.0685 25.4254
oversample 4 25.3613 17.9637 31.0396 17.4189 10.9516 23.8813
translation no oversample 25.4619 17.1458 31.6606 17.3647 10.3793 24.3500
translation oversample 4 25.2844 18.3059 30.7165 17.3055 11.4548 23.1562
warping no oversample 27.7443 18.7329 34.4756 19.8806 12.1997 27.5615
warping oversample 4 32.7451 26.7302 37.8118 23.7383 18.0158 29.4558
AE adversarial no oversample 25.0572 16.8234 31.1921 16.9256 10.3843 23.4620
AE adversarial oversample 4 25.0184 18.3059 30.2776 16.9207 11.1489 22.6974

Table 4: Augmentation experiment on daily problem

layer. Clearly, the adversarial augmentation outperformed anti-adversarial augmentation
or random perturbation.

We compared adversarial augmentation with four different augmentation functions. The
first augmentation, which is designated translation in Table 3 and Table 4, adds the same
amount of value for each input feature across time.The amount of the addition is randomly
decided. Window warping was also compared. For adversarial augmentation we used the
best hyperparameter found in the previous. For completeness, we conducted experiments
with and without oversampling for the minor class. When oversampling was applied, the
minor class sample was sampled four times as frequently as before. Bold numbers indicate
the best macro performances. Table 3 and Table 4 report that our adversarial augmentation
performed the best in all the settings.

5. Conclusion

Time series data is one of the most prevalent data types in both practice and academia.
However, it has a relatively small number of readily available augmentation methods. In
this paper we proposed a novel augmentation method using an autoencoder and an adver-
sarial augmentation technique. We demonstrated in our experiments that that our method
achieves superior performance compared to other commonly used augmentation functions
for times series.

Until recently, adversarial augmentation has only been seen as a remedy for preventing
adversarial attacks. Recently Peng et al. (2018); Zhang et al. (2019) demonstrated that it
can actually be used to reduce test time error, although the applicability of the adversarial
augmentation in different domains remains largely to be explored.

One requirement for successfully applying adversarial augmentation using a neural net-
work model is that the realism of the data should be preserved for however long the model is

AUGMENTING IMBALANCED TIME-SERIES DATA VIA ADVERSARIAL PERTURBATION IN LATENT SPACE

trained, to generate harder samples to predict. We tackled this critical problem by properly
design- ing an autoencoder and perturbation module. The experimental results suggest
that our method can be effective for similar imbalanced time-series problems, which are
frequently encountered in practice.

We applied our novel augmentation method in an imbalanced time-series domain where
no adversarial augmentation had been previously applied. We believe our method can be
applied to other domains as well after a decent amount of adaptations, and advance the
data augmentation literature in general.

Acknowledgments

This work was supported by the Institute of Information & communications Technology
Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (No. 2018-
0- 00219, Space-time complex artificial intelligence blue-green algae prediction technology
based on direct-readable water quality complex sensor and hyperspectral image, 90%, and
No0.2019-0-00075, Artificial Intelligence Graduate School Program(KAIST), 10%).

References

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv
preprint arXiw:1607.06450, 2016.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote:
synthetic minority over-sampling technique. Journal of artificial intelligence research, 16:
321-357, 2002.

Terrance DeVries and Graham W Taylor. Dataset augmentation in feature space. arXiv
preprint arXiw:1702.05538, 2017.

Tan Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, vol-
ume 1. MIT press Cambridge, 2016.

Tan J Goodfellow, Jonathon Shlens, and Christian Szegedy. FExplaining and harnessing
adversarial examples. arXiv preprint arXiw:1412.6572, 2014.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp
Hochreiter. Gans trained by a two time-scale update rule converge to a local nash equi-
librium. In Advances in neural information processing systems, pages 66266637, 2017.

Arthur Le Guennec, Simon Malinowski, and Romain Tavenard. Data Augmentation for
Time Series Classification using Convolutional Neural Networks. In ECML/PKDD Work-
shop on Advanced Analytics and Learning on Temporal Data, Riva Del Garda, Italy,
September 2016. URL https://halshs.archives-ouvertes.fr/halshs-01357973.

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros.
Context encoders: Feature learning by inpainting. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 2536—2544, 2016.

https://halshs.archives-ouvertes.fr/halshs-01357973

Kim CHor CHOO

Xi Peng, Zhigiang Tang, Fei Yang, Rogerio S. Feris, and Dimitris Metaxas. Jointly optimize
data augmentation and network training: Adversarial data augmentation in human pose
estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018.

Tim Salimans and Diederik P Kingma. Weight normalization: A simple reparameterization
to accelerate training of deep neural networks. arXiv preprint arXiv:1602.07868, 2016.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: a simple way to prevent neural networks from overfitting. The journal
of machine learning research, 15(1):1929-1958, 2014.

Florian Tramer and Dan Boneh. Adversarial training and robustness for multiple pertur-
bations. In Advances in Neural Information Processing Systems, pages 58665876, 2019.

Riccardo Volpi, Hongseok Namkoong, Ozan Sener, John C Duchi, Vittorio Murino, and
Silvio Savarese. Generalizing to unseen domains via adversarial data augmentation. In
Advances in neural information processing systems, pages 5334-5344, 2018.

Zhiguang Wang, Weizhong Yan, and Tim Oates. Time series classification from scratch
with deep neural networks: A strong baseline. In 2017 International joint conference on
neural networks (IJCNN), pages 1578-1585. IEEE, 2017.

Qingsong Wen, Liang Sun, Xiaomin Song, Jingkun Gao, Xue Wang, and Huan Xu. Time
series data augmentation for deep learning: A survey. arXiv preprint arXiv:2002.12478,
2020.

I Zeki Yalniz, Hervé Jégou, Kan Chen, Manohar Paluri, and Dhruv Mahajan. Billion-scale
semi-supervised learning for image classification. arXiv preprint arXiv:1905.00546, 2019.

Xinyu Zhang, Qiang Wang, Jian Zhang, and Zhao Zhong. Adversarial autoaugment. arXiv
preprint arXiw:1912.11188, 2019.

	Introduction
	Related Work
	Basic Augmentations for Time-series Data
	Model-based Augmentations
	Other Related Work

	Method
	Autoencoder for Augmentation
	Adversarial Loss to Capture High Frequency Details
	Adversarial Augmentation
	Architectural Details

	Experiment
	Problem Formulation
	Prediction Model
	Results

	Conclusion

