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Abstract

In this paper, a novel graph kernel is designed by aligning the amplitude representation of
the vertices. Firstly, the amplitude representation of a vertex is calculated based on the
discrete-time quantum walk. Then a matching-based graph kernel is constructed through
identifying the correspondence between the vertices of two graphs. The newly proposed
kernel can be regarded as a kind of aligned subgraph kernel that incorporates the explic-
it local information of substructures. Thus, it can address the disadvantage arising in
the classical R-convolution kernel that the relative locations of substructures between the
graphs are ignored. Experiments on several standard datasets demonstrate that the pro-
posed kernel has better performance compared with other state-of-the-art graph kernels in
terms of classification accuracy.

Keywords: Graph kernels, R-convolution kernels, Structured data, Similarity measures
for graphs.

1. Introduction

Graph is a kind of important structure for information representation, since it can natu-
rally reflect the structural and relational arrangements of entities. In many scientific fields
such as social network Fan (2012), bioinformatics research Raymond and Willett (2002)
and image matching Ta et al. (2009), researchers are often interested in computing the
semantically meaningful similarities between these structured objects. For instance, two
protein molecules with the same chemical properties usually have similar topological struc-
tures Mah and Vert (2009). Thus people can predict the property of an unknown molecule
by means of topology comparison with the known ones.

One of the popular approaches to measure the similarity of graphs is to use the k-
ernel method. Graph kernel has been proved to be powerful for structural analyses in
machine learning Vishwanathan et al. (2010). There have been a lot of successful at-
tempts Gértner et al. (2003); Harchaoui and Bach (2007); Jebara et al. (2004) to cluster
or classify graphs with the help of graph kernels. Roughly speaking, kernel methods pro-
vide an implicit embedding of graphs in a high dimensional space which can effectively
preserve the structural information. They can measure the similarity between the graph-
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s with a kernel function corresponding to an inner product in reproducing kernel Hilbert
space(RKHS) Schélkopf and Smola (2002).

Most of the existing graph kernels belong to the family of R-convolution kernels proposed
by Haussler Haussler (1999). This is a general framework to handle structural objects by
the way of comparing all pairs of isomorphic substructures under different decomposition
methods. The key idea of the R-convolution kernel is to recursively decompose structured
objects into ”atomic” substructures and define valid measurements between them. Given
two graphs G and G, the kernel value of them is computed by

K(G.¢) = (2(G),¢(¢)) g (1)

where ¢ (G) denotes vector representation of the graph G and (-,-); represents the dot
product in reproducing kernel Hilbert space.

Generally speaking, the recently developed R-convolutional graph kernels can be di-
vided into the following categories: the graph kernels based on comparing all pairs of
a) subgraphs Horvéth et al. (2004); Shervashidze et al. (2009), b) walks Kashima et al.
(2003); Gartner et al. (2003), c) paths Borgwardt and Kriegel (2005), and d) subtree pat-
terns Ramon and Gértner (2003); Mahé and Vert (2009). The first class, i.e., graph kernels
based on subgraphs, mainly includes graphlet kernels which count all types of substructures
with the node size k € {3,4,5}. To improve the computation efficiency, optimization meth-
ods are proposed based on sampling or exploitation of the low maximum degree of subgraph-
s Shervashidze et al. (2009). The second class, i.e., graph kernels based on walks, indicates
random walk kernel Gértner et al. (2003) which counts the number of matching pairs of ran-
dom walks in two graphs. There also exist efficient computation schemes which use dynamic
programming-based approach to speed up this kind of kernel Harchaoui and Bach (2007).
Paths based kernels are the third class, which mainly include the shortest path kernel pro-
posed by Borgwardt and Kriegel Borgwardt and Kriegel (2005) where the pairs of the short-
est paths having the same length are counted. Weisfeiler-Lehman kernel Shervashidze et al.
(2011) is the representation of the subtree pattern based graph kernels. The key idea of this
kernel is to compare the number of shared subtrees between the graphs using the procedures
inspired by the Weisfeiler-Lehman test of graph isomorphism. The kernel recently proposed
by Lu Bai Bai et al. (2015b,c) can also be classified into this category, where an aligned
subtree kernel based on the calculation of entropy is implemented.

