Proceedings of Machine Learning Research 157, 2021 ACML 2021

Scaling Average-Linkage via Sparse Cluster Embeddings

Thomas Lavastida TLAVASTIQANDREW.CMU.EDU
Carnegie Mellon University

Kefu Lu KLUQWLU.EDU
Washington and Lee University

Benjamin Moseley MOSELEYB@QANDREW.CMU.EDU
Carnegie Mellon University

Yuyan Wang YUYANW@ANDREW.CMU.EDU
Carnegie Mellon University

Editors: Vineeth N Balasubramanian and Ivor Tsang

Abstract

Average-linkage is one of the most popular hierarchical clustering algorithms. It is well
known that average-linkage does not scale to large data sets due to the slow asymptotic
running time. The fastest known implementation has running time quadratic in the number
of data points.

This paper presents a technique that we call cluster embedding. The embedding maps
each cluster into a point in slightly higher dimensions. The pairwise distances between
the mapped points approximate the average distance between clusters. By utilizing this
embedding we scale the task of finding close pairs of clusters, which is a key step in
average-linkage clustering. We achieve an approximate, sub-quadratic time implementation
of average-linkage. We show theoretically the algorithm proposed in this paper achieves a
near-linear running time and scales to large data sets. Moreover, its scalability empirically
dominates average-linkage and typically offers 3-10x speed-up on large data sets.
Keywords: Hierarchical Clustering, Average-linkage, Scalable Clustering

1. Introduction

Hierarchical clustering is popular across many scientific disciplines, exemplified by its incor-
poration in many undergraduate curriculums and its inclusion in various popular machine
learning libraries such as scipy, scikit-learn and Spark MLLib Jones et al. (2001-); Pedregosa
et al. (2011); Meng et al. (2016).

Hierarchical clustering’s input is a set of n data points with a similarity or dissimilarity
function D(z,y) between each pair of points x and y. The output is a tree with all n data
points as leaves. Each internal node of the tree represents a cluster containing the data
points of the leaves of the subtree rooted at the node.

If two data points are relatively similar, their least common ancestor (LCA) should be
lower in the tree. If points are dissimilar, then their LCA should be higher in the tree. In
this way, clusters corresponding to internal nodes become more refined at lower levels of the
tree. Moreover, looking across the tree at any fixed depth will reveal a partitioned clustering!
of all data points at that fixed level of detail.

There are many different types of hierarchical clustering algorithms. See Xu and Wunsch
(2005) for an overview. This paper focuses on one of the most popular hierarchical clustering

1. In a partitioned clustering, each data point belongs to one cluster (e.g. the solution produced by k-means).

© 2021 T. Lavastida, K. Lu, B. Moseley & Y. Wang.

LAvASTIDA LU MOSELEY WANG

algorithms, average-linkage. This algorithm belongs to the class of agglomerative hierarchical
clustering algorithms. Agglomerative methods initializes all data point to be singleton
clusters, i.e. the leaves of the final tree. They then iteratively merge the most similar pair
of clusters to produce new internal nodes in the hierarchy tree. The entire tree has been
formed once all clusters have been merged into one. There are different ways to measure the
similarity of pair of clusters at each step. Average-linkage calculates the average distance
over all pairs of points across the clusters. The greater this average distance is, the less
similar these two clusters are. This average distance is called the distance between the two
clusters. Single-linkage and complete-linkage, two other agglomerative algorithms, define the
distance between two clusters to be the smallest and greatest distance between all pair of
points across the clusters, respectively.

Scalability of Average-Linkage: Average-linkage has scalability issues. Introductory
guides on hierarchical clustering often state that average-linkage should only be used on small
to modestly sized data sets due to the inherent large running time and the sequential nature
of the algorithm. This limits the applicability of hierarchical clustering on large datasets Xu
and Wunsch (2005). Therefore, there is interest in making average-linkage more scalable.

The fastest known implementation of average-linkage runs in ©(n?) time Mullner (2013).
To compute the exact average-linkage output, this running time is intuitively necessary
because the algorithm must inspect all of the Q(n?) pairwise distances between data points
to find the first pair to merge.

This quadratic running time becomes quite prohibitive as data sets increase in size.
Recently, there has been breakthroughs with improving the scalability of average-linkage.
The work of Cochez and Neri (2015) and Abboud et al. (2019) broke through the quadratic
barrier by relaxing the algorithm. In both works, the idea is to allow the algorithm to
iteratively merge clusters that do not necessarily have the smallest average distance. Cochez
and Neri (2015) found a sub-quadratic time algorithm for a restricted class of distance
functions that includes Jaccard distance, but excludes all £,-norm distances. Despite being
scalable in implementation, the methods in Cochez and Neri (2015) cannot be directly used
for any ¢,-norm distances. Abboud et al. (2019) shows that for input with ¢; norm distances,
one can also break the quadratic bound by allowing the algorithm to merge clusters with
average distance within a factor of 1 + € of the average distance between the closest clusters.
However, the algorithm design heavily relies on properties of the /1 norm and the work does
not directly apply to other /, norms?. Further, the algorithm emphasizes the near-optimality
of every merge performed, leveraging sophisticated data structures to quickly find clusters
to merge. The construction and maintenance of such data structures incurs additional
computational cost for this adaptation of average-linkage, which is likely to have significant
overhead in practice.

Research Challenges: Previous work does not directly give a scalable, easily implementable
adaptation of average-linkage for general ¢, norms. Nevertheless, it suggests the exciting
possibility of developing such an adaptation with new algorithm designs. The new algorithm
design should be supported by similar theoretical guarantees, i.e., it should iteratively choose
two clusters to merge, whose distance is up to a constant of the smallest average distance
among all clusters. In particular, an intriguing open question is to find an efficient adaptation
of average-linkage for the £s-norm distance, the most popular distance function.

Results: This paper designs an algorithm that finds an approximation of average-linkage,
which applies to £, norm distances with p € [1, 2], with sub-quadratic running time guarantees.

2. Note it is possible to embed £, norms into ¢; though an additional data processing step which significantly
increase the dimension of the data points.

SCALING AVERAGE-LINKAGE VIA SPARSE CLUSTER EMBEDDINGS

Empirically, we give a scalable implementation with near-linear running time. Our results
are as follows.

e The algorithm runs in near linear time. The algorithm requires O(dn1+p) time and
O(dn!*?) space for arbitrarily small p > 0 when the input points belong to d-dimensional
Euclidean space.?

e The tree constructed is a relaxation of average-linkage that ensures that any pair of clusters
merged have average distances within a constant factor of the closest cluster pair.

e We perform experiments with our algorithm and compare it to the most popular imple-
mentations of average-linkage such as scikit-learn, sci-py, and fastcluster. These represent
the fastest average-linkage packages used by data scientists across industry and academia.
Our algorithm: (1) Constructs trees that are similar to what standard libraries achieve. In
particular, the trees constructed have almost the same value for a popular hierarchical
clustering objective. (2) Achieves asymptotically faster running times than the standard
algorithms for large data sets, matching the theoretical guarantees. The running time of
our implementation is near linear in the input size, as opposed to the quadratic baselines.

e The algorithm is easily parallelizable and can be used in parallel and distributed environ-
ments. There is much previous work on scaling clustering methods such as single-linkage
(Bateni et al., 2017). However, fundamental differences in the problem prevent these
methods from extending to average-linkage. In contrast, most recent work on fast average-
linkage clustering, such as Abboud et al. (2019), do not extend easily into parallel and
distributed settings.

A New Algorithmic Technique - Cluster Embeddings: This paper introduces a new
technique that is of interest beyond average-linkage, cluster embeddings.

Consider a collection of clusters C = {C1, Cq, ..., Ci}. Each cluster is a subset of the
input data points. A cluster embedding finds k points vy, vs, ..., v, where v; corresponds to
C;. These points exist in some Euclidean space and the distance between v; and v; should
approximate the average distance between points in C; and C;. Formally, the embedding
should be low-distortion (Indyk, 2001) with respect to the average ¢, distance. Ideally, the
points vy, ve, ..., v, are located in a space with dimension not much larger than d and the
embedding can be computed quickly.

To see the applicability of cluster embeddings, consider a single step of average-linkage.
At each step, there is a current collection of clusters Cy, Cs, ...y and the goal is to find the
clusters C; and C; that minimizes the average distance between C; and C;. That is, clusters
whose points are closest on average. Notice that for any pair of clusters it can take quadratic
time just to find their average distance depending on the sizes. However, with the embedding
in place, we would only need to find the ¢, distance between the two embedded points.

The embedding allows us to leverage data mining techniques that apply to points in
Euclidean space. Coupling the cluster embedding with Locality-Sensitive Hashing (LSH)
functions yields a method to quickly find pairs of clusters with small average distance. Such
a task is called near cluster search. Given a set of points in Fuclidean space, LSH functions
partitions the points into “buckets”, where points in the same bucket are likely to be closer
to each other, thus filtering out potential near neighbors without inspecting all pairwise
distances between clusters. Such techniques leverage properties of £, distances in a Euclidean

3. The O(-) notation hides factors of log®(n) for constant ¢ > 0.

LAvASTIDA LU MOSELEY WANG

space and cannot be directly used to do near cluster search, since the cluster distance, defined
to be the average distance over all pairs, is a more general metric where LSH may not
exist. However, an embedding into Euclidean space makes such a technique applicable for
near-cluster searches. Iteratively using the embedding coupled with LSH to find clusters that
are close gives a new approach to efficiently approximate average-linkage.

