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Appendix A. Proofs on the performance bound

For the following proof, we define the greedy policy and the Bellman operator regularized by
Shannon entropy as well as KL divergence as Gλ,τµ (q) = argmaxπ∈∆S

A

(〈π, q〉 − λKL(π||µ) + τH(π))

and T λ,τ
π|µq = r+ γP (〈π, q〉 − λKL(π||µ)) + τH(π), respectively. We also note the following

fact about the greedy policy (Vieillard et al., 2020a):

Gλ,τµ (q) = argmax
π∈∆S

A

(〈π, q〉 − λKL(π||µ) + τH(π)) ∝ µ
λ

λ+τ exp
1

λ+ τ
q, (14)

and we have the following maximum:

max
π∈∆S

A

(〈π, q〉 − λKL(π||µ) + τH(π)) = (λ+ τ) ln〈1, µ
λ

λ+τ exp
q

λ+ τ
〉. (15)

Before going to the proof of Theorem 2, we provide the following proposition.

Proposition 4 Define Zk =
∑k

j=0 ηj, h0 = q0, and hk for k ≥ 1 as the average of past

smoothed q-functions: hk = 1
Zk

∑k
j=0 ηjqj =

Zk−1

Zk
hk−1 +

ηk
Zk

qk. If λk > 0 for all k, GVI is

equivalent to the following iteration:


















πk+1 = G
0, 1

Zk (hk)

qk+1 = (T
1

ηk
,0

πk+1|πk
)mqk + ǫk+1

hk+1 =
1

Zk+1

∑k+1
j=0 ηjqj =

Zk

Zk+1
hk +

ηk+1

Zk+1
qk+1

. (16)

Proof Using Eq. (14) and by direct induction, we have πk+1 ∝ πk exp ηkqk ∝ · · · ∝
exp

∑k
j=0 ηjqj = expZkhk. Eq. (14) also provides argmaxπ∈∆S

A

(〈π, q〉+ τH(π)) ∝ exp( 1τ q).

Hence, πk+1 satisfies πk+1 = argmaxπ∈∆S
A

(

〈π, hk〉+
1
Zk
H(π)

)

= G
0, 1

Zk (hk).

We now prove the error-bound of GVI using Eq. (16).

Proof. We first transform q∗ − qπk+1
, the difference between the optimal value function

and the value function computed by Eq. (16), using the following useful lemma:

Lemma 5 (Kakade and Langford (2002)) For any q ∈ R
S×A and π ∈ ∆S

A, we have

qπ − q = (I − γPπ)
−1(Tπq − q).

Using Lemma 5, q∗ − qπk+1
can be transformed as

q∗ − qπk+1
= q∗ − hk + hk − qπk+1

= (I − γPπ∗
)−1(Tπ∗

hk − hk)− (I − γPπk+1
)−1(Tπk+1

hk − hk). (17)

Since the KL regularization vanishes after the iteration converges, the optimal policy must
be deterministic, and hence H(π∗) = 0. Since πk+1 is the regularized greedy policy, we have

πk+1 = G
0, 1

Zk (hk)⇒ 〈πk+1, hk〉+
1

Zk
H(πk+1) ≥ 〈π∗, hk〉+

1

Zk
H(π∗)

⇒ T
0, 1

Zk
πk+1

hk = Tπk+1
hk + γ

1

Zk
PH(πk+1) ≥ Tπ∗

hk. (18)
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Using this with Eq. (5) and the fact that for any π the matrix (I − γPπ)
−1 =

∑

t≥0 γ
tP t

π is
positive, we have the following inequality:

q∗ − qπk+1
≤ (I − γPπ∗

)−1(T
0, 1

Zk
πk+1

hk − hk)− (I − γPπk+1
)−1(T

0, 1

Zk
πk+1

hk − hk − γ
1

Zk
PH(πk+1)).

(19)

As for the residual T
0, 1

Zk
πk+1

hk − hk, we have the following useful lemma:

Lemma 6 For any k ≥ 1, we have ηkT
1

ηk
,0

πk+1|πk
qk = ZkT

0, 1

Zk
πk+1

hk − Zk−1T
0, 1

Zk−1

πk
hk−1. For

k = 0, we have η0T
1

η0
,0

π1|π0
q0 = Z0T

0, 1

η0
π1

h0 − γPH(π0).

