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Abstract

With the development of deep learning techniques, contrastive representation learning has
been increasingly employed in large-scale recommender systems. For instance, deep user-
item matching models can be trained by contrasting positive and negative examples and
learning discriminative user and item representations. Despite their success, the distin-
guishable properties of the recommender system are often ignored in existing modelling.
Standard methods approximate maximum likelihood estimation on user behavior data in a
manner similar to language models. Specifically, the way of model optimization corresponds
to approximating the user-item pointwise mutual information, which can be regarded as
eliminating the influence of global item popularity on user behavior to capture intrinsic
user preference. In addition, unlike the situation in language models where word frequency
is relatively stable, item popularity is constantly evolving. To address these issues, we
propose a novel dynamic popularity-aware (DPA) contrastive learning method for recom-
mendation, which consists of two key components: ) a dynamic negative sampling strategy
is involved to enhance the user representation, i) a dynamic prediction recovery is adopted
by the real-time item popularity. The proposed strategy can be naturally overlaid on
any contrastive learning-based matching model to more accurately capture user interest
and system dynamics. Finally, the effectiveness of the proposed strategy is demonstrated
through comprehensive experiments on an e-commerce scenario of Alibaba Group.
Keywords: dynamic recommendation; neural networks; contrastive learning; user interest
modelling

1. Introduction

Contrastive representation learning (CRL) was first derived from the field of computer vi-
sion (Hadsell et al., 2006), and since the last decade, has also achieved remarkable results
in natural language processing (He et al., 2020; Chen et al., 2020; Oord et al., 2018). Lan-
guage models learn to estimate the probability of a word given a context, but computing the
normalization term in the softmax output layer leads to a scalability issue. To tackle the
problem of computational complexity, the learning framework based on noise contrastive
estimation (NCE)(Gutmann and Hyvérinen, 2012; Mikolov et al., 2013) has been developed.
More precisely, negative examples are drawn from some noise distribution, such as uniform
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sampling, as well as importance sampling based on word frequency, and an objective func-
tion is then derived based on binary classification. When importance sampling is performed,
the way of optimizing the objective function can be regarded as factorizing a word-context
pointwise mutual information (PMI) matrix (Levy and Goldberg, 2014; Melamud et al.,
2017; Ma and Collins, 2018). Intuitively, PMI indicates how frequently two events co-occur
more than if they independently occur, and PMI is therefore a common mathematical proxy
for assessing semantic similarity at the word level (Li et al., 2020).

When it comes to the large-scale recommender system, CRL has been employed more
and more widely in recent research (Lv et al., 2019; Zhou et al., 2020; Xie et al., 2021). For
instance, to recommend top items to a user from a library of millions of items, deep match-
ing models (Covington et al., 2016; Lv et al., 2019) can be trained by contrasting positive
and negative examples and learning the discriminative item representation. Nevertheless,
compared to other fields of study, the recommender system retains its own properties which
are often ignored in existing modelling. i) Dynamic: Items with a different data distribution
arrive in the pool every day and the online environment varies, driven by certain underlying
trends or occasional patterns. Unlike the situation in NLP where the word frequency is
relatively stable in documents, in recommender systems, the items popularity can vary con-
siderably from day to day, e.g., frequent replacement of headlines in news recommendation.
ii) Popularity-aware: user behavior is affected not only by his/her intrinsic interest, but
also by attention of the general public; e.g., in the e-commerce recommendation, users will
be influenced by the events on the platform to purchase items on sale. In this case, when
importance sampling is adopted in CRL framework, PMI can be interpreted as a user’s
intrinsic preference score, by eliminating the influence of the global item popularity on the
user’s interaction behavior, and meanwhile, the global popularity continues changing.

Given the properties above, we propose dynamic popularity-aware (DPA) con-
trastive learning for recommender system. The main contributions of this paper are as
follows:

e A new perspective on the contrastive learning for dynamic recommendation is pro-
vided, by illustrating the connection between PMI and user’s intrinsic interest, which
can be decoupled from the global item popularity.

e System dynamics in both training and testing phases have been exploited. More
precisely, we propose a dynamic negative sampling strategy to accurately capture
user interest; meanwhile a dynamic prediction recovery is performed by the real-time
item popularity to suppress the probability of recommending obsolete items.

e The proposed strategy can be overlaid on any state-of-the-art contrastive learning-
based matching model to achieve better performance.