Our cluster embedding has the following properties.

e The embedding is sparse. Clusters of points in d-dimensional Euclidean space are embedded
into vectors with at most d + 1 non-zero entries. Hence only one additional non-trivial
dimension is required to store the embedding of each cluster.

e The embedding preserves the average distances well. The £,-norm distance between v;
and v; is guaranteed to approximate the average distance between pairs of points in C;
and C;. In particular, we prove this is bounded in the worst case. Experimentally, they
are nearly the same.

e The embedding is oblivious, i.e. there is a function ¢ : C — R? such that v; = o(Cy),
where the computation of ¢(C;) depends only on the cluster C; itself and no other cluster
of C. Insertion, deletion, and modification of other clusters doesn’t affect ¢(C;). Here d' is
the dimension of the embedded space.

e Constructing the embedding takes linear time, O(nd). This is faster than comparing the
average similarity between two (large) clusters (quadratic time).

Paper Organization: The paper is organized as follows. We begin by introducing pre-
liminary definitions. Then in Section 3, we discuss the technique of cluster embedding -
our main technique for speeding up average-linkage. We first showcase the application of
cluster embeddings on the problem of near cluster search in Section 4. This is the key step
in average-linkage. Afterwards, we give an overview of the average-linkage algorithm in
Section 5. This overview gives a skeleton of the key algorithmic ideas. The full algorithm
with strong theoretical guarantees is more technical and we defer its full analysis to Appendix
A in the supplementary material. In Section 6 we give experimental evaluations. Appendix B
in the supplementary material gives the proofs for technical lemmas introduced in Section 3.

Related Work: There has been consistent interest in finding efficient algorithms to
cluster data in large databases Guha et al. (2001); Cochez and Neri (2015). Additionally, there
has recently been increased interest in scaling hierarchical clustering algorithms Yaroslavtsev
and Vadapalli (2018); Bateni et al. (2017); Abboud et al. (2019); Monath et al. (2019);
Menon et al. (2019). Kell et al. Kull and Vilo (2008) and Cochez et al. Cochez and Neri
(2015) speed-up algorithms by relaxing the criteria on when clusters can be merged. The
work of Yaroslavtsev and Vadapalli (2018) and Lattanzi et al. (2019) considered parallelizing
hierarchical clustering algorithms in the Massively Parallel Model of computation Karloff
et al. (2010); Andoni et al. (2014). Other Spark and MapReduce algorithms have been
developed Jin et al. (2015b,a). This prior work on scaling hierarchical clustering focused on
other hierarchical clustering algorithms and not average-linkage.

As mentioned, recently there are breakthroughs in designing sub-quadratic adaptations of
hierarchical clustering algorithms Cochez and Neri (2015); Abboud et al. (2019) which do not
directly lead to a scalable average-linkage implementation for general ¢, norms. Method-wise
both papers used Locality-Sensitive Hashing (LSH) and other related techniques. The work
of Cochez and Neri (2015) was the first to show that one can speed up near cluster search
with LSH, but the algorithm design assumes the input distance metric belongs to a restricted

SCALING AVERAGE-LINKAGE VIA SPARSE CLUSTER EMBEDDINGS

class of distance functions. The work left open the problem of generalizing the ideas to
other distances like ¢,-norm where LSH is known to exist. Abboud et al. (2019) designed an
approximate average-linkage algorithm for the /1-norm distance. A crucial building block
in Abboud et al. (2019) is to leverage properties of /1 to construct a sophisticated data
structure based on LSH functions, where every cluster is represented as a multi-dimensional
point. This is similar to our work, except their representation of a cluster increases the
dimension by a factor of Q(E% log® n) for constant € > 0 and critically uses properties of ¢;
that do not hold for other £, norms. The original paper does not include an average-linkage
implementation. There remains the question of finding a more concise way of embedding
clusters into potentially low-dimensional points and designing a practical adaptation of
average-linkage based on this embedding.

Embeddings are widely used and there are many types with different properties. See
Goodman and O’Rourke (1997) for reference to different types of embedding. Much prior work
has focused on low-distortion embeddings Indyk (2001). These embeddings are orthogonal
to that considered in this paper. These are used for reducing dimension and ours is used to
represent average cluster distances.

This paper uses an objective function for hierarchical clustering Cohen-addad et al. (2019)
to evaluate our algorithm. There has been recent interest in developing good objectives
for hierarchical clustering Dasgupta (2016); Wang and Moseley (2017). The objective in
Cohen-addad et al. (2019) is the most suitable for the setting we are considering - a point
set with pairwise distance metric. Average-linkage is a constant approximation algorithm for
the objective in Cohen-addad et al. (2019) when pairs of points have distances representing
dissimilarity scores and the objective considered in Wang and Moseley (2017) when pairs of
points have similarity scores.

2. Preliminaries

Here we define cluster embeddings, average-linkage, near cluster search, hierarchical clustering
objective function and Locality-Sensitive Hashing (LSH).

Notation: We use lower case letters e.g. x,y to denote points in Euclidean space and
use subscripts to index their coordinates e.g. z;,y;. We will use [|z|, := (>, xf)l/p to
denote the £y)-norm of z. ||z|| will be shorthand for the ¢o-norm. For a finite set X in
d-dimensional Euclidean space R?, let A(X) and §(X) be the maximum and minimum
distances within X, that is, A(X) := max, yex || — /| and §(X) := min, yex ||z —2/||. If
X is a finite set of points let (X) := > x/|X]| be the centroid of X and let gm(X) :=
argmingepa Y |y — z| /| X]| be the geometric median of X.

Average-Linkage: Let A, B be disjoint finite sets of points in a metric space with dis-
tance D(-,-). The average-linkage between A and B is defined as follows: Avg(A, B) :=
WllBl > ven 2oyen D(@,y). f C={C1,Cs, ..., Cy} is a collection of pairwise disjoint finite
sets of points, then Avg(-,-) induces a metric on C where we take Avg(C;, C;) := 0. In our
setting we have each C; C R? and D(x,y) = ||z — y||, for some p € [1,2].

Cluster Embeddings For Average-Linkage: Let S C R? be a point set and let C =
{C1,Cy,...,C} be a clustering of S. Let ¢ : C — R¥ be an embedding of C into d'-
dimensional Buclidean space. We say that ¢ is an embedding of C into ¢4 with distortion o
if the following holds for all C;, C; € C: Avg(C;, Cj) < ||o(C;) — ¢(Cy)|lp < a - Avg(C;, Cj).
Ideally we want to embed into a space of dimension = d. In lieu of that, we ask for a sparse
embedding in a high dimensional space. We say that an embedding ¢ is s-sparse if the
number of non-zero entries in ¢(C;) is at most s for all C; € C.

LAvASTIDA LU MOSELEY WANG

Near Cluster Search: Given a set of clusters C and a query cluster @, the near cluster
search problem with respect to average-linkage is to find a cluster C' € C that is the closest
to @ in average-linkage. The a-approximate near cluster search problem is to find a cluster

C € C such that Avg(Q,C) < a-mingree Avg(Q, C").

Approximate Average-linkage: Our algorithms make approximate decisions so we define
the notion of approximation here. Sets A, B are a-approximate for clustering C if Avg(A, B) <
a-miny pec Avg(A’, B'). An algorithm is a-approximate if it only merges a-approximate
clusters.
Global Objectives for Hierarchical Clustering: Recently there has been work on
objective functions for hierarchical clustering Dasgupta (2016); Roy and Pokutta (2017);
Charikar and Chatziafratis (2017); Cohen-addad et al. (2019); Wang and Moseley (2017);
Charikar et al. (2019a,b). We consider the objective defined in Cohen-Addad et al. Cohen-
addad et al. (2019) for dissimilarity-based inputs. A slight modification of the proof of
Theorem 4.6 in Cohen-addad et al. (2019) shows that any a-approximate algorithm for
average linkage is an O(«)-approximation for this objective. We will use this objective to
empirically assess the quality of the clustering.

The formal definition of the objective in Cohen-addad et al. (2019) is as follows. Let
T be a hierarchical clustering tree. For data points z,y let leaves(z,y) be the number of
leaves in the subtree rooted at the least common ancestor of x,y in T'. For each internal
node of T' let A — (Aj, A2) be the split into two clusters at that node. Given dissimilarities
D : S5 xS — R, defined on each pair of input points and a hierarchical clustering tree T',
define the objective rev(T) as follows:

rev(T):= > |A]-D(A,43) = > D(x,y) - leaves(z,y) (1)
A—)(Al,Ag) z,yeS

where D(A1, A2) 1= >, ca, yea, D(@,y). The goal is to find a tree T maximizing rev(7).
Solving this maximization problem is NP-hard (Dasgupta, 2016; Cohen-addad et al., 2019),
2

but average-linkage is 5-approximate (Cohen-addad et al., 2019).

Locality Sensitive Hashing (LSH): LSH is used in our algorithm to construct ANN
queries of the embedded points. Thus, this will be used to find pairs of clusters to merge.
Intuitively, LSH partitions a space into buckets so that nearby points are more likely to
lie in the same bucket and far away points are less likely to land in the same bucket. Let
X be a metric space with distance function D and U a universe of buckets. A function
family H = {h : X — U} is said to be (ry,ra, p1,p2)-sensitive for D if for any z,y € X
and h drawn uniformly at random from H: D(z,y) <r; = Pry[h(y) = h(x)] > p1, and
D(z,y) > ro = Prylh(y) = h(z)] < pa. We require p; > p2 and r1 < r2. A family can
also be defined by giving a random process which outputs a function from H. LSH families
have been constructed for distances induced by ¢, norms for all p € (0,2] (Datar et al., 2004).