Although the R-convolution kernels have achieved great developments, the drawback of
neglecting the relative locations of the substructures still exists. This is because the original
R~convolution kernels lack an effective way to establish reliable correspondences between
substructures. As a result, this shortcoming limits the precision of similarity measurements
for graphs.

To overcome this drawback, we propose a novel matching kernel by aligning the am-
plitude representation of the vertices. In our method, the amplitude representation of the
graph is calculated based on the simulation of the discrete-time quantum walk (DTQW).
Because the amplitude representation can reflect rich characteristics of the K-layer expan-
sion subgraphs centered on a vertex and the DTQW is a powerful tool to illustrate the
topological information, their combination will provide us an elegant way of designing new
effective graph kernels.
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For each pair of graphs under comparison, the K-layer amplitude representation of each
vertex is computed. More precisely, we characterize the degree distributions of the K-layer
subgraph with the help of the DTQW and store this information in the amplitude repre-
sentation for each vertex. Then we can find the matched vertex from the two graphs by
aligning the amplitude representation. Therefore, a new vertex matching kernel is devel-
oped by counting the number of matched vertex pairs. Our kernel can be regarded as a
kind of special aligned subgraph kernel, and thus we could explain the reasons for the effec-
tiveness of our kernel after theoretical analyses. Through counting the aligned subgraph,
the local information of the graph is embedded into the graph kernel. Therefore our kernel
can overcome the aforementioned weakness of ignoring the correspondences between the
substructures. The experiments on several standard datasets demonstrate that our kernel
has a better performance than the state-of-the-art graph kernels as for graph classification
accuracy.

This paper is organized as follows. In the next section, the theory of DTQW is intro-
duced and the method of vertex matching is designed. Then in Section 3, the new graph
kernel is proposed and the relationship between the proposed kernel and the classical graph
kernels are discussed. In Section 4, we compare our kernel with the state-of-the-art graph
kernels in terms of graph classification task. The results of classification accuracy on sever-
al graph benchmark datasets are reported. Finally, a summary in Section 5 concludes this

paper.

2. Vertex Matching Using Amplitude Representation

In this section, we first review the concept of the DTQW on a graph. Then the amplitude
representation for a vertex is defined based on this model. Finally we present the vertex
matching method by aligning the amplitude representation.

2.1. Discrete-Time Quantum Walks

The DTQW Kempe (2003) represents a quantum counterpart of the classical random walk.
There are two reasons that the DTQW is a good way to explore information on a graph.
On the one hand, unlike the classical random walk, the DTQW uses qubits rather than
bits as the basic representational unit. By virtue of the natural parallelism of quantum
computing, DTQW can capture abundant topological information in a graph structure.
On the other hand, because quantum processes are reversible and non-ergodic, the DTQW
could diminish the tottering problem arising in the classical random walk.

For an undirected graph G (V, E) with vertex set V and edge set E, we refer to (u,v)
as an edge of GG, where u,v € V. In order to store graph information in the quantum
superposition, we need to first transfer the original graph into its associated symmetric
digraph Gg (Vg, E4) through replacing each edge (u,v) € E with a pair of directed edges
(u,v) € E4 and (v,u) € E4. An example of transforming the original graph to a symmetric
digraph is shown in Fig. 1. Then we represent the states being on the edge (u,v) € E4 and
(v,u) € Eg4 as |uv) and |vu) respectively. Consequently, the state of the DTQW on a graph
G can be written as follows:
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(a) Original graph. (b) Symmetric digraph.