e Offline experimental results demonstrate the effectiveness of the proposed approach
over the baseline method of deep matching on an e-commerce scenario in Alibaba.
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2. Related work

2.1. Contrastive representation learning

CRL targets on learning expressive representation by comparing different examples. Since
the last decade, it has been widely developed in the field of computer vision and natural lan-
guage processing (Hjelm et al., 2018; Oord et al., 2018; Chen et al., 2020; He et al., 2020).
For instance, the classical Word2vec model (Mikolov et al., 2013) contrasts co-occurring
words with negative examples to learn the word embedding. In computer vision, the image
representation can be learned in a self-supervised manner by minimizing the distance be-
tween two views of the same image (Wu et al., 2018; He et al., 2020). The contrastive loss
that we investigate in this paper is the NCE loss (Gutmann and Hyvérinen, 2010, 2012),
which approximates the maximum likelihood estimation by a binary classification problem.
Previous work has revealed the relationship between the NCE and the PMI (Levy and
Goldberg, 2014; Melamud et al., 2017). An essential element of contrastive learning lies in
the sampling strategy. For example, in computer vision, augmented data can be obtained
by randomly cropping and flipping (Oord et al., 2018). Despite many studies related to
positive pairs (Chen et al., 2020; Logeswaran and Lee, 2018), the role of negative examples
has been overlooked. Existing work (Robinson et al., 2020) observes that difficult negative
examples are useful for learning expressive embedding. Importance sampling is the most
common technique for constructing hard negative examples, such as using batch noise to
approximate the overall frequency.

2.2. Matching models

In general, the large-scale recommender system can be coarsely divided into two stages:
matching and ranking. However, most recent academic research has focused on the second
stage for limited-size data, while the role of matching is highly underestimated, especially
for a large e-commerce platform such as Amazon' and Alibaba®. Early works are generally
based on collaborative filtering (CF) algorithms (Linden et al., 2003). Later, representation-
based methods with deep learning techniques (Barkan and Koenigstein, 2016; Covington
et al., 2016) have revolutionized recommendation systems dramatically. Notably, Covington
et al. (Covington et al., 2016) propose the deep matching method for YouTube recommen-
dation to learn both the user and item embedding in real-time. More recently, progress
has been made on the graph embedding methods (Grover and Leskovec, 2016; Wu et al.,
2019) and the sequential recommendation (Sun et al., 2019; Lv et al., 2019). However, these
models cannot well capture the system dynamics in the recommendation as we will discuss
in the following.

2.3. Dynamic recommendation

The standard recommendation algorithms consider a static system for modelling, however,
the recommender system is constantly evolving as the fashion trends and popularity pat-
terns are changing with time going by. Previous work (He et al., 2014) has verified the
influence of the delay of model updating on the recommendation performance. In recent

1. https://www.amazon.com/
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years, time-aware recommender systems have been received increasing attention (Campos
et al., 2014; Zhang et al., 2017). Related studies (Xiang et al., 2010) focus on the idea
that the attraction of items to users will decay with time. In addition, real-time updates of
model have been tackled with online updating and stream processing (Chang et al., 2017).
To model the change of a user’s interest over time, Bayesian framework has been adopted
in news recommendation (Liu et al., 2010) and the a time-aware mixture model has been
proposed for social media system (Yin et al., 2015). Another topic of dynamic recom-
mendation is sequential modelling (Kang and McAuley, 2018; Dong et al., 2018; Sachdeva
et al., 2019), which considers the information provided by the order and position in the user
behavior sequence. The sequential modelling simplifies the temporal aspects by the sequen-
tial pattern, while we emphasize more the importance of time-related modelling to provide
additional information. Furthermore, we differ from the existing time-aware methods by
incorporating the dynamic properties into the contrastive learning framework to provide an
expressive representation of user preferences.

3. Methodology

3.1. Notations and problem statement

Let U and V denote a set of users and items respectively, where || and |V| are the number
of users and items. Considering the user-to-item matching problem, we aim at modelling
whether a user would interact with an item, given historical interaction pairs (u,v) € D,
where the user u € U, the item v € V and D is the data space. According the historical user
behavior, the target of the network turns to learning the user representation matrix EY =
(") ueu € RUl and the item representation matrix EY = (e¥)yey € R¥IVI simultaneously,
where d is the dimension of the embedding space. In order to retrieve top IV items for a
user u, the relevant scores can be calculated based on the inner product between the user
embedding vector e* and each column e in EV.