Technical Assumptions: We assume that % = O(poly(n)), i.e. the ratio of the

maximum to minimum distance is bounded by a polynomial in the number of points. Up to
scaling, we may also assume that 6(.5), the minimum distance, is 1.

3. Sparse Cluster Embeddings for Average Distance

In this section we present our embedding of clusters to points in Euclidean space such that
the distance between embedded points approximates the average £,-distance between clusters.
The embedding enables the algorithm to approximately calculate the average distance between

SCALING AVERAGE-LINKAGE VIA SPARSE CLUSTER EMBEDDINGS

any two clusters in O(d) time regardless of their sizes. Later in the discussion on algorithm
design, we will show how to use it to facilitate the search for clusters with small average
distances. We focus on the case when p = 2 and show the following theorem.

Theorem 1 Given a clustering C of S C R%, there is an embedding ¢ : C — RY into Eg/
with distortion a. We have d' = d + |C|, a = 5v/3 and ¢ is (d + 1)-sparse.

We give a formula which approximates the average-linkage between two clusters A and B.
The formula is written in terms of the distance between the centroids of A and B plus two
correction terms which only depend on A and B, respectively. This will be used to define
the embedding.

Squared Euclidean Distance: We first examine a simpler case to motivate our ideas. Sup-

llz—yl|*
z€AyeB |A[|B|*
The goal is to express the average-linkage between clusters A, B as the distance between
their centroids plus correction terms. Since ||u(A) — u(B)||? can potentially be small relative

to Avg(A, B) , we need the correction terms to capture the rough variance in each cluster.

_ 2 . .
For a finite set of points X define Var(X):=3%" _y %, resembling the definition of
“variance” in statistics. The next proposition is the formula whose proof can be found in

Appendix B in the supplementary material.

Proposition 2 For any clusters A and B, Avg(A, B) = ||u(A) — u(B)||* + Var(A) + Var(B).

pose that dissimilarities are given D(z,y) = ||z — y||?>. Thus Avg(A, B) =

Euclidean Distance: Now we consider dissimilarities given by the Euclidean distance
between points. Recall that Avg(A,B) =" . AyeB %. We would like a decomposition

similar to Proposition 2 expressing Avg(A, B) as the distance between centroids and some
correction terms.

Let Dev(X) := > cx w be the average deviation of X from its centroid. It is
perhaps intuitive that f(A, B) := ||u(A) — u(B)|| + Dev(A) 4+ Dev(B) should suffice based
on the results above. However, there are examples where f(A, B) # Avg(A, B)*. Instead,

we show that the two are always within a constant factor of each other.
Lemma 3 For any two clusters A and B we have Avg(A, B) < f(A,B) < 5Avg(A, B).

The lower bound Avg(A, B) < f(A, B) is a simple application of the triangle inequality.
To show the upper bound we must relate Dev(A) and Dev(B) to Avg(A, B). Recall that for

a cluster X, its geometric median gm(X) minimizes Ry (y) := ﬁ > zex |y — x||. The value

of Rx(y) is the average distance of points in X to y. We show that for any two clusters A, B,
both Ra(gm(A)) and Rp(gm(B)) lower bound Avg(A, B). Then we show that for any cluster
X, Dev(X) < 2Rx(gm(X)). Combining these two facts with ||u(A) — u(B)|| < Avg(A, B)
implies the upper bound. The full proof of this lemma is in Appendix B.

Constructing the Embedding: We now define the embedding and prove Theorem 1.
Let C = {C1,Cy,...,Ck} be a clustering of a point set S C R?. We define the embedding
¢ : C — Rl for each C; € C as follows.

$(Cy) == V3(u(Cy),0,..., Dev(C;) ,...,0) (2)

d+i’th coordinate

4. Consider the corners of a rectangle with width w and height h, letting A be the left side points and B
the right side points. Then Avg(A, B) = (w + vw? + h2)/2 # w+ h = f(A, B)

LAvASTIDA LU MOSELEY WANG

In other words we set the first d coordinates to be the centroid of C;, the d + i’th coordinate
to be Dev(C;) and all other coordinates to be 0. Observe that the embedding is oblivious,
meaning that computing ¢(C;) only depends on the cluster C; and none of the other clusters.
Given this embedding we have that the distance between the embedding of clusters C; and

Cj, 16(Ci) — #(Cy)|, is equal to

V3,/l11(Ci) = u(Cy)2 + Dev(Ci)? + Dev(C;)? (3)
To finish the proof, we use some easy to verify inequalities.

Proposition 4 For all a,b,c € R, we have: (1/v/3)(a+b+c) <Va2 +b2+2<a+b+c

Proof [Proof of Theorem 1| Let C = {C4,Cy,...,Ck} be a clustering of S and consider
the embedding ¢ : C — RIFICl defined by (2). The distance between embedded clusters
|6(Ci) — ¢(Cy)|| is given by (3). Combining this with the respective lower/upper bounds
from Proposition 4 and Lemma 3, we have: ||¢(C;) — &(C;)|| > f(Cs, Cj) > Avg(Cy, C;) and
16(Ci) — d(CH|| < V3f(Ci, Cj) < 5v3 Avg(Cy, C;). Finally, ¢ being (d + 1)-sparse follows
directly from (2). []

The main idea for the proof can be easily extended to work for general /,-norm where
p € [1, 00], where the distortion will be 5- 3=/, See Appendix B for complete arguments.

4. Near Cluster Search

In the section we consider the key subproblem solved in average-linkage to showcase the
cluster embedding idea. At each step, average-linkage finds the pair of cluster that are the
closest. We abstract this to the following near cluster search problem. The goal is to find
an approximately nearest cluster in a clustering C to a query cluster) with respect to the
average distance metric. This subproblem is of its own interest, because data scientists often
seek to find pairs of clusters that are very similar.

The naive approach for finding the cluster C' € C minimizing Avg(Q, C) requires O(d|Q)| -
>, 1Ci]) time. Our cluster embedding can be used to give an asymptotically faster but
approximate algorithm for this task, taking O(d(|Q] + >_,|Cil)) time.

Theorem 5 There exists a data structure supporting 5v/3 approzimate near cluster search
queries in time O(d(|C| +|Q])). Construction takes time O(d(|Q| +>_,;|Cil)).

Proof Let C' =CU{Q} and let ¢ be the embedding given by Theorem 1 for C’. Start by
computing ¢(C;) for each C; € C, taking time O(d), |Cj|). Note that ¢ is oblivious so this
step can be done without knowing (). The data structure stores the embedded points. To
answer a query @, compute ¢(Q) and then compute the distance from ¢(Q) to ¢(C;) for
each C; € C and return C; with the smallest embedded distance. Since ¢ has distortion 5v/3

the approximation guarantee follows. Since ¢ is (d + 1)-sparse, answering the query takes
time O(d|Q| + d|C|). [|

Theorem 5 speeds up near cluster search for any cluster @) enormously, as is shown
in Section 6. Further, coupling the embedding with ANN techniques allows us to query
Q@ in sublinear time, while only losing an additional constant factor in the approximation.

SCALING AVERAGE-LINKAGE VIA SPARSE CLUSTER EMBEDDINGS

We consider the LSH family H defined by Datar et al. (2004). When points are in /4 , i.e.
distances are given by the f2>-norm, a hash function h € H is constructed by the following
procedure. Let r > 0 be given. Sample a vector g € R?, where each g; is an i.i.d. standard
Gaussian, and a real number b uniformly from [0,7]. For a point € R?, its hash is
h(z) = |({g,z) + b)/r|. It’s known that this family of hash functions is (R, cR,p1,p2)-
sensitive for any ¢ > 1, where p1, po depend on c¢. These hash functions can be combined
using well-known techniques to amplify collision probabilities and increase accuracy. See
Datar et al. (2004) for details. Here we summarize this result.

Definition 6 (ANN Query Datar et al. (2004)) Let S be a set of points and D a dis-
tance function on S. Given a new point q, the query either returns a point y with D(q,y) < cR
or reports that there is no point y' with D(q,y') < R.

Theorem 7 (Theorem 1 in Datar et al. (2004)) LetH be a (R, cR, p1,p2)-sensitive fam-
iy of hash functions for distance function D. Given a set S of n points there exists an
algorithm which constructs a data structure L by sampling multiple times from H which
supports (R,c)-ANN queries. The time to construct L and to answer a query from L is
dominated by O(n””) distance computations and O(np) distance computations, respectively.

Inl/p1
In1/po

Here p = € (0,1) depends on c. The bigger c is, the closer p is to 0.

Using this, we can construct the point set S’ consisting of the embedded points ¢(C;) for
all C; € C. We apply the above to obtain a data structure L supporting efficient approximate
near neighbor search queries in the embedded space. The sparse nature of the embedding
also implies that L can be computed very efficiently in practice. When given query @, we
compute ¢(Q) and then apply the algorithm from Theorem 7 to process the query. We get
the following result.