Figure 1: Symmetric digraph construction.

|90> = Z Qo |uv>, uy € C (2)

(u,v)EE,

where a,, refers to the quantum amplitude. The probability that the state |¢) being in a
particular basis state |uv) is given by Pr (Juv)) = aq, i, where o, is the complex conjugate
of oy

Using the common Grover diffusion matrix as the transition matrix Emms et al. (2009),
every state can be transferred according to the following equation:

juv) — (%-1) )+ g Y Ik (3)

VkEV,(v,k)EE
&k#u

where d (v) represents the degree of vertex v. Given a basic state |uv), the Grover diffusion
matrix assigns the same amplitude to all the state transitions |uv) — |vk) where k is the
neighbors of v, and a different amplitude to the transition |uv) — |vu). Therefore the
matrix that governs the evolution of the superposition state is

{%m)—&w ifv=w

0 otherwise

U(u,v),(w,z) - (4)
where 0, is the Kronecker delta function. If we use ‘@T> to represent the quantum
superposition state at the time T, the evolution of the DTQW can be represented by
|90T+1> =U |30T>. Given the initial superposition state, the degree of each node in the
graph is one of the important factors that affects the implementation of the DTQW. There-
fore the process of quantum walk on a graph, to some extent, reflects the characteristics of
the degree distribution of the graph.

2.2. The Amplitude Feature for Graphs

In this subsection, we introduce an amplitude characteristic of a graph based on the DTQW.
This is a new way to characterize the degree distribution of a graph.

For an undirected graph G(V,FE) and a vertex v € V, we first add a new adjacent
node to vertex v. This auxiliary vertex is called ¢. The updated graph can be denoted
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as G' (V/,E') where V! = V U {c} and E' = E U {(v,c)}. The aforementioned method
is used to transform the undirected graph G’ into the symmetric digraph G/,. Then a T-
step simulation of the DTQW is executed on the digraph G/, and the amplitude of the
directed edge (v,c) can be obtained. In the DTQW process, due to the interference effect
of quantum computation, this amplitude is a result of the interactions between the basic
states. Therefore the amplitude of (v, c) can be considered as a characteristic of the graph
from the perspective of node v which is recorded as Am! (G).

As shown in (3), in a connected graph, the effect of the amplitude of the directed edge
(u1,v1) can be transmitted to the amplitude of the directed edge (us, vo) after T} steps where
T is the shortest path between u; and us. Generally speaking, we specify the number of
steps in the DTQW according to the diameter of the graph.

2.3. The Amplitude Representation through DTQW

In this subsection, we design an amplitude representation of a vertex in the graph. This is
a special method to compute the depth-based representation around a vertex. The DTQW
is used to characterize the depth complexity information of each vertex. Accordingly, the
local information is represented by a vectorial signature and the corresponding vertex is
projected into a high dimensional space.

For an undirected graph G(V, E) and the vertex v € V, we defined a vertex set S as
Sk = {u € V|Pg (u,v) < k} where Pg (u,v) indicates the shortest path between the vertex
u and v in the graph G. Then the K-layer expansion subgraph GX (vf ek ) around v is
determined.

K — {(u’,v’) \u’,v' c Sff& (ul’vl) c E} (5)

By calculating the amplitude features of different expansion subgraphs, the h-layer ampli-
tude representation DBgv (v) around v is obtained.

DB (v) = { Am} (GL), Am? (G2) -+ Aml (G1) } (6)

where AmF (G’{j) represents the amplitude feature of the k-layer expansion subgraph G¥.
In order to capture the comprehensive topological information of Gﬁ, the number of steps
for quantum walks simulation is set to be k which is not less than the maximum length of
the shortest path from v to each vertices in G¥.

2.4. The Vertex Matching Based on The Amplitude Representation

In this subsection, we propose a novel vertex matching method for a pair of graphs by align-
ing their amplitude representations. We commence by computing the m-layer amplitude
representation of each vertex as the point coordinate. For a pair of graphs G, (Vj, E,) and
Gq (Vg Ey), we use the m-layer vectorial representation DB} (u;) and DB (v;) as the
point coordinates of the vertices u; € V), and v; € V, respectively. Then we obtain the
distance between u; and v; by computing the absolute difference value between DBng (u;)
and DB (v;).
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R(i,j) = |DBg, (ui) = DBg, (vj) (7)

where R(7, j) indicates the distance or dissimilarity between the vertices u; € V}, and v; € Vj.
The matrix R is a distance matrix with size |V,| x |V;| in which the row indexes are the
vertices from the graph G, and the column indexes are the vertices from Gj,.

