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Abstract

Determinantal point processes (DPPs) are attractive probabilistic models for expressing
item quality and set diversity simultaneously. Although DPPs are widely-applicable to
many subset selection tasks, there exist simple small-size probability distributions that any
DPP cannot express. To overcome this drawback while keeping good properties of DPPs,
in this paper we investigate the expressive power of convexr combinations of DPPs. We
provide upper and lower bounds for the number of DPPs required for ezactly expressing
any probability distribution. For the approzimation error, we give an upper bound on
the Kullback—Leibler divergence n — |logt| + € for any € > 0 of approximate distribution
from a given joint probability distribution, where t is the number of DPPs. Our numerical
simulation on an online retail dataset empirically verifies that a convex combination of only
two DPPs can outperform a nonsymmetric DPP in terms of the Kullback-Leibler divergence.
By combining a polynomial number of DPPs, we can express probability distributions
induced by bounded-degree pseudo-Boolean functions, which include weighted coverage
functions of bounded occurrence.

Keywords: Determinantal point processes, Convex combination

1. Introduction

Subset selection tasks play an immense role in a wide range of situations wherein one would
like to extract a small number of representative items. Often good subsets are expected
to consist of high-quality and diverse items. For example, in recommender systems, a few
candidates that possess both high reputation and distinct characteristics should be presented
to users so that any user can examine every candidate and adopts at least one of them.
Determinantal point processes (DPPs) offer an appealing probabilistic model which
achieves a balance between item quality and set diversity, and have been widely applied to
many tasks in machine learning, e.g., recommender systems (Wilhelm et al., 2018), image
search (Kulesza and Taskar, 2011a), and document summarization (Kulesza and Taskar,
2011b). Given a kernel matrix L, a DPP defines the probability mass for each subset A
in proportion to det(L4), the principal minor of L indexed by A. DPPs exhibit negative
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correlations, which intuitively mean that similar items rarely appear simultaneously. Unlike
other probabilistic models such as graphical models (Cooper, 1990; Dagum and Luby, 1993),
DPPs make various inference tasks tractable; e.g., normalization and sampling can be
performed in polynomial time (Hough et al., 2006; Kulesza and Taskar, 2012).

However, one serious drawback of DPPs is that their expressive power is limited; there
exist simple probability distributions that any DPP cannot express exactly. Several classes
of point processes generalizing DPPs have been proposed, e.g., signed DPPs (Brunel, 2018),
nonsymmetric DPPs (Gartrell et al., 2019), exponentiated DPPs (Anari and Gharan, 2017,
Mariet et al., 2018), and II-DPPs (Ohsaka and Matsuoka, 2020). However, efficient inference
is sacrificed, or the expressive power is still limited (see Section 2). Thus, we quest for a class
of point processes that are more expressive than DPPs while offering efficient algorithms for
inference tasks.

Our choice for the above purpose is a convex combination of DPPs (hereafter called a
CC-DPP), appearing in Kulesza and Taskar (2011a). We can conduct some inference tasks
for CC-DPPs by utilizing efficient algorithms for inference tasks on positive semidefinite
kernel DPPs. For example, for sampling, we can adapt any sampling algorithms defined
for positive semidefinite kernel DPPs. Let ¢ denote the number of DPPs constructing the
CC-DPP (we call it the size of a CC-DPP)!. If we utilize the algorithm by Derezinski
et al. (2019) for sampling on a positive semidefinite kernel DPP, we can draw a random
sample from a CC-DPP in O(t + poly(E(]S]))) time with O(¢n - poly(E(]S|))polylog(n))-time
preprocessing, where n is the cardinality of the ground set, E denotes the expectation, and
S is a set sampled (E(|S|) < rank(L)). For other fundamental inference tasks including
nomalization, marginalization, and conditioning, the computational cost is roughly ¢ times
that of a positive semidefinite kernel DPP. For the space of the model, a CC-DPP takes
space roughly ¢ times that for storing a positive semidefinite kernel DPP.

In addition to time and space efficiency, the major interest in the model is its repre-
sentability. For representability, however, not much is known even for DPPs. In this paper,
we focus on the representability of convex combinations of DPPs from both theoretical and
empirical approaches.

1.1. Our Contributions

In this paper, we conduct a study on convex combinations of DPPs systematically?. Given t
kernel matrices L', ..., L! along with nonnegative real numbers A1, ..., \; with Zle A =1,
we define the probability mass for each subset A as 2¢_ | \; - det(LY)/ det(L + I). We call
a CC-DPP with t DPPs a size-t CC-DPP. We investigate the expressive power of CC-DPPs
through theoretical analysis, numerical study, and introduction of a concrete class. Our
contributions are detailed below.

Properties and Inference (Section 3.3). We demonstrate that some properties of
DPPs and inference algorithms for DPPs can be extended to CC-DPP case with certain
computational cost.