Theorem 8 For any constant € > 0, there exists a data structure which supports 5v/3c-
approximate near cluster search queries in time O(d(|C|? 4+ |Q|)). Constructing the data
structure takes time O(d(Y,; |Ci| + |C|*T?)). Here p € (0,1) is a constant depending on c.

5. Fast Approximate Average-Linkage

The main application of our cluster embedding is to get fast approximate algorithms for
average-linkage. In this section we give the main structure for our fast implementation of
average-linkage that highlights the key ideas. The idea is to embed the current set of clusters
into points and then partition the embedded points into buckets (sets) using LSH. The
number of buckets is not fixed. We can use the hash family described in Section 4 for this.

Say we want to merge all pairs of clusters with average distance approximately §. The
algorithm draws hash function h randomly from H, where H is the LSH family given in
Datar et al. (2004), and applies it to ¢(A) for each cluster A € C. Let the i’th bucket be
B; ={A € C | h(A) = i}°. Suppose bucket B; is small: |B;| < O(n”) for some p € (0,1).
We run vanilla average-linkage inside B; to the point where there is no pair of clusters with
average distance smaller than (1 4 €)0. Here we crucially treat each cluster in a bucket
B, as a single point via the cluster embedding, which allows us to replace computing the
average-linkage between pairs of clusters with a distance computation in the embedding.

5. We use h(A) as a shorthand for h(¢(A)) since we will always be implicitly working in the embedded space

LAvASTIDA LU MOSELEY WANG

This takes O(dn??) time. Moreover, assuming all buckets are small, the cost over all buckets
is O(dn'*?). We call this the “local merging” step.

Once all buckets have completed their “local merging” step, the algorithm repeats the
above steps with the given value of § for O(logn) iterations. Provably, no two clusters will
have average-linkage < (1 + €)¢ with high probability. At this point the algorithm recurses
with § <— (14 €)d. The number of such iterations is bounded by the number of §’s considered
between the minimum and maximum possible distances, which is O(logn) by our technical
assumption. See Algorithm 1 for pseudocode. Given the above discussion, we see that the
running time should be O(dn!*?), near linear time for small constant p.

Algorithm 1 Fast Approximate Average-Linkage Algorithm

1: FastAverageLinkage(S, a, €)

2: C + {{z} | x € S} {Make leaf clusters}
3: for k=1,2,...,0(logn) do

4: 0 — (1 + E)kfl

5 Ctinal < 0 {Tracks clusters that won’t get merged again for this value of 6}
6: fort=1,2,...,0(logn) do

7: h < random hash function from H

8: Compute h(A) for each A € C

9: Let B, ={Ae€C|h(A) =i}

10: if |B;| < O(n”) for all i then

11: for each B; do

12: Run vanilla average-linkage on B; until no merges w/ average-linkage < a(1+€)d
13: end for

14: Update the embeddings

15: else

16: C, Cfmal — RobustMerging(C, Cfinal; d, o, 6)

17: end if

18: end for

19: C + Cfmal

20: end for

21: Return the resulting tree

There are two unaddressed challenges. First, what should be done when there are buckets
B; with |B;| > n”. Second, maintaining the embedding can be expensive if done in a naive
manner. We briefly address these challenges here, but note that a variant of the above
procedure works in experimentation.

Challenge 1 - Large Buckets: In the worst case, it is possible that LSH can produce
buckets of size larger than n”, resulting in a poor running time for the local merges. Notably,
empirically most buckets have small sizes after LSH. For the few buckets whose sizes are
large, we use a more robust merging procedure that uses the ANN search method mentioned
in Section 4. This procedure is described in Appendix A. For any cluster, this technique only

checks O(n”) clusters that got hashed into the same bucket and gives theoretical performance
guarantees.

Challenge 2 - Updating the Embedding: If one wants to update the embedding after
a single merge, this requires computing the distance of each point to the new centroid. This
is potentially a complex and expensive operation we wish to avoid. To do so we carefully
make additional merges before updating the embedding and applying LSH again. This is

SCALING AVERAGE-LINKAGE VIA SPARSE CLUSTER EMBEDDINGS

Blog Shuttle Covertype Higgs (L) Susy (L)

k Embed Base Embed Base Embed Base Embed Base Embed Base
128 [0.17£0.003 25.1 +£28.2[0.09+0.002 34.2+44.7| 0.11£0.001 32.5%£9.1|0.11+0.001 22.3£5.4[0.10+£0.001 24.5+10.5
256 0.174£0.002 9.5+9.7 |0.0940.001 18.64+17.8| 0.11+£0.002 10.54+4.5[0.114+0.001 11.542.2(0.10£0.002 11.2+4.2
512 [0.17+0.005 14.24+33.4 [0.094+0.002 6.3+6.9 | 0.12£0.004 6.3+£2.4 |0.114+0.002 4.84+1.9 [0.104+0.002 4.943.3
1024 | 0.184+0.01 3.24+3.4 [0.09£0.002 2.0+1.8 [0.124+ 0.002 2.941.2 |0.12£0.002 3.3£0.7 |0.11+£0.002 2.941.0
2048| 0.18+0.02 1.8£2.8 |0.11+£0.012 0.7940.5 | 0.134+0.02 1.34+0.6 | 0.13+0.01 1.44+0.5 |0.11£0.002 1.0+0.6
4096 | 0.19+0.003 0.82+0.3 | 0.12+0.01 0.45+0.21| 0.14+0.003 0.62+0.3| 0.15+0.01 0.53+0.2|0.134+0.002 0.52+0.4

Table 1: Run time results for Near Cluster Search in seconds. We report the results as u + o,
where 1 is the average run time at each value of k£ and ¢ is the standard deviation. Note
that our technique consistently has a small run time with minuscule variance compared to
the highly variable baseline.

Approx. Embedding Blog Blog Shuttle Shuttle

Dataset ratio ratio Algorithm | 50760 59397 39768 43500
Shuttlo 1.003 1072 SCipy 2176 732.43 12527 307.43
Blog 1.009 1.053 sklearn 247.88 754.16 127.55 305.45
Covertype 1.022 1.059 fastcluster 245.49 689.19 96.43 228.02
Susy (L) | 1.019 1.032 Our method | 129.88 205.70 48.98 78.76
Higgs (L) | 1.012 1.016

Table 3: Run time results for average-linkage
Table 2: Approximation Results for clustering. Each column is labeled by the data
Cluster Search. Note that these ratios set and input size considered. Our algorithm
tend to be very close to 1, indicating the consistently sees a speed-up at moderate input
accuracy of our algorithm. sizes over all baselines tested.

done to ensure that enough clusters have been involved in a merge so that the total cost due
to updating the embedding is small. The robust merging procedure alluded to in Algorithm 1
is also designed to handle this. See Appendix A for details. In practice, we use reservoir
sampling to reduce the cost of updating the embedding by approximating it using a set of
O(log n) samples maintained during the merges.

6. Experiments

We evaluate the performance of the cluster embedding for two applications: near cluster

search and average-linkage hierarchical clustering. The goal is to establish the following:

e Our algorithms which use cluster embeddings are scalable for both applications. Their
running time drastically outperforms standard implementations on large data sets.

e The running time of our average linkage implementation is only slightly super-linear in
the input size.

e Distances in the embedding closely approximate the average distance for all data sets.

e Our algorithm for near cluster search returns a cluster with approximately the smallest
average distance. In fact, it returns the exact best cluster at least 90% of the time.

e Our average-linkage hierarchical clustering algorithm closely approximates the standard
average-linkage algorithm. The vast majority of the merges made by the algorithm have
average distances below a factor 1.5 of the minimum average distance between clusters.

e The objective value of trees produced by our new average-linkage algorithm has negligible
loss compared to baseline algorithms.

Experiment Specifications: We implemented our algorithms in Python and used 3 baseline
implementations of average linkage available in the SciPy, Scikit-Learn, and Fastclustering
libraries. Experiments utilized Google Cloud Platform virtual machines (VMs), specifically
nl-highmem-4 type VMs, each with 4 virtual CPUs and 26 GB of memory.

LAvASTIDA LU MOSELEY WANG

We further compare to the work of Abboud et al. (2019). For this comparison, we used
the ¢1-norm distance, a requirement of their algorithm. Our method and the baselines were
superior in all experiments. While their algorithm has near linear run time like ours, their
method runs in time O(E%an log®n). The E% log® n factor makes this algorithm slow in
practice. See Table 10 in Appendix C.

Datasets: We use datasets from the UCI ML repository Lichman (2013) : Shuttle, Blog,
Covertype, Susy, and Higgs. Number of dimensions range from 8 to 281. Datasets are
listed in Table 4. Some datasets contained extra features which are a function of the other
features. These were preprocessed to create two datasets: “Large” (L) with all features and
"Small" (S) without the extra features. If the dataset contained a class column for supervised
learning, that column was removed. Euclidean distance was used as the dissimilarity between
datapoints.

Implementation Details: For near
cluster search, we implemented the algo-

rithm based on Theorem 5. Our imple- D Number Number Pre-

i ; is simi ataset | of Points of Feat d?
mentation of average-linkage is similar of Yoints of Features processed!
to Algorithm 1 but include a few minor Shuttle 43500 8 N

.) Blog 600021 281 N

changes for practical efficiency. Covertype 531012 54 v
Merging procedure for large buckets: in Susy (L/S) | 5000000 18/8 Y
Higgs (L/S) | 11000000 28/21 Y

practice, if the partition induced by a
round of LSH has a large bucket with
more than /n points, we split it into Table 4: Data sets tested
several small buckets of size at most /n.