During the training stage, assuming that the set of parameters is denoted by 6 and
the relevant scores are sg(u,v), we aim at fitting the data to the model by minimizing full
softmax loss:

exp sg(u, v) B exp(e” - e¥)
vy €xpsg(u,v') >0 o explet - e?’)

i ~1 h =
argmén(z)@ ogpolvlu), where po(vfu) = 5=

The denominator of pg(v|u) sums over all possible items, which is infeasible in practice.
An approximation can be achieved by sampling K negative examples according to a noise
distribution ¢(v) in the framework of contrastive learning:

Kq(v)
exp sp(u,v) + Kq(v)’

exp sp(u, v)
exp sq(u, v) + Kq(v)’

p(y =0lu,v) = p(y = 1lu,v) =

where y = 0 indicates that v is a negative example of u while y = 1 for the positive case.
And the NCE loss is defined as follows:

Lnce=— Y (logp(y = 1fu,v) + KRy qlogp(y = Ofu,v')) . (1)
(u,v)€D
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Following the standard procedure as for language models, the maximum likelihood esti-
mate on the user behavior data is approximated by minimizing eq. (1). Existing methods
generally assume an identical pattern of user behavior between training and testing, which
is however not the case in a dynamic recommender system. Compared with the volatile
drifts of item popularity, user’s intrinsic interest is relatively stable. Therefore, to address
the problem caused by the system dynamics, we alternate the assumption of an identical
behavior pattern with the more realistic one of an identical intrinsic interest. Based on that,
we focus on learning and predicting the user preferences dynamically in the framework of
contrastive learning.

3.2. Understanding contrastive learning: PMI and user interest

Point-wise mutual information Following the discussion in (Yang et al., 2017; Stratos,
2019), in a well-trained model where the objective function (1) achieves its minimum value,
the optimal relevant score can be approximated as follows:

plolu) |
q(v)

Note that if the noise distribution is the item popularity, i.e., ¢(v) = p(v), then the first

term in eq. (2) corresponds exactly to the user-item point-wise mutual information (PMI):

sg(u,v) = log ogK, Yueld,VveV. (2)

p(u,v) p(v|u)
PMI(u,v) = log D) log o) (3)
Indeed, reaching the minimum value of eq. (1) is generally infeasible, since the embedding
dimension is intentionally limited. Therefore, using static recommendation models as an
intuitive example, learning the user and item embedding can be viewed as finding a low-rank
approximation to the user-item PMI matrix (Melamud et al., 2017).

User interest PMI generally reflects the frequency with which two events co-occur more
than if they occur independently (Li et al., 2020). In the user-to-item recommendation,
PMI can be adopted to measure the user’s intrinsic preference for an item.

To explain this, we first assume that the user behavior can be decomposed into a term
decided by his/her intrinsic interest and another one influenced by the item popularity.
Then, if we take a closer look at the PMI equation (3), we find that: i) the numerator
p(v|u) represents the probability that user u will interact with item v based on user’s
historical behavior; ii) and the denominator p(v) represents the overall item popularity.
Consequently, PMI can be interpreted as an intrinsic user preference score, by removing the
influence of the global item popularity on user interaction behavior.

Recovering the prediction After learning the user and item embedding, the objective
is to make a prediction of the user-item interaction p(v|u). Based on eq. (2), the underlying
conditional probability can be recovered as:

p(v|u) = exp (sé(u,v) + log q(v) + log K) , (4)

where 6 is the optimal set of parameters obtained in the training stage.

In all, in the NCE-based framework, we train a model to estimate the PMI between
each user-item pair; then, in the testing phase, we derive the conditional probabilities of
user-to-item matching from PMI by recovering the global popularity term.
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3.3. Dynamic training & testing strategy

Time-aware modelling of item popularity Notably, the global item popularity is
constantly evolving given the dynamic property. Therefore, item popularity can be modeled
by a mixture distribution with respect to time. A natural and straightforward idea is to
use a daily-variant modelling, which mimics the general behavior of the online e-commerce
platform, e.g., promotional events are usually assigned in the unit of one day.

The time-aware item popularity is captured by the conditional distribution g;(v) =
p(v|t = 1) for day i, wherei = 1,2,--- , T, and T is the total number of days (i.e., the number
of mixture components) in the training dataset. However, if the same learning and testing
procedure introduced in Section 3.2 is adopted, the global item popularity in eq. (2) and eq.
(4) corresponds to the marginal distribution of items: p(v) = Zszl p(v|t = 4)p(t = i), where
the discrete distribution p(t = ¢) is the mixture weights which represent the proportion of
items belongs to day 1.