1. There exist CC-DPPs with different sizes for the common probability distribution.
2. Note that a convex combination of DPPs is quite different from a DPP defined by a convex combination
of kernel matrices.
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Number of Necessary DPPs for Exact Representation (Section 4). We investigate
the exact representability of CC-DPPs. We devise upper and lower bounds on the number
of DPPs required for ezactly expressing any probability distribution.

Approximation Error (Section 5). Since the bounds appearing in Section 4 are bounds
for the exact representation, we expect that combining a smaller number of DPPs is enough
for approrimating any distributions. Thus, we investigate the approximation error for
CC-DPPs. For a given joint probability distribution g* and a size-t CC-DPP of n x n
matrices, we give an upper bound n — |logt| + € on the Kullback—Leibler divergence of
approximate distribution from g* for an arbitrary positive e.

Numerical Study (Section 6). Since the upper bound for the approximation error
presented in Section 5 is for the worst case, we investigate the empirical performance of the
model for real data. Our simulation results indicate the superiority of a convex combination
of DPPs over a DPP on the Kullback—Leibler divergence. Using a real dataset of online
retail, we confirm that the obtained size-2 CC-DPP is superior to the obtained nonsymmetric
DPP, and one kernel seems to roughly represent importance of each element and the other
kernel seems to roughly represent negative correlations between each pair of elements.

Representable Distribution Class (Section 7). By a convex combination of a polyno-
mial number of DPPs, we can exactly express certain point processes. We can represent some
point processes appearing in Iyer and Bilmes (2015) as subclasses of the submodular point
process, by polynomial-size CC-DPPs. Concretely, we represent point processes induced
by bounded-degree pseudo-Boolean functions, which include weighted coverage functions of
bounded occurrence.

1.2. Scope of This Paper

We remark that, if not explicitly written, we mostly deal with real-valued positive semidefinite
kernel DPPs and their convex combinations in this paper since we can conduct some inference
tasks for real-valued positive semidefinite DPPs faster than for other types of DPPs, see,
e.g., Kulesza and Taskar (2012). In this paper, we often write simply as a “DPP” to mean a
real-valued positive semidefinite kernel DPP. Nonsymmetric DPPs have stronger expressive
power (Gartrell et al., 2019), and hence we adopt a nonsymmetric DPP for comparison in
the numerical simulation (Section 6).

2. Related Work

The determinantal point process is initially proposed by Macchi (1975) as a model for
fermions in statistical physics. In the machine learning community, DPPs have received
significant attention from researchers by virtue of a number of desirable features (see,
e.g., Kulesza and Taskar (2012)). For example, DPPs are closed under complement and
restriction, and inference tasks including (constrained) sampling can be conducted in
polynomial time (Kulesza and Taskar, 2011a; Celis et al., 2017).

Several studies have been conducted on devising a rich class of point processes by
generalizing DPPs. Signed DPPs considered by Brunel (2018) ensure that K;; = £K;; for
any i # j for the marginal kernel K, which is no longer symmetric. Signed DPPs can encode
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both repulsion and attraction to a certain degree, but the precise expressive power is not well-
understood. Gartrell et al. (2019) investigate nonsymmetric DPPs, which admit a general
nonsymmetric real matrix as a kernel matrix. This class is obviously more general than
signed DPPs as well as DPPs but still cannot represent the example introduced in Section 7.
Exponentiated DPPs (Anari and Gharan, 2017; Mariet et al., 2018) define the probability
of taking a subset A as in proportion to det(L4) to the p-th power, where p is a fixed
number. Although exponentiated DPPs have stronger expressive power and the algorithms
on approximation have been investigated, performing exact normalizing is hard (Gurvits,
2005; Ohsaka and Matsuoka, 2020). Probability distributions defined by the product of DPPs
(II-DPPs) are studied (Ohsaka and Matsuoka, 2020), but although the paper gives some
FPT results, hardness results are also given for computing a nomarlizing constant (Ohsaka
and Matsuoka, 2020). Log-submodular point processes (Log-SPPs) by Djolonga and Krause
(2014) and Gotovos et al. (2015) are a generalization that defines the probability mass
for any subset A in proportion to exp(8f(A)), where f is a submodular set function, and
B > 0 is a scaling parameter. A related class is submodular point processes (SPPs) proposed
by Iyer and Bilmes (2015), probability mass for any subset A of which is given in proportion
to f(A) for a submodular set function f. Since computing the normalizing constant for
Log-SPPs and SPPs requires exponential time (Iyer and Bilmes, 2015), we have to resort
to approximate inference by sampling. Unlike the above models, the convex combination
of DPPs expresses practical classes of point processes (Section 7) and allows us to perform
inference tasks exactly.

The most closely related work is that of Kulesza and Taskar (2011a), who propose to
take a convex combination of DPPs. The original motivation of Kulesza and Taskar (2011a)
is to learn k-DPPs by optimizing weights over fixed DPPs. Our study reveals that taking
convex combinations over multiple DPPs results in a rich class of point processes while
maintaining computational tractability.