For unlabeled graph comparison, there is a correspondence between u; and v; if R(3, j)

|x|Vq

equals to 0. And we define a correspondence matrix C™ € {0, 1}% | to record the

results of these correspondences about all pairs of vertices.

me o~ )1 if R(i,7) =0
(i) = { 0 otherwise (8)
For labeled graph, the correspondences between the vertex pairs are defined more strictly
which should take the labels into consideration. We define a function L which can map all
the identical label set of different graphs into the same number. For instance, L(G) can be
defined as the summation of labels from graph G when the labels are indicated by numerical
values. Therefore the correspondence matrix C™ € {0, I}W" XIVal for 1abeled graph pair G,
and G is written as follows,

0 otherwise

o (i, ) = { 1 ifR(i,j) = Oand L ((Gp)zj) -y ((Gq)’;;) -

where (Gy), and (Gq)vmj indicate the m-layer expansion subgraph routed at u; and v,
respectively. Therefore for both labeled and unlabeled graphs, we could calculate the cor-
respondences between their vertices and obtain a correspondence matrix.

If C™ (i,7) = 1, the corresponding subgraphs (Gy)," and (Gq)vmj
approximately isomorphic and the vertices u; and v; are matched. For a pair of graphs,
note that, a vertex from one graph may have multiple matched vertices from another graph.
In our method, only one matching vertex is allowed for a vertex at most. In order to find as
many vertex correspondences as possible, Hungarian algorithm Munkres (1957) is adopted
to update the correspondence matrix C™ (i, j). Here, the matrix C™ (i, j) can be regarded
as an incidence matrix of a bipartite graph and as the input of the Hungarian algorithm.
By performing this algorithm, each vertex in the graph is assigned with only one matched
vertex from the other graph which is chosen to be the most matched vertex. And the
correspondence matrix is updated to H™ € {0, 1}|VP‘XW‘1| which is defined as

are supposed to be

H™ = Hungarian(C™) (10)

3. Graph Kernel Based on Amplitude Matching

In this section, a novel graph kernel is proposed based on vertex matching by aligning the
amplitude representation of the vertices. And the relationship between the proposed kernel
and the all subgraph (AS) kernel is discussed.
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3.1. The Alignment Matching Kernel

For two graphs G, (V,, E,) and G, (Vy, E;), the reasonable correspondence matrix H™ is
calculated first based on the definition of vertex matching in the previous section.

The amplitude matching kernel KX‘T/In) (Gp,Gy) is defined as

‘VP |Vq

KM (@G, G,) ZZZHW; (11)

r=1i=1 j=1

Eq. (11) indicates that Kg\i) (Gp, Gq) counts the number of matched vertex pairs between
the two graphs G, and G over several correspondence matrices.

Lemma 1 The proposed kernel KS\TQ (Gp, Gy) is positive definite.

Proof From (11), the amplitude matching kernel can be re-written as

M
M
K (G Gy) = Y K" (G, Gy) (12)
r=1
where K" is the base counting kernel that counts pairs of matched vertices between the two
graphs G, and G4 based on the correspondence matrix H" (4, j).

"(GpyGy) = > > 6 (i, vy) (13)

u; €Vp v;€V,

1 ifH" (i,5)=1
0 (s, v5) = { 0 otherwise (14)
Because § is the Dirac kernel that is positive definite, the base counting kernel K" which
is the summation of the Dirac kernel is thus positive definite. Therefore, the amplitude

matching kernel, which is the summation of the positive definite kernels K" is also positive
definite. |

2. Relationship to Classical Graph Kernels

The amplitude matching kernel can be regarded as an R-convolution graph kernel. In this
subsection, the proposed kernel is compared with the classical AS kernel and the effective-
ness of the proposed kernel is demonstrated.