Dynamic training & testing stages To capture the dynamic property in recommender
system more accurately, we propose an adaptive training and testing procedure as illustrated
in Algorithm 1.

Algorithm 1: Dynamic popularity-aware contrastive learning for recommendation

// Dynamic training stage.
Input: user ids, the corresponding interacted items ids and the date of the interaction as
a triple: {(u1,v1,t1), (ug,ve,ta)--- ,(un,pn,tn)}.
Output: Estimated model parameters 6.
while: =1,2,--- ,n do
while j=1,2,--- , K do
‘ *Sampling the negative example v; from the item popularity p(v|t =t;) in day t;;
end
Update NCE loss:

Lxce + Lnce — [logp(y = ug,vi) + Y logp(y = Olus, v})
j:1)27"'7K

end

0 = arg ming LNCE -

// Dynamic testing stage.

Input: a new triple (tp41, Vnt1,tnt1) -

Output: the matching probability p(vy+1|tnt1) -
**Update the item popularity distribution: p(v|t = tp4+1) ;
Calculate the relevant score: s;(uny1,Vnt1) ;

Recovering the prediction:

P(vns1luns1) = exp (s5(unt1, vnt1) +10g p(vnr1lt = tri1) + log(K)) .
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Figure 1: Intra-Batch sampling. Negative examples are constructed with positive examples
of other instances in the current mini-batch.

*: To approximate the item popularity p(v|t = t;) on day t;, we apply an Intra-Batch
sampling strategy (Zhou et al., 2020), for which positive examples of other instances in the
current mini-batch are used as negative examples as illustrated in Figure 1. Note that each
mini-batch is composed of instances from the same day.

**. In practice, we often use the training instances of T' days to predict the matching score
for day T'+ 1. Therefore, the item popularity distribution for day 7'+ 1 is usually unknown.
In this situation, we use historical data to approximate the actual distribution, e.g., item
popularity in the past 24h is used in our experiments as described in Section 4.

In general, during the training stage, a time-dependent negative sampling strategy is
adopted to capture the user’s intrinsic interest; then during the testing stage, the real-time
item distribution is updated and applied to recover the prediction. Figure 2 illustrates the
framework of DPA strategy.

4. Experiments

In this section, we will describe in details how the experiments are conducted. We aim at
answering the following research questions:

RQ1. How does the proposed DPA strategy perform compared to the baseline in the
matching task?

RQ2. How does different components of DPA benefit its performance, i.e., the effectiveness
of dynamic negative sampling in the training stage and the dynamic prediction recovery in
the testing stage?

RQ3. Does the DPA strategy really help to learn a better intrinsic user interest?

4.1. Datasets and preprocessing

Alibaba is the largest online marketplace in China. The training and evaluation framework
is developed with data from the Alibaba’s mobile commerce platform. To construct the
offline dataset, we collect the user behavior data in one month from the 18" November
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(a) Item Popularity Distribution
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‘ User Encoder ’ [ Item Encoder ’
' ' Recovery [«— s(u,v) +pw|t=T")
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Figure 2: Framework of DPA strategy: (a) The item popularity distribution of two sep-
arated days from the Alibaba e-commerce dataset as introduced in Section 4.
Their gap demonstrates the system dynamics. The x-axis represents the item id
and the y-axis is the corresponding proportion in that day. Note that we only
keep the most popular 1000 item ids on the 15* December due to the limit of
space. (b) The architecture of representation network. (c) The dynamic training
stage with time-dependant negative sampling. (d) The dynamic testing stage
with prediction recovery.
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to the 17*" December 2014 as training set, and the data-logs on the 18" December as the
testing set. The dataset has been released on the Tianchi competition website?. Apart from
the information of user behavior, the dataset also contains the time of the behavior which
facilitates the implementation of the proposed methodology. For data preprocessing, we
only keep the items with more than 30 clicks and remove the cold-start users/items from
the test set. The statistics of the processed offline datasets are summarized in Table 1.

We have chosen Alibaba E-commerce dataset due to its specific properties, which fit
well the assumptions of DPA. i) The user behavior can be continuously captured by the
platform and is rarely interrupted by third-party activity; i) The records of user behavior
are session-based, and user interest is relatively stable in one session; iii) User behavior is
strongly influenced by the environment. Furthermore, we have demonstrated the system
dynamics by comparing the item popularity of two separated days as shown in subplot (a)
in Figure 2.