3. Preliminaries

This section gives notations used in this paper, reviews the definition and basic properties of
DPPs, and introduces the definition of CC-DPPs. Table 1 lists definitions and notations
frequently used in this paper.

Notations. Let V = {1,...,n} denote the ground set of a finite number of items. A point
process P on V is defined as a probability measure on the power set 2. Consider a random
subset Y drawn from a point process on V', which can be the empty set (), the ground
set V, or anything between them. Then, for a set A C V, we use P(A C Y) to denote
the probability that Y includes A, which will be referred to as the marginal probability,
and we use P(Y = A) to denote the probability that Y is exactly equal to A, which will
be referred to as the joint probability. We have a simple relation between them that is
PACY)=> scpcy P(Y = B). Since a point process can be thought of as a probability
vector over the possible subsets of V, we use p = (pa)acv € R2" to denote the vector
corresponding to the marginal probabilities, where py = P(A C Y') for some point process,
and we use ¢ = (ga)acy € R2" to denote the joint probability vector, where g4 = PY =A)
for some point process. Note that we align elements in such vectors in lexicographical order.
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Table 1: Notations used in this paper.

notation description

V={1,...,n} the ground set of n items

P a point process defined on V'

p = (pa)acv a vector in R2" for a point process over V with py = P(ACY)
(representing marginal probabilities)

q = (qa)acv a joint probability vector in R2"
for a point process over V with g4 = P(Y = A)

K a marginal kernel in RY*V that defines a DPP

L a joint probability kernel in RY*" that defines an L-ensemble

Ma = (M;j)ijea the restriction of a matrix M to the elements indexed by A C V
the number of kernels over which a convex combination is taken
= (Mi)iepy a nonnegative real vector with S°/_ \; = 1 (probability vector)
(KY,...,K% ) a tuple of ¢ marginal kernels and
a nonnegative real vector that defines a CC-DPP
(LY, ..., L5 ) a tuple of ¢ joint probability kernels and
a nonnegative real vector that defines a CC-DPP

>4P0-

In this paper, we adopt 2 as a base of logarithm. For probability distribution g and ¢,
D(q||d") = > gcv asloglas/dys) is called Kullback-Leibler divergence (KL-divergence) of
q' from g (define the summand as 0 for S with ¢ = 0). Note that KL-divergence is 0 if
and only if ¢ = ¢’ holds. KL-divergence is nonsymmetric but widely used because of good
properties (cf. e.g., Cover and Thomas (2012)).

Determinantal Point Process. A point process P on V is called a determinantal point
process (DPP) (Macchi, 1975) if there exists a real positive semidefinite matrix K € RV*V
such that P(A CY) = det(K 4) holds for all A C V', where K4 = (Kjj)ijca € RA*A s the
restriction of K to the elements indexed by A, and we define det(Ky) = 1. We call K a
marginal kernel. Every real positive semidefinite DPP satisfies the log-submodular property;
i.e., det(K 4)det(Kp) > det(Kaup)det(Kanp) for all A,B C V.

We then introduce a slightly restricted class of DPPs called L-ensembles. Given a
real positive semidefinite matrix L € RV*V, an L-ensemble (Borodin and Rains, 2005)
defines a DPP whose joint probability satisfies P(Y = A) o« det(L,) for all A C V.
We call L a joint probability kernel. The normalizing constant has a simple closed form
Yoacy det(La) = det(L + I) (Kulesza and Taskar, 2012), and we thus have that P(Y =
A) = det(La)/det(L + I). We use marginal kernels K and joint probability kernels L
interchangeably.

3.1. Definition of CC-DPPs

A convex combination of DPPs is simply a point process whose probability distribution is
given by a convex combination of multiple DPPs. Formally, let K', ..., K! be t marginal
kernels on V', and let A = (););cy) be a nonnegative real vector satisfying 22:1 A; = 1. Then,
a convexr combination of DPPs (CC-DPP) is defined as a point process whose marginal
probability for subset A C V is given by P(A C Y) = 3¢, \; - det(KY). Similarly, for
given t joint probability kernels L', ..., Lt and A = (Ai)ier), we define a CC-DPP as a point
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process whose joint probability for subset A C V' is given by P(Y = A) = 2221 A %.

We call the number ¢ of marginal (or joint) kernels the size of a CC-DPP. We denote
CC-DPPs by tuples (K*',..., K% X) or (LY, ..., LE; ).

3.2. Example

Here, we demonstrate that the class of CC-DPPs is wider than that of DPPs. Consider
a joint probability vector ¢ = (%, %, %, %) on V = {1,2}. The corresponding marginal
probability vector is then p = (1, {5, i, %) Since p wviolates the log-submodularity; i.e.,
p1p2 — pgp12 = —1/48 < 0, it cannot be represented by any real positive semidefinite DPP.
On the other hand, we can express p by a size-2 CC-DPP: %731 + %732, where marginal

kernels for P; and P, are given by

1 2

10 2.0
K1:<2 >andK2:<3 1),

00 0 1

respectively. Note that, as this example, it may be impossible to represent a size-2 CC-DPP
by a single real positive semidefinite DPP even if both kernels are diagonal matrices.