Then we run average linkage within each

small bucket.

Reservoir sampling to approzimate deviation terms: we estimate the deviation Dev(A) term
in the embedding ¢(A) by sampling a small set of points uniformly from the points in this
cluster: if z is a uniformly random point from A, then E[||z — p(A)||] = Dev(A). A set of
©(log n) samples is maintained for every cluster, and updated using reservoir sampling when
merging two clusters. This makes it easy maintain estimates of the deviation term.

Covertype Covertype Higgs (L) Higgs (L) Higgs (S) Susy (L) Susy (L) Susy (S)
65536 262144 65536 262144 65536 65536 262144 65536
584.06 - 667.10 - 673.86 649.74 - 610.90
465.15 3220.69 233.80 1684.17 230.89 112.87 799.91 63.82

Algorithm ‘

fastcluster
our method

Table 5: Running time results in seconds for average-linkage clustering. Columns indicate
data set and input size considered. Missing entries indicate a failure due to a memory error
on this input size. All other baseline algorithms fail on these large sizes.

Near Cluster Search: To test our near cluster search algorithm we considered the following
setup. First, for each dataset we constructed a clustering using a subsample 50k points®. To
get a collection of clusters and a query, we ran (k + 1)-means and took one of the clusters to
be the query cluster @) and the remaining k clusters to be the clustering C. For our algorithm
we measured running time of constructing the embedding plus answering the query. This is
compared with the running time of the baseline method which answers a query by computing
the average distance of () to each cluster. We compared the quality of the cluster returned
by our algorithm to the cluster returned by the baseline algorithm. Finally, we compared

6. The Shuttle dataset was used in its entirety as it has less than 50k points

SCALING AVERAGE-LINKAGE VIA SPARSE CLUSTER EMBEDDINGS

Data Set | Average 95-percentile Max
Shuttle 1.079 1.268 1.894
Blog 1.070 1.238 2.515
Covertype | 1.081 1.330 3.535
Susy (L) 1.143 1.481 2.698
Susy (S) 1.132 1.444 2.465
Higgs (L) 1.194 1.652 8.260
Higgs (S) 1.188 1.632 9.859

Table 6: Embedding ratio stats, with Dev(-) approximated with reservoir sampling, at sample

size 16384
Data Sizes 64 128 256 512 1024 2048 4096 8192 16384 32768 43500

Shuttle 99.79 99.61 99.78 99.67 99.63 99.76 99.81 99.79 99.62 99.67 99.79
Blog 92.74 95.72 95.84 96.96 97.88 9832 99.19 99.28 99.59 99.74
Covertype | 89.67 89.95 92.58 94.52 95.56 96.72 97.65 98.63 99.48 99.57
Susy (L) | 98.98 98.92 99.26 99.11 98.46 98.47 98.56 98.56 98.32 98.08

e T T T T T

Susy (S) | 98.81 99.23 99.26 98.80 99.00 98.65 98.69 98.41 98.56 98.41
Higgs (L) | 98.61 98.36 98.32 97.67 97.69 97.78 97.65 97.75 9721 97.37
Higgs (S) | 98.21 97.99 98.18 98.04 98.00 97.91 9757 97.56 97.73 97.48

Table 7: Mean objective approximation ratio of average-linkage, in percentage

the embedded distance of the returned cluster to the true average distance. The parameter
k was ranged in powers of 2 from 128 to 4096, and 10 trials were done for each value of k.

The running times of cluster search are in Table 1. Our algorithm utilizing the embedding
outperforms the baseline method in both average run time and variance. The run time of
the naive method varies drastically across different instances, being quadratically dependent
on the size of the query cluster and the number of points. Our method has very stable run
times, consistent with the theoretical justification, as the run time only depends linearly on
the size of the query cluster and the number of given clusters.

We display the accuracy of our near cluster search algorithm in Table 2. Here, Approx.

ratio refers to the ratio of the average-linkage distance of the returned cluster for each query
to that of the actual closest cluster. Embedding ratio is the ratio, for the returned cluster,
of its distance from the query cluster in the embedding compared to their actual average
distance. We report the worst such ratio encountered in all instances we tested. Our method
has an error rate of about 2% for all data sets, and we observe less than 10% difference in
the embedded distances. Near cluster search with the embedding yields very accurate results,
much better than the theoretical bounds.
Average-linkage Hierarchical Clustering: Running time wise, our average-linkage
algorithm is faster than all the baseline algorithms on large datasets. See Tables 3 and 5 for
details. All baseline algorithms also begin to fail once sizes reach 32k to 64k points due to
memory requirements. Recall that they require Q(n?) memory for memoization, whereas we
need slightly super-linear memory.

Figure 1 compares the growth rate of running time versus input size for our implementation
and the three baselines. Both running time and input size are plotted on a logarithmic scale.
Notice that any polynomial function y = cz” becomes a linear function on the log-log plot,
thus the slope of a curve equals the exponent p. Our algorithm has a slope that is close to 1,
showing it to have near linear running time. The three baselines share a similar growth rate.

LAvASTIDA LU MOSELEY WANG

95th o
Dataset Mean percentile Max Dataset Mean per9C5e . Max
Sgllf)ﬂe }'882 %ggé }'?gg Shuttle | L.I3 1.33 1.58
& : ' ' Blog 1.30 1.85 412
Covertype | 1.008 1.032 1.101 C R 156 919 365
Susy (L) | 1.005 1.019 1.088 overtype |- - ' :
Susy (L) | 1.28 1.61 2.02
Susy (S) | 1.006 1.020 1.075
. Susy (S) 1.25 1.52 1.87
Higgs (L) | 1.003 ~ 1.012 1.058 .
Higgs (S) | 1.003 1.012 1.077 Higgs (L) | 133 165 201
Higgs (S) | 1.34 1.66 1.99

Table 8: Embedding ratio stats using

true Dev(-) term at size 16384 Table 9: Closeness ratio stats, size 1024

The curve “FastCluster Regression Model” is a linear regression fitted to the running times
of FastCluster, the fastest of the baselines. We report the fitted slope to be near 2, showing
all three baselines to have quadratic running time. Figure 1 focused on Susy (L) but the
results are similar for all datasets.

Running Time Comparison, SusylLarge

Time (seconds)

—+— Fastcluster Regression Model
—4— ¢=0.1, rounds = 9

~—4— SciPy

—4— Scikit-Learn

—4— Fastcluster

o AN At p
Input Size

Figure 1: Comparison of how running time grows with input size, both axis in log scale, on
data set Susy(L)

The embedding gives very accurate estimates of the average distance between clusters.
See Table 8 for detailed statistics on the embedding ratio. Further, Table 6 shows negligible
loss in using sampling to approximate the deviation term in the cluster embedding (2).

Closeness ratio: to test accuracy, in each step of the algorithm, we measure how well
the merge our algorithm makes approximate the current minimum average-linkage. The
approximation ratio is the ratio of the average distance of the chosen pair of clusters to the
minimum average distance. To measure this, we find the minimum average distance ¢* only
at the start of each round of LSH. Then, for each merge of A and B in this round we compute
Avg(A, B)/o0*, giving an upper bound on the approximation ratio, named the closeness ratio.

Table 9 includes more detailed statistics on all subsamples of size 1024. The merges
picked by our algorithm are close to the minimum.

We compare our implementation and the standard implementation of average-linkage
on the objective in Cohen-addad et al. (2019). See Table 7. We observe a negligible loss in
overall tree quality compared to vanilla average-linkage.

SCALING AVERAGE-LINKAGE VIA SPARSE CLUSTER EMBEDDINGS

7. Conclusions and Future Work

This paper introduces a sparse cluster embedding that approximately preserves the average
distance between clusters. The embedding can be computed in linear time and, after the
embedding, pairwise average cluster distances can be computed in O(d) time.

The embedding enables a sub-quadratic average-linkage algorithm. In experiments, the
algorithm scales better than current popular implementations of average-linkage.

An interesting direction for future work is to explore cluster embeddings further and
determine whether they can be leveraged in other data mining tasks.

References

Amir Abboud, Vincent Cohen-Addad, and Hussein Houdrouge. Subquadratic high-
dimensional hierarchical clustering. In NeurIPS, pages 11576-11586, 2019.

A. Andoni, A. Nikolov, K. Onak, and G. Yaroslavtsev. Parallel algorithms for geometric
graph problems. In STOC, 2014.

MohammadHossein Bateni, Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Haji-
aghayi, Raimondas Kiveris, Silvio Lattanzi, and Vahab S. Mirrokni. Affinity clustering:
Hierarchical clustering at scale. In NeurlPS, 2017.

Moses Charikar and Vaggos Chatziafratis. Approximate hierarchical clustering via sparsest
cut and spreading metrics. In SODA, 2017.

Moses Charikar, Vaggos Chatziafratis, and Rad Niazadeh. Hierarchical clustering better
than average-linkage. In SODA, 2019a.

Moses Charikar, Vaggos Chatziafratis, Rad Niazadeh, and Grigory Yaroslavtsev. Hierarchical
clustering for euclidean data. In AISTATS, 2019b.

Michael Cochez and Ferrante Neri. Scalable hierarchical clustering: Twister tries with a
posteriori trie elimination. In SSCI, pages 756-763, 2015.