Table 1: Statistics of the offline Alibaba dataset.

Dataset # users # items # interactions

Alibaba 19835 82557 5278193

4.2. Evaluation metrics

Following the previous work related to matching (Covington et al., 2016; Lv et al., 2019), we
use the top N recall as the evaluation metrics. It is widely used to measure the predictive
precision in session-based recommendation, representing the ability of coverage in the user’s
ground truth. For user u, it is defined as:

__|f%hAzr](;u‘

ReCaH@N(U) = T’ s

where P, y denotes the set of N recommended items, and G, is the user’s ground truth.
For method comparison, the Recall@N for each user will be summarized by the average on
the test set.

4.3. Baseline and implementation

Baseline—DeepMatch We implement DeepMatch—a neural network that embeds the
user id and the item id separately, and then performs the inner product to calculate the
user-item relevant score. The users and items are represented by a lookup in the embedding
matrices. Subplot (b) in Figure 2 shows the model architecture. To learn the model
parameters, negative examples are generated by Intra-Batch sampling and NCE loss is
targeted.

In addition, we also consider POP—the simplest baseline that always recommends the
most popular items.

3. https://tianchi.aliyun.com/competition/entrance/231522/introduction
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Implementation of DPA strategy The DPA strategy has been employed based on the
DeepMatch model. Note that, since the deep matching model and the dynamic popularity-
aware procedure are independent of each other, here we use a simple but powerful baseline
to verify the effect of the proposed strategy. Apart from that, the proposed method can be
easily superimposed on other existing models.

Hyperparameter settings We set the embedding dimension d = 128 for all approaches.
Adam is used as the optimizing algorithm and the learning rate is set as 0.001. The mini-
batch size is set to 1024. The number of negative examples generated for each instance
is 99. And 60 training epochs have been performed. All the models are implemented
by TensorFlow on Machine Learning Platform for AI (PAI)* provided by Alibaba Cloud.
All experiments are conducted on a server with GeForce GTX 1080 Ti and GPU mem-
ory 2794 MB. For more details, the code is available at https://github.com/alibaba/
Dynamic-popularity-aware-recommendation/.

4.4. Experiment results and empirical analysis

(RQ1) Method comparison We first compare the performance of the proposed DPA
strategy with the DeepMatch baseline. Tables 2 illustrates the performance evaluation of
the investigated approaches in Recall@N with various N € {1, 5,10, 50,100} .

Table 2: Performance comparison of the matching methods. Bold scores indicate the best in
the method group. The improvement row is the performance of DPA-DeepMatch
relative to the DeepMatch with the full softmax.

Methods Noise distribution Recall@l  Recall@5 Recall@l0 Recall@50 Recall@100
POP - 0.0001 0.0012 0.0019 0.0064 0.0115
POP-RealTime - 0.0013 0.0057 0.0096 0.0361 0.0639
DeepMatch-FullSoftmax - 0.0225 0.0728 0.1049 0.1824 0.2121
DeepMatch Importance 0.0141 0.0504 0.0792 0.1612 0.2008
DPA-DeepMatch Dynamic Importance 0.0489 0.1042 0.1306 0.1948 0.2251
Improv. 117.80% 48.13% 24.56% 6.81% 6.15%

Note that to recover the prediction, the real-time item popularity in the past 24h for
each test instance has been used as the noise distribution. In addition, the improvement
row is the performance of DPA-DeepMatch relative to the DeepMatch with full softmax.
And the DeepMatch baseline has also been implemented with the standard importance
sampling. Meanwhile, we consider recommendation based on both the popularity of the
training set (POP) or that of the past 24 hours in real-time (POP-RealTime). Based on
the experiment results, we can observe that:

e The proposed DPA outperforms the baseline method significantly in terms of all the
recall metrics. For instance, DPA gains 43.13% on Recall@5 and 6.81% on Recall@50
on average against the baseline method DeepMatch with full softmax. The experiment
verifies the effectiveness of the proposed DPA method in the matching task. The

4. https://www.alibabacloud.com/product/machine-learning
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dynamic learning and prediction recovery in the contrastive framework have enhanced
the representation and provided a more accurate recommendation.

e The recall for POP is low even with the real-time popularity, which indicates the weak
dependence of the user’s behavior on global popularity in this scenario. However, the
DPA still leads to an strong enhancement on the recall, which demonstrates that
overlaying the influence of dynamic popularity on the user’s interest can make a
significant effect.

e For the DeepMatch baseline, we have also conducted the full softmax without can-
didate sampling. Indeed, DeepMatch based on importance sampling is an approx-
imation to the full softmax. Nevertheless, the proposed DPA-DeepMatch not only
outperforms the DeepMatch with full softmax in terms of recall metrics, but also
shows the computationally efficiency owing to the framework of contrastive learning.