3.3. Properties and Inference

We extend known useful properties and existing efficient inference algorithms for DPPs to
CC-DPPs. As a consequence, we can perform a variety of inference tasks for the class of
point processes introduced in Section 7 efficiently. For properties and inference tasks, we
refer Section 2.2 of Kulesza and Taskar (2012).

3.3.1. USEFUL PROPERTIES

We first demonstrate that the class of CC-DPPs is closed under the following operations.
Here, let Y be a random set of a CC-DPP (K!,..., K% X). (We use marginal kernels
following Kulesza and Taskar (2012).)

e Scaling: For a scaling parameter v € [0, 1], create a point process P’ on V with
P(SCY)=+%.-P(SCY)forall SCV.

e Complement: Create a point process P’ on V with P/(SCY)=P(SCV\Y).

e Restriction: For a subset A C V| create a point process P’ on V with P'(S C Z) =
Yv:z=yna P(SC Y NA).

Claim 1 For any positive integer t, the class of CC-DPPs of size t is closed under scal-
ing, complement, and restriction. Specifically, for a CC-DPP (K',... K% X) of size t,
CC-DPPs obtained by applying each operation have the following form and are of size t:
(YK, ...,vK% X)) (scaling), (I — K',...,I — K% X) (complement), and (KY,..., Ki;X)
(restriction).

Proof We can adapt Section 2.3 of Kulesza and Taskar (2012) to verify the correctness
by simple calculations: 3, \idet(vKy) = S AASIP(S C Y) for all S C V (scaling),
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PSNY =0)=>,\NP(SCV\Y) forall S CV (complement),
i S AP(S

det(K%) = g_ Y NA) for all S C A (restriction). B

3.3.2. EFFICIENT INFERENCE

We can naturally adapt existing efficient inference algorithms for DPPs to CC-DPPs with
roughly ¢ times the cost of that of existing algorithms in the time complexity. Following
previous studies (Kulesza and Taskar, 2011a, 2012; Celis et al., 2017, 2018), we use joint
probability kernels (except for L-ensemble representation task); let (L',..., Lf; X) be a
CC-DPP on V of size t.

Normalization: For a CC-DPP (L!,..., L*; X), one can normalize this CC-DPP just
by normalizing each L’ as an L-ensemble.

Marginalization: The marginal probability of a random set including subset A C V' is
equal to 3" ycscy Sov_q A det(Ly)/ det(L'+1I). Simple calculation (cf. Theorem 2.2 of
Kulesza and Taskar (2012)) reveals that any joint-kernel representation (L', ..., L}; \)
is translated into an equivalent marginal-kernel representation (K!,... K% X), where
K'= LY(L*+ I)~! for all i € [t]. The whole computation can be done by ¢ times of
matrix multiplication in O(¢tn“) time, where w is the exponent of matrix multiplication.

L-ensemble Representation: Conversely, we can translate a marginal-kernel repre-
sentation (K, ..., K% X) into an equivalent joint-kernel representation (L', ..., L*; ),
where L' = K*(I — K*)~! for all i € [t] provided that no eigenvalue of K%’s achieves 1,
which is the same assumption as for DPPs.

Conditioning: Consider conditioning a CC-DPP on the event that none of the
elements in F' appears and all of the elements in T" appear in the random set for
two disjoint sets F,T" C V. The resulting point process is a CC-DPP defined by
(L', ., L5 X)), where Lf = ([(Lyy p + Dyne) " ing) ™ — 1 and A] oc Ay - det(Li, o +
Iy\r)/ det(L' + I) for all i € [t], where Iy, 7 is a diagonal matrix such that (Iy\7)s
is 1if i € V\ T and 0 otherwise, which is a straightforward application of Kulesza
and Taskar (2012). Hence, the class of CC-DPPs is closed under this conditioning
operation, and the transformation takes O(tn*) time.

Sampling: By choosing one joint probability kernel L from L', ..., L! according to
the probabilities from A and sampling from L, we can sample a random subset from
a CC-DPP (L',... L% ) in O(t + n**!) time by applying a generic algorithm, see,
e.g., Lemma 22 of Celis et al. (2017). (Note that, as we see in Section 1, there is
an algorithm for sampling on a DPP in O(¢ + poly(E(|S]))) time with preprocessing
in O(tn - poly(E(|S]))poly log(n)) time by Derezinski et al. (2019), where E is the
expectation and S is a subset of the ground set, and remark that E(|S|) < rank(L)
holds.)

