GEOMETRIC VALUE ITERATION

Appendix A. Proofs on the performance bound
For the following proof, we define the greedy policy and the Bellman operator regularized by
Shannon entropy as well as KL divergence as ij’T(q) = argmax, cas ((m,q) — AKL(7||p) + 7H (7))

and T o "¢ =1r+~P ((m,q) — AKL(r||n)) + 7H(7), respectively. We also note the following
fact about the greedy policy (Vieillard et al., 2020a):

2 1
Gy"(q) = argmax ({, ¢) — AKL(x[|p) + TH(7)) o p3+7 exp 7 (14)
ﬂ.EAi A +T7
and we have the following maximum:
max ((m,q) = AKL(r||n) + TH(m)) = (A + 1) In(L, p57 exp ——). (1)
WEAi A+T

Before going to the proof of Theorem 2, we provide the following proposition.

Proposition 4 Define Z, = Z?:o nj, ho = qo, and hy for k > 1 as the average of past

smoothed q-functions: hy = Z%C Z?:o niq; = Z 1hk 1+ 2 7k If Ae > 0 for all k, GVI is
equivalent to the following iteration:

07L
Tht1 =G Zk (hy)

i1 = (TpF o)™ + €k+1 (16)
1 k+1
hevr = 75 Xm0 M5 = Z,g+1 hie + 775 Qe
Proof Using Eq. (14) and by direct induction, we have 711 & 7pexpnpqr x -+ X

exp Z?:o n;jq; = exp Zyhi. Eq. (14) also provides argmax; cAs ((m,q) + TH(7)) exp(%q)
0L

Hence, 711 satisfies 11 = argmax; cns ((77, hi) + Z%H(w)) =g"% k (h). |

We now prove the error-bound of GVI using Eq. (16).

Proof. We first transform g« — ¢r,_,, the difference between the optimal value function
and the value function computed by Eq. (16), using the following useful lemma:

Lemma 5 (Kakade and Langford (2002)) For any q € RS and m € AS, we have
Gn—q= (I~ ’YPW)_l(Tﬂq - q).

Using Lemma 5, ¢« — gr,,, can be transformed as

qx — Q7Tk+1 = qx — hk + hk - qT(k+1
= (I - ’YPW*)_l(Tm hy — hk) (I 7P7Tk+1) (Tﬂ'k+1hk - hk) (17)

Since the KL regularization vanishes after the iteration converges, the optimal policy must
be deterministic, and hence H(m,) = 0. Since 71 is the regularized greedy policy, we have

1 1 1
Tyl = gO, Zk (hg) = (Tgs1, hi) + A —H(mpr1) > (e, hg) + Z—kH(w*)

Tk+1

= T 7Zk hk‘ ﬂk+1hk +72P7‘[(ﬂ'k+1) Z Tﬂ-*hk. (18)
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Using this with Eq. (5) and the fact that for any 7 the matrix (I —yPr)™" = 33,50 7"PL is
positive, we have the following inequality:

0,4 0,5~ 1
Qs — q7"k+1 = (I vFPr. ) ( ka1 h, hk) (I 7pﬂk+1) (Tﬂk-qzq hi — hi; — ZPH(Wk+1))'
(19)

1

As for the residual T

T +1 ¥ hi — hi, we have the following useful lemma:

1 1

07
Q. = ZyTn,

Th+1

Lemma 6 For any k > 1, we have n,T"* kR — Zp_ lkazk Yhy_1. For

Tht 1\7%

k=0, we have HOTEI;TOQO = ZOTW;%ho — yPH(m).
Proof Using the definition of 73 and hg, the following equation holds.

Neqr + N7 = Npqr + (Zk—lhk—l — ln(l, exp Zk_lhk_1>) = Zih — ln(l, exp Zk—lhk—1>~
(20)

Therefore, we have (7, niqr) — KL(7||mg) = (7, Zihy) — (m,In7) —In(1, exp Z_1hg_1). From
Eq. (15), the maximum of (7, Zphg) — (7, In7) is In(1, exp Zihy), and the maximizer is 7541
from the definition. By substituting 741 to 7, the following equation holds:

1 1
<7['k+1, T]qu> _KL(Trk+1H7rk) = Zkz 111(1, exXp Zkhk> — Zk,1 7 ln<1, exp Zkflhk,ﬁ. (21)

k—1

From Eq. (15), Zik In(1, exp Zhy) is the maximum of (m, hy) + Z%H(W), and the associated
maximizer is again m;41. Hence, the following equation holds:

1 1
(Trt1, Mk Gr) — KL(mg1|lme) = Zy, <<7Tk+1= hi) + Zk%(mcﬂ)) — Zi—1 <<7Tk= hi—1) + 7
(22)
1
Observing that ngr = Zir — Zp_1r, we have the first part of the result: nkTﬂkaqk =

1 1

07
Zy T 2% g, — Zio 1T7Tk “"hy_1. For k = 0, using the fact that hg = qo,

Tk+1

1 1 0,~
T, 1|7r0qo = nor + P ({1, moho) + ﬂonf’H(m) + 770%<7T1, Inmo)) = noTr," ho — vPH(mo),
(23)
where we use in the last line the fact that 7o, being uniform, (71, Inmp) = —In|A| = —H(m).
This concludes the proof. |

Using Lemma 6, we can provide induction on hy.