For a graph pair G, (Vj, E,) and G, (Vg, Ey), the AS kernel is shown as follows:

Kis (GpG) = S0 3 oo (Sps 5y) (15)
SpCGp SqCG(I
' . 1 Zf Sp = Sf]
kiso (Sp, Sq) = { 0  otherwise 1o
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where S, ~ S, indicates that the two subgraphs S, and S, extracted from G, and G
respectively are isomorphic. Therefore, the all subgraph kernel is obtained by computing
the number of isomorphic subgraph pairs between the graph G, and G,.

The amplitude matching kernel proposed in this paper is similar to the all subgraph
kernel. According to the definition in Section 2.3, the amplitude representation of a vertex
can be regarded as a vectorial signature of the local information, which is determined by
the k-layer expansion subgraph around this vertex. Thus, when two vertices are matched in
the computation of the amplitude matching kernel, the k-layer expansion subgraphs around
the corresponding vertices are supposed to be approximate isomorphism. From this point of
view, the amplitude matching kernel is another expression of all subgraph kernel on sample
graphs.

Kﬁlj\:@) (Gp,Gq) = Z Z kr (Sp, Sq) (17)
SPQGPSQQG(I

where

1 if Sp= Dng (u) and Sy, = Dng (v),
ki (Sp, Sq) = u and v are matched (18)
0 otherwise

For the kernel K 4, and K 45, it is observed that both of them have the similar mechanism,
which is to count the number of isomorphic subgraph pairs.

However, there are obvious differences between the two kernels. On one hand, the
amplitude matching kernel avoids the NP-hard problem of identifying all pairs of isomorphic
subgraphs appeared in the Kag kernel. Because our method only evaluate the expansion
subgraph around the vertex, the computation efficiency of the K4,, kernel is faster than
the K 45 kernel. On the other hand, the expansion subgraph defined in Section 2.2 includes
the local information around the corresponding vertex. Only the subgraphs around a pair
of matched vertices are evaluated with regard to be isomorphic. Thus, there is a local
correspondence between the isomorphic subgraphs in the K4, kernel. On the contrary,
the pair of isomorphic subgraphs having no local correspondence may also be considered
in the computation of the K 4g kernel. Therefore our kernel can overcome the shortcoming
of ignoring the local correspondence between substructures appearing in the R-convolution
kernel.

4. Experimental Results

In this section, experiments on several graph datasets are done to demonstrate the perfor-
mance of the proposed amplitude matching kernel. Some bioinformatic datasets used in the
experiments are introduced first as well as the basic information of the experimental setup.
Then the proposed kernel is compared with the other state-of-the-art graph kernels under
the task of graph classification.
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Table 1: Key information of the four bioinformatic datasets used in this paper.
Dataset Size  Classes Avg.Nodes Avg.Edges Node.Label Edge.Label

MUTAG 188 2 17.93 39.5 v v
PTC 344 2 14.29 14.69 v Vv
BZR 405 2 35.75 38.36 Vv -
ENZYNES 600 6 32.63 62.14 v -

4.1. Data Sets

In our experiments, four benchmark graph kernel datasets, namely, MUTAG, PTC, BZR
and ENZYMES are applied. All of them can be downloaded from the benchmark web-
site Kersting et al. (2016). Table. 1 shows the detailed information of these datasets.

MUTAG. The MUTAG dataset Debnath et al. (1991) is based on weighted graphs rep-
resentation of 188 chemical compounds. It can be used to predict whether each compound
has mutagenicity. The minimum, maximum and average number of nodes are 10, 28, and
17.93 respectively.

PTC. The PTC (Predictive Toxicology Challenge) Li et al. (2012) is a dataset of many
chemical compounds that reports the carcinogenicity for Male Rats(MR), Male Mice(MM),
Female Rats(FR) and Female Mice(FM). We select 344 MR weighted graphs for evaluation.

BZR. The BZR dataset Sutherland et al. (2003) includes 405 graphs representing lig-
ands of the benzodiazepine receptor. These graphs can be divided into two classes according
to the activity of the compounds. The average number of vertices and edges are 35.75 and
38.36, respectively.

ENZYMES. The ENZYMES is a dataset consisting of 600 protein tertiary structures
obtained from enzyme database Schomburg et al. (2004). It assigns each graph to one of
the 6 classes according to the function of the corresponding compounds.