Thanks to the simple nature of convex combinations, we can adapt existing algorithms
for constrained sampling to CC-DPPs as follows.
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Fixed-size Sampling. Given a point process and integer k, consider conditioning on
the event that the sample is limited to one of size k; i.e., a new point process whose joint
probability is proportional to the original one for size-k subsets and 0 for the others. Such
constrained point processes for DPPs are called k-DPPs (Kulesza and Taskar, 2011a). We
here present how to sample a fixed-size set from a CC-DPP (L, ..., L*; X). Normalization for
any k is an easy task since » g, g1_g D iepn A det(L%)/det(L' + 1) is a convex combination
of the normalizing constant for k-DPPs defined by L’s, each of which can be computed in
time O(n?). Then, observing that the class of size-t CC-DPPs with constraint such that the
size of a set sampled is k (over each k) is closed under conditioning, we can use a generic
algorithm for sampling on a DPP.

Partition Constrained Sampling. Subset sampling under partition (or fairness) con-
straints is also useful and known as P-DPPs (Celis et al., 2018). Let P, ..., P, be a partition
of V and by,...,b, be integers, a partition family is defined as C = {S C V | |[SNP;| =
b; Vj € [p]}. Celis et al. (2017) show that if one can construct an oracle calculating a gener-
ating function g(x) = Y gcy qs | [;cg ®i for joint probabilities ¢ and an arbitrary a € RY,
then one can draw a subset in C from q. Now, let g1,...,g; be the generating functions for
L-ensembles of L', ..., L!. We then have that the generating function for the CC-DPP is
g(x) = >'_, Nigi(x), which can be computed in time O(tn®) since we can compute each g;
in time O(n“) (Fact 8 of Celis et al. (2017)). Consequently, the entire sampling completes
in tnPtO time (Corollary 10 of Celis et al. (2017)).

Budget Constrained Sampling. The tractability of evaluating the generating function
of CC-DPPs immediately implies efficient subset sampling under budget constraints. Let
c € ZY,, be a cost vector, and b € Zx( be a budget, and let us denote ¢(S) = Y, g ¢;. Then,
a linear family is defined as {S C V' | ¢(S) = b}. Celis et al. (2017)’s method works for this
constraint, where the time complexity is bounded by t||e||;n°™), which actually works for
even the case of multiple budget constraints (see Corollary 5 of Celis et al. (2017)).

4. Bounds on the Number of Necessary Kernels for Exact Representation

In this section, we provide an analysis on the representability of CC-DPPs. Concretely, we
give upper and lower bounds on the number of required kernels for representing any given
probability distribution ezactly. Note that it is not the purpose that we actually obtain the
DPPs by proofs in this section. For smaller-size CC-DPPs for approximation, we argue in
Sections 5 and 6. Note that proofs in this paper majorly use DPPs with diagonal matrix
kernels.

4.1. Upper Bound

We first show an upper bound on the number of kernels.

Theorem 1 There exists a CC-DPP which represents a given probability distribution on
{1,...,n}, the size of which is at most 2"~ 1.

Proof Let g € R2" be an input joint probability vector. Fix an arbitrary element v € V.
Let F ={V(C V) |[v eV, (qun{y} > 0)or (g > 0)}. For each V' € F, let K" be a
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diagonal matrix such that ng/-/ =0ifi#jori=j¢V, 6 KY =1ifiecV'\{v}, and

Vi Ay o KV’ . s R
that K, = VR This KV corresponds to a joint probability vector with T ior T
for V' and % for V' \ {v}. Then, one can obtain a CC-DPP presenting the given

probability distribution by taking the convex combination of DPPs for all V' € F such
that gy ») +qv is a coefficient Ay of KV, Since | F| <271 we need at most 2"~ DPPs. B

4.2. Lower Bound

We show a linear lower bound on the size with the constructive proof.

Theorem 2 There exists a probability distribution on {1,...,n} such that we cannot repre-
sent by a CC-DPP whose size is less than n/2.

Proof Let V = {1,...,n}. Let g be the input joint probability vector such that
qv = QV\{LQ} = qV\{1,2,3,4} = - = qV\{172’._72L%J} = 1/'_%J and all the other elements
are 0. Consider constructing a CC-DPP ({K7};; X) which represents g. Since gy > 0 and
qv\{i;y = 0 for all i € V, at least one kernel matrix K J must correspond to a joint probability
vector g such that gy > 0 and that gy ;3 = 0 for all ¢« € V. Without loss of generality,
we assume K is such a K7. Then, since det(K{,) = ¢y and det(K‘l/\{i}) = qn\{iy +av,
d
v\ (iy = 0 requires the condition det(K7,) = det(K‘l/\{Z.}). For K{, = <’UT Klv >, since
VA{i}
det(K{,) = det(le/\{Z.}) det(d — ’UK%/\{Z-}UT), we have d = 1 and v = 0. By doing the same
discussion on all i, we have that K' is an identity matrix. This means that if ¢, > 0,
then all the other elements of ¢ are 0. By inductive argument, only one element is positive

for each vector corresponding to gy\(12};-- -, W\{1,2,..2(2 ]} Therefore, we need at least
1+ 5] >n/2 DPPs. [ |

5. Bound on Approximation Error

In the previous section, we evaluate lower and upper bounds of the number of necessary DPP
kernels for exactly expressing an arbitrary distribution. However, we expect that smaller
number of DPPs are enough for a CC-DPP for approximation. Thus, in this section, we
investigate an upper bound of KL-divergence. We utilize the method by Montufar et al.
(2014); one for evaluation of KL-divergence on a certain mixture model with disjoint supports.
For KL-divergence, we obtain the following bound.