1

Lemma 7 Define Ej, = — Z? 1 mj€j and Xj, = Ef o(mj41 — nj)Tﬂnil‘ﬂjqj. For any k > 1,

we have hyy1 = Z T,r,;i’f hy, + Zk: - (M0g0 — Ek41 + Xy — yPH(m0)) -

H(m)).
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1

0
Proof Using the definition of hj, Lemma 6, and the fact that gy 1 = T"* &+ €k+1,

meyalme
we have
kt1
Zahii =Y 15¢5 = nogo + mai + Zmﬂqgﬂ
J=0 J=1

L0 K =0
= 10go + ((m —10) +10) T, do +mer + Y (((nj+1 —nj) +1j) Tr}1 05 + 77j+1€j+1>
=1
'z

k 0,4 :
= N0qo + (Zon"O ho — yPH(mo) ) Z < Ty hy — Zj— 1T _lhy 1> + Xi — Bt

— oo + X — Brar — 1PH(mo) + ZiTo 25 by (24)
Z 07
S M1 = 2T 75 g + (nogo — Er1 + X — vPH(mo)) . (25)
Z+1 L1
[ |

0 1

Using Lemma 7 and the fact that Zy1hr+1 = Zphg +Mk+19k+1, we have T,rk+1 hy—hy, =
Z%C (Mk+19k+1 — M0q0 + Ex+1 — Xi + vyPH(mp)) . Injecting this last result into decomposi-
tion (19), we get

1

0 9
Qx — Qi < (I - 'YPW*)_I(TWIC+1 h hk) (I '7P7rk+1) ( WkJZr]f hk hk - 'YPH(Wk-H))

< ([—7P)! (Zlkwmfym(m))) (I =2Pyy.) (ka—fym(w))) (26)

where we write Y = Ng+1qk+1 — Moo + Ex+1 — X for the uncluttered notation and the last
inequality holds, since —(I—'yPWkH)_lP’H(WO) < 0. Next, using the fact that ¢. —qr,,, >0
and rearranging terms, we have

By
Zy,

9« — Qmpqq < ‘((I - 'YPTr*)il - (I - 7Pﬂk+1)71)

111
+ (I =P, ‘Zk (Mk+1qk+1 — M0go — X +vPH(m0))

1
+ (I = 9Pryy)” ‘Zk (Me+1r41 — M0G0 — Xk + VP'H(MH))’ . (@27

1
7,70
From the assumptions ||gx||co < gmax for all k, we have || X |loo = || Z?:o(nﬁl_nj)T:;thqJ”00 <

Jmax Z?:o Inj+1 — nj|. Combined with Eq. (27), we have

k
2
g = tmeislloe = =570 > mjes|| + (rr+ 0+ Y 01 = 0] dmax + I |A]
[ j=0

(28)
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Table 1: Hyperparameters of algorithms in deep RL experiments

Parameter Value

Shared
optimizer Adam
learning rate 1074
discount factor () 0.99
replay buffer size 106
number of hidden layers 2
number of hidden units per layer | 256
number of samples per minibatch | 32
activations ReLU

Appendix B. Proof of Theorem 3

Define for any k > 0 the term ¢, = A\g11 (gx — In7g). By basic calculus, the evaluation
step of Eq. 8 can be transformed as

T )\k
Gt1 = —— +Inmpy + ——yP (Tpt1, @ — InTgp1)
Ak+1 Ak+1

& Mot (@1 —Inmpy1) =7+ YP (Tpp1, A (@ — Inmg)) — A (M1, In Ty — Inmg)
& q'py1 =1+ VP (Thp1, ¢ k) — M KL (g1 ||71). (29)

For the greedy step, we have

/
axgmas (r, gy) + H(m) ox exp (gr) = mi exp (i’f)
™ k
oc argmax (7, ¢’ ) + KL (7||mg) - (30)

Therefore, we have shown that

{TFk+1 = argmax;cas (m, q) + H(m)

A
Ge+1 = In 1 + 57 + 55V P (T, g — Inmeg)

- {ﬂk+1 = argmax; s (m,q';.) — M\ KL(7||mg) (31)

¢ jo1 =1+ VP (g1, ¢, — M KL(mpp1 || 7m1))

Appendix C. Hyperparameters

Table. 1 lists the hyperparameters used in the comparative evaluation in Section. 5.

Appendix D. Maze Environment Details
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For the tabular experiments, we use randomly generated 5 x 5
magzes. Figure D shows a sample maze used in the experiment.
The agent starts from a fixed position marked with S and can
move to any of its neighboring states with success probability
0.9, or to a different random direction with probability 0.1.
The agent receives +1 reward when it reaches the goal marked
with G, and the environment terminates after 25 steps. The
agent cannot enter the black tiles.

Figure 6: Example of
generated maze.
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