Proof Using the definition of πk and hk, the following equation holds.

ηkqk + lnπk = ηkqk + (Zk−1hk−1 − ln〈1, expZk−1hk−1〉) = Zkhk − ln〈1, expZk−1hk−1〉.
(20)

Therefore, we have 〈π, ηkqk〉−KL(π||πk) = 〈π, Zkhk〉−〈π, lnπ〉− ln〈1, expZk−1hk−1〉. From
Eq. (15), the maximum of 〈π, Zkhk〉−〈π, lnπ〉 is ln〈1, expZkhk〉, and the maximizer is πk+1

from the definition. By substituting πk+1 to π, the following equation holds:

〈πk+1, ηkqk〉−KL(πk+1||πk) = Zk
1

Zk
ln〈1, expZkhk〉−Zk−1

1

Zk−1
ln〈1, expZk−1hk−1〉. (21)

From Eq. (15), 1
Zk

ln〈1, expZkhk〉 is the maximum of 〈π, hk〉+
1
Zk
H(π), and the associated

maximizer is again πk+1. Hence, the following equation holds:

〈πk+1, ηkqk〉 −KL(πk+1||πk) = Zk

(

〈πk+1, hk〉+
1

Zk
H(πk+1)

)

− Zk−1

(

〈πk, hk−1〉+
1

Zk−1
H(πk)

)

.

(22)

Observing that ηkr = Zkr − Zk−1r, we have the first part of the result: ηkT
1

ηk
,0

πk+1|πk
qk =

ZkT
0, 1

Zk
πk+1

hk − Zk−1T
0, 1

Zk−1
πk

hk−1. For k = 0, using the fact that h0 = q0,

η0T
1

η0
,0

π1|π0
q0 = η0r + γP (〈π1, η0h0〉+ η0

1

η0
H(π1) + η0

1

η0
〈π1, lnπ0〉) = η0T

0, 1

η0
π1

h0 − γPH(π0),

(23)
where we use in the last line the fact that π0, being uniform, 〈π1, lnπ0〉 = − ln |A| = −H(π0).
This concludes the proof.

Using Lemma 6, we can provide induction on hk.

Lemma 7 Define Ek = −
∑k

j=1 ηjǫj and Xk =
∑k

j=0(ηj+1 − ηj)T
1

ηj
,0

πj+1|πj
qj. For any k ≥ 1,

we have hk+1 =
Zk

Zk+1
T
0, 1

Zk
πk+1

hk +
1

Zk+1
(η0q0 − Ek+1 +Xk − γPH(π0)) .
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Proof Using the definition of hk, Lemma 6, and the fact that qk+1 = T
1

ηk
,0

πk+1|πk
qk + ǫk+1,

we have

Zk+1hk+1 =
k+1
∑

j=0

ηjqj = η0q0 + η1q1 +
k

∑

j=1

ηj+1qj+1

= η0q0 + ((η1 − η0) + η0)T
1

η0
,0

π1|π0
q0 + η1ǫ1 +

k
∑

j=1

(

((ηj+1 − ηj) + ηj)T
1

ηj
,0

πj+1
qj + ηj+1ǫj+1

)

= η0q0 +

(

Z0T
0, 1

η0
π1

h0 − γPH(π0)

)

+
k

∑

j=1

(

ZjT
0, 1

Zj
πj+1

hj − Zj−1T
0, 1

Zj−1

πj hj−1

)

+Xk − Ek+1

= η0q0 +Xk − Ek+1 − γPH(π0) + ZkT
0, 1

Zk
πk+1

hk (24)

⇔ hk+1 =
Zk

Zk+1
T
0, 1

Zk
πk+1

hk +
1

Zk+1
(η0q0 − Ek+1 +Xk − γPH(π0)) . (25)

Using Lemma 7 and the fact that Zk+1hk+1 = Zkhk+ηk+1qk+1, we have T
0, 1

Zk
πk+1

hk−hk =
1
Zk

(ηk+1qk+1 − η0q0 + Ek+1 −Xk + γPH(π0)) . Injecting this last result into decomposi-
tion (19), we get

q∗ − qπk+1
≤ (I − γPπ∗

)−1(T
0, 1

Zk
πk+1

hk − hk)− (I − γPπk+1
)−1(T

0, 1

Zk
πk+1

hk − hk − γPH(πk+1))