Theorem 3 Let t be a positive integer and € be a positive real number. For an arbitrary
joint probability vector q* € RQZ‘B, there exists a joint probability vector r represented by a
CC-DPP of size t satisfying

D(q*[|lr) <n — [logt] +¢,

where n is the cardinality of V. In other words, there exists v such that D(q*||r) is upper
bounded by a number which is larger but arbitrarily close to n — [logt].
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Proof Let k = 2U°8t] For an arbitrary joint probability vector g*, take a joint probability
vector g such that ¢ = ngk] agmns where ag is nonnegative and satisfies ng[k] ag =1,
and (ng)x is defined as QH%,C if X N[k] =S and 0 otherwise for each X C V.

Using the above {as} gy, we can define a joint probability vector 7 as follows: for a

% if X N[k] C S and 0 otherwise for each X C V,

and 7 = > gcpy asni. For each S C [k], let R® be a diagonal matrix defined as M if v € S,

0if v € [k]\ S, and 1 otherwise. The above R® is an L-ensemble of a DPP corresponding to
M Note that limM_mo r = q holds. We show the following lemma.

Lemma 1 IfM > > , then 27 qx < rx holds for each X CV with qx > 0.

real number M, let (n¥)x be

Proof From the deﬁmtlons of g and r, for each X C V, max{qx — rx,0} is equal to

2n — (1 — (MLH)M) if X N[k] = S and 0 otherwise holds. Then, for each X C V with gx > 0,

gx —rx < 2n#,k(l — (MLH)]C) < 2n#,k(l — (ﬁ)k) = (1 — 27%)gx holds since gx = 1/2"7*.
Thus, 27¢gx < rx holds. |

Since log% < log log X+ log 5+ 5= for ¢ > 0 by Lemma 1, we have D(q*||r) <

2 =
.
DXV g5 >0 q% log Z—i + ZXQV; 05 >0 ¢ log 5 5= = D(q"||q) + €. By Corollary 3.3 of Mont-
ufar et al. (2014), ming D(q*||q) < log(2"/k) = n —logk = n — [logt] holds. Thus, by
taking the minimizer q of the above KL-divergence and defining r by the same {ag} as
g, we obtain r for which the inequality in Theorem 3 is satisfied. (Note that if one wants
to obtain an exactly-size-t CC-DPP, then such a CC-DPP can be constructed by adding
arbitrary t — k(= t — 2l°8%)) DPPs with coefficient 0.) [ |

6. Numerical Simulation

Having established an upper bound on the KL-divergence (Theorem 3), we now analyze
the expressive power of CC-DPPs empirically. One can naturally expect that fewer kernel
matrices than those envisioned from theoretical analyses are sufficient to express real-world
distributions. We verified this by numerically optimizing CC-DPPs given a real-world retail
dataset. Our experimental results indicate that (1) the empirical KL-divergence is far smaller
than the theoretical bound in Theorem 3, (2) a CC-DPP with a small ¢ (e.g., t = 3) can
suffice to achieve a moderately small KL-divergence, and (3) even a CC-DPP with ¢t = 2 can
outperform nonsymmetric DPPs.

Setup. We will explain how to optimize CC-DPPs and nonsymmetric DPPs, as a reasonable
competitor, which include signed DPPs as well as DPPs. Given a log of m observations
Yi,..., Y, CV for a ground set V, we first construct a joint Frobablhty vector q € R2"
such that qa for A C V is the fraction of observing A, i.e., g4 = liemlYi=A} =y objective
is then to minimize the KL-divergence of a CC-DPP (L!,... Lt \) on 1% from q; in other
words, we would like to solve the following optimization problem:

qA
Lo > dalog det(L?) |- 1)

ACV el A det(Ly+1)
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Even though a CC-DPP can have positive probabilities for exponentially many subsets,
to evaluate the objective function in Eq. (1), we do not need to run through every subset
A CV, but only need to run A such that g4 > 0.

We now explain how to optimize a CC-DPP. Define X' € R? with \; = \}? for all i € [t]
and || N|? = 1. Given that (i) L’ is positive semidefinite for all i € [¢] and that (i) X’ is
a point on the unit sphere, the space spanned by L', ..., L! and X forms a manifold. We
can thus use optimization techniques on manifolds (Absil et al., 2009) to directly optimize
Eq. (1). Note that the number of trainable parameters of a CC-DPP of size ¢ is equal to
t"(n;l) + t, where n is the size of V.