4.2. Experimental Setup

The graph classification performance of using the proposed amplitude matching kernel is
evaluated based on the aforementioned datasets. And the proposed graph kernel is also
compared with the other state-of-the-art graph kernels. Because there are a large num-
ber of graph kernels proposed in the literature, we can not compare to all of them. Some
famous and representative graph kernels are chosen, which include 1) the Graphlet ker-
nel Shervashidze et al. (2009) with weighted graphlets of 3, 2) the shortest path kernel
(SPGK) with labeled path Borgwardt and Kriegel (2005), 3) the Weisfeiler-Lehman sub-
tree graph kernel( WLGK) using the node labels Shervashidze et al. (2011), 4) the labeled
random walk kernel Gértner et al. (2003), 5) the quantum Jensen-Shannon graph kernel
(QJSK) Bai et al. (2015a), 6) the Lovasz theta graph kernel(LTGK) Johansson et al. (2014),
and 7) the GraphHopper kernel Feragen et al. (2013).

For the proposed amplitude matching kernel, M is set to be 5. For the WLGK and
QJSK, the highest height of subtrees in the Weisfeiler-Lehman isomorphism for WLGK
and the tree-index method for QJSK are both set to be 5.
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datasets.
Datasets MUTAG PTC BZR ENZYMES
Graphlet 80.50+£1.21  57.86+1.64 84.234+0.34  38.93+£1.00
SPGK 86.83+1.62  59.85+2.64  85.054+0.51  41.38+2.01
WLGK 83.7240.98  62.79+2.15 86.88+0.75  53.07£1.12
RWGK 84.78+1.42  58.24+1.93  79.1840.29  20.32+£1.58
QJSU 81.61+£1.90 55.74+0.21  78.73£0.18  10.52£0.90
LTGK 82.06+£1.57 57.15+1.80  79.084+0.72  23.12+0.68
GraphHopper 82.504+1.86 56.35+£1.26  85.15+0.99  36.184+2.00
AMGK 87.39+1.41 62.884+2.28 87.85+0.57 55.23+0.92

All these kernel methods are coded in Matlab 2013a and performed on a laptop with Intel
Core-i5 CPU at 2.30 GHz. In order to evaluate the performance of each kernel matrix, we
perform 10-fold cross-validation with a binary C-SVM to compute the classification accuracy
using LIBSVM library Chang and Lin (2011). In each experiment, nine-tenth of the samples
are used to train the parameters and one-tenth are used for testing. To exclude the random
effects, we repeat the whole experiment 10 times and report the average prediction accuracy
(£ standard error) for comparison.

4.3. Results

The results are shown in Table. 2. It can be concluded that the proposed amplitude
matching kernel (AMGK) outperforms the other convolution-based counterparts on all the
datasets in terms of classification accuracy. And the improvements on different datasets are
various.

There are several reasons for the effectiveness of the AMGK method. Firstly, unlike
those methods WLGK, SPGK and Graphlet which simply decompose the graphs into sub-
structures, the proposed AMGK can incorporate the relative location information between
the substructures in the kernel computation which is neglected in the above three kernels.
Secondly, compared with LTGK and GraphHopper kernels that measure the global similari-
ty information between the graphs using different method, AMGK can capture finer-grained
local structural features of the graphs using the DTQW and recognize the correspondence
information between both the substructures and the vertices. Thirdly, compared with WL-
GK and Graphlet which utilize the isomorphism detection method to design graph kernel,
our kernel can find the aligned isomorphic substructures via matching the amplitude fea-
tures of the subgraphs.
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5. Conclusion

In this paper, an amplitude matching graph kernel is proposed by aligning the amplitude
features of the substructures based on the DTQW. The proposed kernel can capture explicit
local substructure correspondence which overcomes the drawback of ignoring the relative
location information between the substructures that exists in the classical R-convolution
graph kernels. The experiments show that our kernel has a better performance compared
with other state-of-the-art graph kernels in terms of graph classification task.
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