≤ (I − γPπ∗
)−1

(

1

Zk
(Yk + γPH(π0))

)

− (I − γPπk+1
)−1

(

1

Zk
(Yk − γPH(πk+1))

)

, (26)

where we write Yk = ηk+1qk+1− η0q0+Ek+1−Xk for the uncluttered notation and the last
inequality holds, since −(I−γPπk+1

)−1PH(π0) ≤ 0. Next, using the fact that q∗−qπk+1
≥ 0

and rearranging terms, we have

q∗ − qπk+1
≤

∣

∣

∣

∣

(

(I − γPπ∗
)−1 − (I − γPπk+1

)−1
) Ek+1

Zk

∣

∣

∣

∣
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)−1

∣

∣

∣

∣

1

Zk
(ηk+1qk+1 − η0q0 −Xk + γPH(π0))

∣

∣

∣

∣

+ (I − γPπk+1
)−1

∣

∣

∣

∣

1

Zk
(ηk+1qk+1 − η0q0 −Xk + γPH(πk+1))

∣

∣

∣

∣

. (27)

From the assumptions ‖qk‖∞ ≤ qmax for all k, we have ‖Xk‖∞ = ‖
∑k

j=0(ηj+1−ηj)T
1

ηj
,0

πj+1|πj
qj‖∞ ≤

qmax
∑k

j=0 |ηj+1 − ηj |. Combined with Eq. (27), we have

‖q∗ − qπk+1
‖∞ ≤

2

(1− γ)Zk





∥

∥

∥

∥

∥

∥

k
∑

j=1

ηjǫj

∥

∥

∥

∥

∥

∥

∞

+ (ηk+1 + η0 +
k

∑

j=0

|ηj+1 − ηj |)qmax + γ ln |A|



 .

(28)
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Table 1: Hyperparameters of algorithms in deep RL experiments

Parameter Value

Shared

optimizer Adam

learning rate 10−4

discount factor (γ) 0.99

replay buffer size 106

number of hidden layers 2

number of hidden units per layer 256

number of samples per minibatch 32

activations ReLU

Appendix B. Proof of Theorem 3

Define for any k ≥ 0 the term q′k = λk+1 (qk − lnπk). By basic calculus, the evaluation
step of Eq. 8 can be transformed as

qk+1 =
r

λk+1
+ lnπk+1 +

λk

λk+1
γP 〈πk+1, qk − lnπk+1〉

⇔ λk+1 (qk+1 − lnπk+1) = r + γP 〈πk+1, λk (qk − lnπk)〉 − λk 〈πk+1, lnπk+1 − lnπk〉

⇔ q′k+1 = r + γP
〈

πk+1, q
′
k

〉

− λk KL(πk+1‖πk). (29)

For the greedy step, we have

argmax
π

〈π, qk〉+H(π) ∝ exp (qk) = πk exp

(

q′k
λk

)

∝ argmax
π

〈

π, q′k
〉

+KL (π‖πk) . (30)

Therefore, we have shown that

{

πk+1 = argmaxπ∈∆S
A

〈π, qk〉+H(π)

qk+1 = lnπk+1 +
r

λk+1
+ λk

λk+1
γP 〈πk+1, qk − lnπk+1〉

⇔

{

πk+1 = argmaxπ∈∆S
A

〈π, q′k〉 − λk KL(π‖πk)

q′k+1 = r + γP 〈πk+1, q
′
k − λk KL(πk+1‖πk)〉

. (31)

Appendix C. Hyperparameters

Table. 1 lists the hyperparameters used in the comparative evaluation in Section. 5.

Appendix D. Maze Environment Details
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Figure 6: Example of a
generated maze.

For the tabular experiments, we use randomly generated 5×5
mazes. Figure D shows a sample maze used in the experiment.
The agent starts from a fixed position marked with S and can
move to any of its neighboring states with success probability
0.9, or to a different random direction with probability 0.1.
The agent receives +1 reward when it reaches the goal marked
with G, and the environment terminates after 25 steps. The
agent cannot enter the black tiles.