We next explain how to optimize nonsymmetric DPPs. It is known that a nonsymmetric
DPP defines a probability distribution if and only if its joint probability kernel is a Pg-
matrix 2 (Gartrell et al., 2019). To apply manifold optimization techniques, we represent a
Po-matrix L € R™" by L =S + A, where S € R™*"™ is positive semidefinite matrix, and
A=BCT—-CB" € R™™" is skew-symmetric with arbitrary matrices B, C' € R™ ", according
to Gartrell et al. (2019). Note that the number of trainable parameters of nonsymmetric
DPPs is n?.

We used Pymanopt (Townsend et al., 2016), an off-the-shelf solver for manifold optimiza-
tion, and executed a steepest descent algorithm with back-tracking linear-search to minimize
Eq. (1) for both CC-DPPs and a nonsymmetric DPP. Optimization terminates when the
gradient norm is less than 1076, For each setting, we ran Pymanopt 20 times and calculated
the average and the standard deviation of the KL-divergence. We conducted experiments on
a Linux server with an Intel Xeon E5-2699 2.30GHz CPU and 792GB memory.

Dataset. We used the Online Retail Data Set (Chen et al., 2012)*, which has been tested
in the literature of learning DPPs (Warlop, 2018; Gartrell et al., 2019; Mariet et al., 2019;
Warlop et al., 2019), to construct the joint probability vector. This is a public dataset that
contains 25,900 observations of subsets from 4,070 unique stocks, consisting of transactions
between December 2010 and December 2011 from an online retail based in the UK. We
excluded every item but the 20 most frequently occurring items so that the resulting dataset
would contain m = 12,375 observations, each of which is a subset of n = 20 items. Each
observation was randomly assigned to either the training set or test set in the ratio of 3
to 1, resulting in the observations being split into the training set of 9,316 subsets and
test set of 3,059 subsets used to construct the training and test probability vectors ¢'* and
q*, respectively. More specifically, we use g% to optimize the parameters of CC-DPPs and
nonsymmetric DPPs and evaluate the resulting model by calculating the KL-divergence
from q'.

Results. Table 2 shows the average and standard deviation of the KL-divergence over 20
runs for each of the DPP, the CC-DPPs of sizes t = 2,...,5, and the nonsymmetric DPP.
The X’s are calculated as the average over 20 runs and are in decreasing order.® The number
of trainable parameters for each model is also shown in the table. We first compared the
empirical KL-divergence to the theoretical bound. Theorem 3 states that any probability
distribution can be expressed by a size-3 CC-DPP of KL-divergence ~ 20 — |log 3] = 19.

3. A matrix L € R™*" is called a Po-matrix if its all principal minors are nonnegative.
4. Available from https://archive.ics.uci.edu/ml/datasets/online+retail
5. We confirmed that the standard deviation for each \; is less than 0.012.
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Table 2: Experimental results for the DPP, CC-DPPs of size t = 2, ..., 5, and nonsymmetric
DPP on the Online Retail Data Set. ¢'" and ¢'® denote the training and test
probability vectors constructed from 9,316 and 3,059 observations of subsets,
respectively (see also Dataset paragraph). D(q"||) and D(q*||-) denote the
KL-divergence (average + standard deviation) of each model from ¢" and g%,
respectively. Each ()‘i)ie[t] is calculated as the average over 20 trials and is in
decreasing order.

model #params.| D(q"|) D@ ll) | M X A5 A X
DPP 210(2.123 + 0.007 2.502 +0.006 | —
Nonsym. 400|1.624 +£0.020 2.017 +0.017 | -
=2 421(1.571 £0.015 1.993 + 0.015 |0.781 0.219
t=3 632|1.462 +0.029 1.876 +0.032 |0.750 0.226 0.024
t=4 843(1.459 + 0.009 1.872 4+ 0.009|0.748 0.225 0.026 0.000
t=2>5 1,054|1.460 £ 0.007 1.872 4+ 0.007|0.747 0.227 0.026 0.000 0.000

-0.4 -0.4
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Figure 1: Heatmaps of two kernel matrices L', L? of the obtained size-2 CC-DPP (rows and
columns are ordered manually).

On the other hand, Table 2 indicates that the empirical KL-divergence is 1.876, which is
ten times smaller than the theoretical bound. This is because Theorem 3 is based on the
worst-case analysis.

When comparing among DPPs, nonsymmetric DPPs and CC-DPPs, the size-4 CC-DPP
achieved 7% lower KL-divergence than the nonsymmetric DPP, while the nonsymmetric
DPP achieved a 19% lower KL-divergence than that the DPP achieved. Overall, we have
the following trend regarding the KL-divergence on test data: (size 3) ~ (size 4) ~ (size
5) < (size 2) < (Nonsym.) < (DPP). Since A4 and )5 have a weight of less than 10719, a
convex combination of three DPPs seems to be sufficient to express g for this dataset.