Vincent Cohen-addad, Varun Kanade, Frederik Mallmann-trenn, and Claire Mathieu. Hier-
archical clustering: Objective functions and algorithms. J. ACM, 66(4), 2019.

Sanjoy Dasgupta. A cost function for similarity-based hierarchical clustering. In STOC;
2016.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-sensitive
hashing scheme based on p-stable distributions. In Proceedings of the 20th ACM Symposium
on Computational Geometry, Brooklyn, New York, USA, June 8-11, 2004, pages 253262,
2004. doi: 10.1145/997817.997857. URL http://doi.acm.org/10.1145/997817.997857.

Jacob E. Goodman and Joseph O’Rourke, editors. Handbook of Discrete and Computational
Geometry. CRC Press, Inc., USA, 1997. ISBN 0849385245.

Google Cloud Platform. https://cloud.google.com/.

Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. Cure: An efficient clustering algorithm
for large databases. Inf. Syst., 26(1):35-58, 2001. doi: 10.1016,/S0306-4379(01)00008-4.
URL https://doi.org/10.1016/30306-4379(01)00008-4.

http://doi.acm.org/10.1145/997817.997857
https://cloud.google.com/
https://doi.org/10.1016/S0306-4379(01)00008-4

LAvASTIDA LU MOSELEY WANG

P. Indyk. Algorithmic applications of low-distortion geometric embeddings. In FOCS, 2001.

Chen Jin, Zhengzhang Chen, William Hendrix, Ankit Agrawal, and Alok N. Choudhary.
Incremental, distributed single-linkage hierarchical clustering algorithm using mapreduce.
In HPC, 2015a.

Chen Jin, Ruogian Liu, Zhengzhang Chen, William Hendrix, Ankit Agrawal, and Alok N.
Choudhary. A scalable hierarchical clustering algorithm using spark. In Big Data Computing
Service and Applications, 2015b.

Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools for
Python, 2001-. URL http://www.scipy.org/. [Online].

Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation for
mapreduce. In SODA, 2010.

Meelis Kull and Jaak Vilo. Fast approximate hierarchical clustering using similarity heuristics.
BioData Mining, 1, 2008. doi: 10.1186/1756-0381-1-9.

Silvio Lattanzi, Thomas Lavastida, Kefu Lu, and Benjamin Moseley. A framework for
parallelizing hierarchical clustering methods. In ECML, 2019.

M. Lichman. UCI ml repository, 2013. URL http://archive.ics.uci.edu/ml.

X. Meng, J. Bradley, B. Yavuz, Evan Sparks, S. Venkataraman, D. Liu, J. Freeman, D. Tsai,
M. Amde, S. Owen, D. Xin, R. Xin, M. Franklin, R. Zadeh, M. Zaharia, and A. Talwalkar.
Mllib: Machine learning in apache spark. J. Mach. Learn. Res., 17(1):1235-1241, January
2016. ISSN 1532-4435.

A. Krishna Menon, A. Rajagopalan, B. Sumengen, G. Citovsky, Q. Cao, and S. Kumar.
Online hierarchical clustering approximations. CoRR, abs/1909.09667, 2019.

N. Monath, A. Kobren, A. Krishnamurthy, M. R. Glass, and A. McCallum. Scalable
hierarchical clustering with tree grafting. In SIGKDD, 2019.

Daniel Mullner. fastcluster: Fast hierarchical, agglomerative clustering routines for r and
python. Journal of Statistical Software, 53(9), 2013.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825-2830, 2011.

Aurko Roy and Sebastian Pokutta. Hierarchical clustering via spreading metrics. J. Mach.
Learn. Res., 18:88:1-88:35, 2017. URL http://jmlr.org/papers/v18/17-081 . html.

Joshua Wang and Benjamin Moseley. Approximation bounds for hierarchical clustering:
Average-linkage, bisecting k-means, and local search. In NIPS, 2017.

Rui Xu and Donald C. Wunsch. Survey of clustering algorithms. IEEE Trans. Neural
Networks, 16(3):645-678, 2005. doi: 10.1109/TNN.2005.845141. URL https://doi.org/
10.1109/TNN.2005.845141.

Grigory Yaroslavtsev and Adithya Vadapalli. Massively parallel algorithms and hardness for
single-linkage clustering under lp distances. In ICML, 2018.

http://www.scipy.org/
http://archive.ics.uci.edu/ml
http://jmlr.org/papers/v18/17-081.html
https://doi.org/10.1109/TNN.2005.845141
https://doi.org/10.1109/TNN.2005.845141

SCALING AVERAGE-LINKAGE VIA SPARSE CLUSTER EMBEDDINGS

Appendix
Appendix A. Analysis of Fast Average-Linkage

In this section we show the robust merging procedure referred to in Algorithm 1 and the
algorithm analysis. The purpose of this algorithm and analysis is to extend the algorithm
in Section 5 to ensure that the algorithm runs in near-linear time in the worst-case and
approximates average-linkage.

In Algorithm 2, a = 5v/3 is the distortion factor in Theorem 1. The goal of this section
is to show the following theorem.

Theorem 9 With high probability, Algorithm 1 along with Algorithm 2 is O(1)-approzimate
for average-linkage and runs in time O(dn'*?) for some constant p € (0,1).

The following lemma will be quite useful in the analysis and will guide the development
of the merging procedure. The proof is easy and follows from a simple averaging argument.

Lemma 10 For a cluster A, if Avg(A, B) > § and Avg(A,C) > 9, then Avg(A,BUC) > 6.

In other words this lemma states that if after some merge the minimum average distance
between clusters is at least §, we are guaranteed that it will not fall below § during any
future merges. Intuitively, we want to merge clusters an increase ¢ over time. This lemma
ensures that we do not undo progress.

A.1. The Robust Merging Procedure

Recall that one of the main challenges discussed is that LSH may produce large buckets. To
handle this, we employ the Approximate Near Neighbor (ANN) search technique from Datar
et al. (2004). Recall Definition 6 and Theorem 7 from earlier in the paper. We will use these
tools in our analysis.

The robust merging procedure leverages (R, ¢)-ANN queries in the following way. First,
we embed the clusters into points. By Theorem 1, this preserves the average-linkage up to
the constant distortion factor c. We then build the data structure referenced above and use
it to query every cluster.

The robust merging procedure is given in Algorithm 2. This can be described as follows.
We say two clusters are “neighbors”, if querying one of them returns the other. For each
A € C, let Q(A) denote the set of its neighbor clusters. If Q(A) = (), with high probability A
has average distance of at least (1 + €)d from any other cluster. We remove A from C and
add it to Cingi. Otherwise, if set Q(A) has valid clusters that are not yet merged with any
other cluster, we iteratively merge A with these clusters in any arbitrary order. However, if
set Q(A) is non-empty but all clusters are already merged with their other neighbors, we
pick any neighbor from Q(A) and merge A with the current cluster containing it.

We give intuition for why the algorithm is approximate and has good running time. The
formal proof is given in the next section.

Intuition for Proving the Algorithm is Approximate: The following lemma asserts
that every merge done by Algorithm 2 is approximate. Intuitively, this is true because all
the clusters that are merged into one in Algorithm 2 would have a common "center" cluster
that is close to all of them.

Lemma 11 FEvery cluster A € C such that Q(A) is non-empty is merged with some other
clusters, and every merge done by Algorithm 2 has average distance at most 4ca(1l + €)0.

LAvASTIDA LU MOSELEY WANG

Algorithm 2 Pseudocode for Robust Merging Procedure

L + (a(l + €)d,c)-ANN data structure from Theorem 7 {Construct it for point set
[6(4) | A e c))
for AeC do
Q(A) < 0 {Will be set of discovered “neighbors” of A}
end for
for A€ C do
B «+ result of querying ¢(A) in L
if B is a cluster then
Q(B) « Q(B) U{A}, Q(4) « Q(4) U {B}
end if
end for
for A € C such that Q(A) =0 do
Drop A from C and add it to Cyinqe. Delete ¢(A) from L. {A won’t be considered for
merging again at the current ¢}
end for
for A € C such that Q(A) is not empty do
if Q(A) has clusters that are not yet merged with any other cluster then
Merge all unmerged clusters in Q(A) U {A} with A in any order
else
Let B be arbitrary cluster in Q(A)
Merge A with the cluster containing B
end if
end for
Remove all the invalid clusters from C and add all the new clusters into C
Return C, Cyinal

Proof In any iteration of robust merging, a cluster A, if not merged with other clusters yet,
is merged with its unmerged neighbors in Q(A), or it gets added to a set of clusters which
are already merged. We call the first type of cluster “core” clusters.

Pick any core cluster A in C at the beginning of Algorithm 2. Any other cluster in C,
if not put into Cy;pq;, must be merged with one such cluster. We show that by the end of
robust merging, for every cluster B that is merged with core A, Avg(A, B) < 2ca(l + €)d.

Pick any cluster B that is in the same cluster with A at the end of Algorithm 2. By Theo-
rem 1, we have Avg(A, B) < ||¢(A)—¢(B)||. If B € Q(A), we have ||¢p(A)—¢(B)|| < ca(l+e€)d
since B is returned by doing (a(14€)d, ¢)-NN query on A. Otherwise, it must be the case that
some other cluster C' € Q(B) is in the same cluster as A. If C' ¢ Q(A), when robust merging
comes to C, it would have merged C' with B since B € Q(C') and B hasn’t been merged with
any cluster yet, contradicting the assumption that B is merged with A. Therefore C' € Q(A),
and Avg(4, B) < [|¢(A) — ¢(B)]| < [[¢(A) = o(C)]| + [[¢(C) — ¢(B)|| < 2ca(l+€)s. Now by
triangle inequality any two clusters marked with A has average-linkage at most 4ca(1 + €)J.
|

This is the key lemma to show that the algorithm is approximate. It highlights the reason
the algorithm is correct. To complete the analysis one has to show that the minimum average
distance is close to § this will be done in the next sections.