(RQ2) Ablation study Now we analyse how the different components of DPA benefit
its performance. Table 3 shows ablation experiments over the two key components in
DPA to better understand their impacts. In all listed approaches, the negative examples
are generated by importance sampling according to the item popularity. We consider the
variant of DPA-DeepMatch with or without dynamic noise for training, and with or without
dynamic item popularity recovery for testing.

Table 3: Effectiveness of dynamic negative sampling in the training stage (“Train Dy-
namic”) and recovering the real-time item popularity in the past 24 hours in
the testing stage (“Test Dynamic”). The improvement rows are the performance
relative to the model MO.

Index  Train Dynamic  Test Dynamic Recall@l  Recall@5 Recall@l0 Recall@50 Recall@100
MO X X 0.0141 0.0504 0.0792 0.1612 0.2008
M1 v X 0.0224 0.0708 0.1019 0.1834 0.2133

mprov. 58.84% 40.46% 28.711% 13.79% 6.23%
M2 X / A 0.0379 0.0922 0.1232 0.1986 0.2305
mmprov. 168.49% 83.00% 55.58% 23.19% 14.78%
M3 J / 0.0489 0.1042 0.1306 0.1948 0.2251

improv. 246.81%  106.71% 64.96% 20.84% 12.12%

Based on the experiment results, we can conclude that:

e Effect of dynamic sampling in training. Model M1 outperforms MO, e.g., around
28.71% improvement on Recall@10. This indicates that the dynamic negative sam-
pling during training is useful for enhancing the representation.

e Effect of dynamic recovery in testing. Model M2 also outperforms MO, e.g.,
around 55.58% improvement on Recall@10. It verifies the effectiveness of dynamic
prediction recovery by the real-item item popularity during testing.
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(RQ3) Capturing user’s intrinsic interest Finally we focus on the case when the
prediction recovery is not performed at all, i.e., the prediction only reflects the user’s in-
trinsic interest without recovering the term of global item popularity as analysed in Section
3.2. We have varied whether the dynamic negative sampling is perform, to demonstrate the
ability of DPA to capture the intrinsic interest.

Table 4: Effectiveness of DPA to capture the intrinsic interest. The improvement row is
the performance of model M5 relative to M4.

Index  Train Dynamic Test Recall@1l  Recall@5 Recall@10 Recall@50 Recall@100
M4 X No recovery 0.0237 0.0676 0.0943 0.1704 0.2043
M5 v No recovery 0.0321 0.0862 0.1169 0.1891 0.2141

Improv. 35.66% 27.58% 23.99% 10.99% 4.84%

According to Table 4, we observe that model M5 outperforms M4, which indicates that
the DPA strategy contributes to extract more accurately the user’s intrinsic preferences.

5. Conclusion and future research

In this paper, we have proposed a novel strategy called DPA—dynamic popularity-aware
contrastive learning for recommender system, to effectively retrieve the top N desired items
from a library of items. PMI analysis is connected with user interest modelling, to provide a
new perspective on the contrastive learning for dynamic recommendation. Besides, the pro-
posed strategy can be naturally superimposed on any matching model based on contrastive
learning to more accurately capture the user’s intrinsic interest and system dynamics. The
main contribution comes from two parts, namely dynamic noise modelling in the training
stage, followed by dynamic prediction recovery in the testing stage. We have empirically
demonstrated the effectiveness of the proposed strategy according to the comprehensive
experiments on the Alibaba e-commerce dataset.

Concerning the future research, there are several relevant directions worth exploring.
From an analytical perspective, the dynamic property can be represented as a continuous
evolution of item popularity rather than considering a division per day. In application, the
popularity distribution may also be different spatially as well as temporally. Therefore, the
DPA strategy can be extended to heterogeneous scenarios to capture the similarities and
differences among multiple mixture components.
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