SCALING AVERAGE-LINKAGE VIA SPARSE CLUSTER EMBEDDINGS

Intuition for Proving the Algorithm has Efficient Run Time: The goal is to show
that in every round of robust merging makes reasonable progress. In particular, in the total
number of clusters remaining in C shrinks by a constant factor. For fixed J, every time robust
merging is executed, any cluster in C is either put into Cy;yq or merged with another cluster.
Therefore, |C| shrinks by at least 4. Thus for the same threshold 4, after ©(logn) rounds
of robust merging there will be no pairs of (A, B) such that Avg(A, B) < (1 + €)d. This is
formalized in the next section.

A.2. Running Time Analysis for Algorithm

We now complete the analysis of Algorithm 1. We start by analyzing the run time. First
we give a lemma showing there exists an estimation f(A, B) ~ Avg(A, B) update formula
which preserves the approximation ratio for Avg(A, B).

Lemma 12 Let f(A, B) be estimates such that Avg(A, B) < f(A,B) < aAvg(A, B) for

all A,B € C. Suppose we merge A, A" € C and set f(AU A',B) = |A||+‘A,|f(A B) +

|A|“AF\!A/|f(AI B), then Avg(A U A/vB) < f(AuU AlaB) < aAVg(A u A, B) for all B €

C\{4,A"}.

Lemma 12 follows easily by an averaging argument using Avg(AUA’, B) = Al Avg(A.B)+HA'| Avg(AB)

[A[+[A']
This implies that we can simulate vanilla average-linkage within each bucket in Algorithm 1,

using the update formula given in this lemma to simulate the updates in average—linkage.
Combining this with current average-linkage implementations, we can approximately simulate
the vanilla average linkage algorithm in bucket B; in time O(|B;|?), until there are no pairs
of clusters (A, B) such that f(A, B) < a(1 + €)d. Thus, there are no pairs of (A4, B) such
that Avg(A, B) < (1 + €)d.

We will now show the run time.
Theorem 13 Algorithm 1 has a run time of O(dn**?) for some constant p € (0, 1).

Proof Let p = In(1/p1)/In(1/p2) € (0,1), where p1,ps are the probabilities for the LSH
family in Datar et al. (2004). Note that it is possible to take pi,ps as constants. Since the
O(-) notation hides factors of O(log(n)), it suffices to analyze the cost of the work done in
the innermost loop. This is because by definition of the algorithm, the steps in the innermost
loop are repeated at most O(log2 n) times. We first show that trivially, the time spent on
updating the embedding ¢(-) is O(n). This comes from the fact that updating centroid takes
O(1) time every merge, and there are n — 1 merges in total. For deviation term, we do log?(n)
rounds of merging. During every round of merging, every point in the original cluster S is
calculated in the deviation terms only once, thus giving O(n) time spent on updating. Thus
we want to bound the cost of running a vanilla algorithm on each bucket when all bucket
sizes are bounded by O(n”) and the cost of running the robust merging procedure.

Suppose that we have buckets B; with |B;| < O(n?) for all i. Note that >, |B;| = |C|
since the buckets partition the current set of clusters Then by Lemma 12 running a vanilla
average-linkage algorithm on each bucket costs at most O(|B;|?) per bucket. Thus the overall
run time cost is O(Y; |Bi|?) = O(n” Y, |Bi|) = O(n*|C|) = O(n'*?) since |C| < n.

Now consider the cost of running the robust merging procedure. By Theorems 1 and 7
the data structure L can be constructed in time O(|C|**?) = O(n!*?). Again by Theorem 7,
querying each cluster takes time O(|C|**?) = O(n'*?) distance computations in total. Finally,

LAvASTIDA LU MOSELEY WANG

the merging step takes time O(|C]) = O(n), yielding an overall cost of O(n!*?) for the robust
merging procedure.]

A.3. Approximation and Correctness

Now we move to analyzing the correctness of our algorithm. This encompasses two different
claims, one concerning how well the algorithm approximates average-linkage and another
showing that the algorithm always produces a valid hierarchical clustering tree. The second
claim is important since it is not immediately obvious from the definition of Algorithm 1.
In particular we need to show that the algorithm will perform enough merges and does not
terminate before a tree is completed. The following theorems formalize these claims.

Theorem 14 Assuming the minimum pairwise distance to be lower-bounded by 1, Algorithm 1
is O(1)-approximate for average-linkage with high probability.

Theorem 15 With high probability, Algorithm 1 returns a valid hierarchical clustering tree
upon termination.

Theorem 14 establishes the fact that Algorithm 1 is an O(1)-approximation for average-
linkage. Note that Lemma 11 only establishes this for the robust merging procedure, so
to complete this analysis we need to look at Algorithm 1, which uses the robust merging
procedure. The proof of Theorem 15 is also tied to the proof of Theorem 14, so we will do
the analysis for both here.

To prove the above theorems we make use of the following key lemmas. These guarantee
that for each threshold value §, by the end of the O(logn) rounds of merging, there are
no good pairs left to merge for the current threshold, and every merge we do has average
distance close to (1 + €)d.

Lemma 16 For threshold 0 after merging with high probability, there are no pair of clusters
with distance at most (1 + €)d left.

Lemma 17 For a threshold value §, every merge done by Algorithm 1 has average distance
at most 4ea(1 + €)0.

Before proving Lemmas 16 and 17, we first show that they directly give us Theorems 14
and 15. To simplify the language in our arguments, we define (1 + €)d-good clusters as
follows.

Definition 18 During any stage of Algorithm 1, a cluster is called (1 4 €)d-good, if there
exists one cluster in the current clustering with average distance at most (1 + €)o. We say a
pair is (1 + €)d-good if the average distance is at most (1 + ¢€)d.

Notice that with the definition of (1 + €)d-goodness, Lemma 16 is equivalent to claiming
that by the end of merging there are no (1 + €)d-good points left, or no (1 + €)d-good pairs
left. We are now ready to prove the theorems.

Proof of [Theorem 14 and Theorem 15| For Theorem 14, given any threshold ¢, take any
merge (A, B) — AUB done in any round for §, by Lemma 17 we have Avg(A, B) < 4ca(l+€)é.
However, mingg, g,3cc Avg(S1,S52) < § by Lemma 16, since all LSH rounds for threshold

SCALING AVERAGE-LINKAGE VIA SPARSE CLUSTER EMBEDDINGS

value §/(1 + €) are over. Therefore, the approximation ratio is at most 4ca(1 + €) for all
merges.

For Theorem 15, since with high probability it eliminates all (1 + €)d-good points for
threshold §, and within O(logn) number of thresholds we have investigated all the possible
average-distance values since it must be at most maxy; jycg D(i, j) and therefore merged all
the pairs. O

Now we prove Lemmas 16 and 17. The proof of Lemma 17 is a simple application of
Lemma 11 combined with the fact that the algorithm does average-linkage on the embedded
clusters until the minimum average distance reaches the threshold a(1 + €)d. So in both
robust merging and average-linkage merging, the pairs we merge are always 4ca(1 + €)d-good.
The rest of this section will be devoted to proving Lemma 16.

In each big WHILE loop of LSH, Algorithm 1 can go to vanilla average-linkage if all
buckets are small, and to RobustMerging if we have at least one big bucket. For any round
of LSH, we have the following lemma.

Lemma 19 FEvery round of LSH that ends up with doing average-linkage within each bucket
has at least constant probability py of reducing the number of (14 €)d-good pairs by a constant

of B and py > 5p1.

Proof
Let’s focus on one round of LSH, suppose that before LSH we have N number of (14 ¢€)d-
good pairs. Regardless of whether average-linkage or RobustMerging takes place after LSH,
we use Fj to denote the event, where at least %N (1 4 €)d-good pairs collide. Let peoride
be the probability of this occurring. Let Ngyige denote the number of (1 + €)d-good pairs
that collide during the LSH. Since every good pair has probability at least p; of colliding, we
have E[Ncoiiide] = p1 - N by linearity of expectation. So
p

1
N + Deollide * N

p1 - N < E[Neoitide) < (1 — Deottide) - 10

P1
< TON +pcollideN
This yields peoiide = %pl. Note that the event Ey happens with probability at least peoide ,
independent of the location of the points and the merges we have done before. |

We have established the fact that every single round of LSH has some constant probability
po of getting a constant portion of good pairs to collide. Here we quote a version of Chernoff’s

bound:

Theorem 20 (Lower Chernoff Bound) Let X, Xs,..., X, be a collection of independent
Bernoulli RV’s with Pr[X; = 1] = p;. Let X = > . X; and p = Y, E[X;]. Then for all

6 € (0,1), PrlX < (1-8)u] < exp (“54).

By performing @(p% log(n)) rounds of LSH and using Theorem 20, with high probability

Ey happens ©(log(n)) times during these rounds. We focus only on the LSH rounds where
Ey happens. During these rounds, Algorithm 1 either goes to average-linkage or robust
merging. At least one of them will be repeated ©(log(n)) times.

For average-linkage, we prove the following lemma. Intuitively, it guarantees that the
total number of good pairs will go down by a constant factor.

LAvASTIDA LU MOSELEY WANG

Lemma 21 Suppose in the t'" round of LSH event Ey happens. Let Ny denote the number

of (1 + €)d-good pairs before and Npy1 denote the number of (1 + €)d-good pairs after. If
Algorithm 1 goes to average-linkage, then Nyy1 < 10 Ny. If it goes to robust merging, then
Niy1 < Ny

Proof After average-linkage, since we have merged the clusters until the minimum average
distance for ¢(-) hits a(1 + €)d, the true minimum average distance is more than (1 +€)d. So
there remains no (1 + €)d-good pairs in all the buckets.

If we can somehow prove when we merge two clusters in the same bucket, the num-
ber of (1 4 €)d-good pairs across the buckets does not go up, we can safely conclude
that Nep1 < Nt — Neoiide < I%Nt. Suppose average-linkage chooses to merge clusters A
and B. For any cluster C' in other buckets, if Avg(A U B,C) < (1 + ¢€)J, we must have
min{Avg(A,C),Avg(B,C)} < (1 + €)J, so at least one of the two pairs (A, C) and (B, C)
are good. Now we merge A and B and only one good pair is produced, therefore the number
of (14 €)o-good pairs across the buckets will not increase if we do average-linkage within each
bucket. For the same reason, if Algorithm 1 does robust merging, we also have Ny < Ny.
Thus Lemma 21 is proved. n

Recall the following lemma from previous subsection:

Lemma 22 Fiz any threshold § and let Ct be the set C in Algorithm 2 after t iterations. We
have |C'F1] < $|CH.

Intuitively, in every LSH such that at least {5 portion of (14 €)d-good pairs collide, either
buckets are small, in which case the number of (1 + €)0-good pairs will shrink by a constant
factor with constant probability peoiiqe, Or there is at least one bucket that’s big, in which
case the number of candidates for (14 €)d-good clusters will shrink by a constant factor with
high probability. Putting Lemma 21 and 22 gives us Lemma 16.

Appendix B. Average-Linkage Cluster Embedding Proofs

Lemma 23 For any point y and finite set of points X in Euclidean space, Y.y ||z —y[|* =
1X] - ly — p(X)I? + X - Var(X).

Proof of [Lemma 23] Rewriting and expanding the square via |Ja+b||? = ||a||*+]|b]|* +2(a, b)

we have:
Slle—yl? =Y llz — w(X) + u(X) -yl

zeX zeX
=Yz = uXO)7 +) (X)) =yl
rzeX zeX
+) 2w — p(X), w(X) —y)
rxeX
= |X] - Var(X) + |X] - Y [ly — u(X)]>

rzeX

where the last term on the second line evaluates to 0. O

SCALING AVERAGE-LINKAGE VIA SPARSE CLUSTER EMBEDDINGS

Proof of [Proposition 2| Applying Lemma 23 to the sum > 5> o4 llz — y||? twice we
have:

YoX Mz —yl? =" (Al ly — n(A)? + |A] - Var(4))

yeEBzeA yeB
= |A||B|(|n(A) = u(B)|]* + Var(A) + Var(B))

and dividing by |A| - | B] yields the proposition. O

Lemma 24 For any two clusters A and B, Ra(gm(A)) < Avg(A, B).

Proof of [Lemma 24] Since gm(A) minimizes R4(y) for any y € R¥, for all y € B we have
Ra(gm(A)) < Ra(y). Summing this inequality over all such y € B we have |B|R4(gm(A)) <

dyen BA(Y) = cpd rea ly— T” Dividing both sides by |B| yields the lemma. O

Lemma 25 For any cluster X, Dev(X) < 2Rx(gm(X)).

Proof of [Lemma 25| By the definition of Dev(X) and the triangle inequality: Dev(X) =
= Laex 7 = nXON < 57 Coex (o — gm(X)[| + || gm(X) — u(X)]1)

= Rx(gm(X)) + || gm(X) — p(X)]].
Now to complete the proof we claim that || gm(X) — u(X)|| < Rx(gm(X)). Using the

definition of p(X) and subadditivity we have: ||u(X) — gm(X)| = H peX — %; H
X Loex llz — gm(X)|| = Rx (gm(X)).

Lemma 26 For any two clusters A, B, |u(A) — uw(B)|| < Avg(A, B).

Proof of [Lemma 26| By definition of centroid we have:

pA) = p(B) = [Y= e S

€A yeB
wwzz wwzzy
z€AyeB zeAyeB
W,ZZ
reAyeB

Now applying || - || to both sides and then subadditivity of || - | completes the proof. O

Proof of [Lemma 3| We start by proving the lower bound. By the triangle inequality, for any
z € Aand y € B we have ||z —y|| < [z —p(A)|| +[|w(A) — w(B)||+ ||y — w(B)||. Summing this
inequality over all x € A and all y € B then dividing by |A| - |B| yields Avg(A, B) < f(A, B).
For the upper bound we have the following sequence of inequalities:||u(A) — u(B)||+ Dev(A) +
Dev(B) < Avg(A,B) +2R4(gm(A)) + 2Rp(gm(B)) < 5 Avg(A, B).

The first inequality follows from Lemmas 26 and 25, and the second inequality follows
from applying Lemma 24 to the last two terms. D

The next theorem is an extension of Theorem 1 into general £, norm where p € [1, +00].

LAvASTIDA LU MOSELEY WANG

Theorem 27 Given a clustering C of S C R?, there exists a constant o > 1 and a mapping
¢ : C — RT such that for all A, B € C, Avg(A,B) < ||¢p(A) — ¢(B)| < aAvg(A, B). In
1

particular, we have d' = d+ |C| and o = 5-3""%.

In order to prove the theorem, given any /¢,-norm, we define the geometric median

according: gm(A) = argmingecga Y ¢ x Hyf)fl””. Also, the following proposition is Proposition

4 generalized into /,-norm:

1—

Proposition 28 For alla,b,c € Ry, andp > 1, -1y (a+b+c) < (ap+bp+cp)% <a+b+ec.
3

Sl

11
Proof In general, for vectors in R", it is known that for 0 < r < p, ||z||, < ||z]|» < n7 7 ||z|[p.

1 1 1
Welet n =3, 2 = (a,b,c) and r = 1, then we get (aP+bP+cP)» < a+b+c < 3" 5 (aP+bP+cP)»,
which is the proposition. |

Proof of [Theorem 27| Lemma 24 still holds. Lemma 25 and Lemma 26 also holds, since
what we used in the proofs are the triangle inequality, and convexity of norms, which hold
for any ¢,-norm: ||z — (ty1 + (1 — t)y2)llp < t||z —vyillp + (1 —t)||x — y2||p for t € [0,1]. As a
result, Lemma 3 holds for any £,-norm. Now, combining with Proposition 28, analogous to
(2), we let the embedding for cluster C; be:

&(Cy) =35 (u(Cy),0,..., Dev(Cy) ,...,0) (4)

—
d+i’th coordinate

For any cluster A and B, ||¢p(A)—¢(B)||, = 3175 ([|n(A) —M(B)||§+DGV(A)p+DeV(B)p)%.
In Proposition 28, let a = Dev(A), b = Dev(B) and ¢ = ||u(A) — pu(B)||p, then it shows

that ||¢(A) — ¢(B)||p lies in the range [a + b+ ¢, 31_%(a + b+ ¢)]. We have Avg(A, B) <

l|op(A) — o(B)|]p <5- 317 Avg(A, B) then. For the special case where p = 2, this is what
we showed in (2). O

Appendix C. Additional Experiments

Here we present additional data from our experimental evaluation.

First we give our results for the sub-quadratic average-linkage algorithm due to Abboud
et al. (2019) in Table 10. We present the average running time across five sampled instances
at each input size. Note that these times are significantly worse than our algorithm as shown
in Section 6. Moreover, this algorithm was unable to scale to large input sizes over ~ 100k
points as our algorithm did. Also observe that the performance of this method significantly
degrades on higher dimensional data sets such as Blog and Covertype, which is due to the
significant increase in the dimension the algorithm carries out.

SCALING AVERAGE-LINKAGE VIA SPARSE CLUSTER EMBEDDINGS

Input Size | 64 128 256 512 1024 2048 4096 8192

Shuttle 41.45 102.75 229.83 634.35 2897.20 7404.18 18432.55 46840.01

Blog 2140.38 6030.19 16089.31 52891.13 - -
Covertype | 407.44 1204.50 3369.60 13730.49 47937.79 161861.26 - -
Higgs (S) 37.77 80.92 189.81 511.43 2936.55 8001.01 21468.35 -

Susy (S) 6.48 13.84 31.85 95.76 374.26 977.79 2896.95 8565.05

Table 10: Average running time in seconds for algorithm due to Abboud et al. (2019). A
blank entry indicates that the algorithm crashed due to running out of memory at this input
size.

	Introduction
	Preliminaries
	Sparse Cluster Embeddings for Average Distance
	Near Cluster Search
	Fast Approximate Average-Linkage
	Experiments
	Conclusions and Future Work
	Analysis of Fast Average-Linkage
	The Robust Merging Procedure
	Running Time Analysis for Algorithm
	Approximation and Correctness

	Average-Linkage Cluster Embedding Proofs
	Additional Experiments