We finally analyzed the kernel matrix of CC-DPPs through visualization. Figure 1 shows
heatmaps of two kernel matrices L' and L? of the size-2 CC-DPP, the rows and columns
of which are ordered manually. The two matrices play a different role in constructing
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probability distributions. Clearly, L' has two clusters, which means that two or more items
are unlikely to be chosen from the same cluster at the same time. On the other hand, L? has
small off-diagonal and large diagonal elements, and no cluster structures are observed. Such
structural properties indicate that the DPP solely defined by L? is close to independent
distributions (i.e., Poisson point processes). In this way, CC-DPPs can have the ability to
decompose a given distribution into easy-to-interpret DPPs.

7. Compactly Representable Class by a CC-DPP

We introduce a basic class of point processes; pseudo-Boolean functions, captured by convex
combinations of a polynomial number of DPPs, that cannot be represented by a single DPP.
This class appears in Iyer and Bilmes (2015) as the subclass of submodular point processes.

In the following, we introduce set functions f: 2V — R>0 and examine a point process
such that P(Y = 5) ox f(5) for all S C V. We demonstrate the number of kernels required
for expressing classes below is bounded by a polynomial in n. We can thus perform inference
tasks in polynomial time. Let V = {1,...,n}. A function f: {0,1}" — R is called a
pseudo-Boolean function, which has a unique polynomial forms f(x) = -y ar [[;cr %

for a real vector @ = (ar)rcy € R2". Pseudo-Boolean functions naturally include graph
cuts, and optimization on them has a diverse range of applications (see, e.g., the survey
in Boros and Hammer (2002)).

Let us consider a point process on V' such that P(Y = S) o f(z(95)) for all S C V, where
x(S) € {0,1}" is an indicator vector of S. Assume here that a > 0 in order to ensure P is
valid. Let supp(a) ={T"C V | ar > 0}. Now, we show that f can be written by a CC-DPP

2IVA(SUT)|
of size |[supp(a)|. Observe that P(S CY) is 2rcy o1 =Y ey AT 2~ 1\T| where

2rcy ar-2IV\T|

A = % for all T'C V. Hence, we construct for each T' € supp(a), a marginal
ZT’QV apr-2 7]

kernel K7 such that sz; =1 for all i € T, all the other diagonal elements are 1/2, and all the
other elements are 0. The resulting CC-DPP ({K” }requpp(a); A) of size [supp(a)| matches
P. Because [supp(a)| < Zgzo (1) = O(n?), where d is the degree of f (which is defined
the maximum size of T C V such that ap # 0), point processes induced by pseudo-Boolean
functions of bounded degree can be expressed by a polynomial-size CC-DPP.

Weighted Coverage Functions of Bounded Occurrence. As an application of a
pseudo-Boolean function representation, we show that weighted coverage functions have a
polynomial-size CC-DPP representation if the number of occurrences of each element is
bounded. For a universal set U, let F = {S1,...,S,} be a family of subsets of U, ¢ € Rgo
be a nonnegative real vector, and V = {1,...,n}. Consider a weighted coverage function
f:2Y = Rxg defined as f(A) = ¢({J;c 4 S:) for subset A C V. Then, we denote the set of
indices ¢ for which S; includes an element v € U by I(u) = {i € V | u € S;}, and we define
a polynomial g as g(x) = >, i Cu (1 — [ ier (1 — xz)> Observe that g(x(A)) = f(A) for
all A C V, and the degree of g is equivalent to the maximum number of occurrences in F of
each element u of U, i.e., max,ey |I(u)|. Hence, we can express weighted coverage functions
using a polynomial number of DPPs whenever the number of occurrences is bounded by a

constant. Almost the same argument holds for probabilistic coverage functions, see, e.g.,
Iyer and Bilmes (2015).
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Undirected Cut. Given an undirected graph G = (V, E), the cut function c: 2V — Z>0
is defined as the number of edges whose one endpoint is in S and the other one is not in S
for subset S C V, ie., ¢(5) = |[{{u,v} € E| (ue€ S)A (v ¢&S)}. Then, the point process
derived by ¢ is P(Y = S) o< ¢(S), or equivalently, P(S CY) =3 ¢, yep 2 15Im=1 . [(u ¢
S)V (v ¢ S)], where [¢] is 1 if ¢ is true and 0 otherwise.

Here, we give an example showing strong representability of size-3 CC-DPP model
compared with some (generalized) real DPP models. The joint probability vector g =

(0, %, %, %, é, %, %, 0) can be represented by a size-3 CC-DPP with

1/2 1/2 0 1/2 0 1/2 1/2 0 0
Ki=|1/2 12 0|, Ky=[0 1/2 0|, Ks=[0 1/2 1/2],
0 0 1/2 1/2 0 1/2 0 1/2 1/2

and )\1 = )\Q = /\3 = 1/3.

Claim 2 The point process whose joint probability is proportional to the cut function in
the undirected 3-clique (triangle graph) cannot be expressed by DPPs, signed DPPs, or
nonsymmetric DPPs.

Proof Showing the claim for nonsymmetric DPPs; of which kernel is not necessar-
ily symmetric, is sufficient. Let G = (V,E) be the 3-clique. Assume the existence
of a marginal kernel K that yields the desired point process. Recall that K is a real
matrix (but not necessarily symmetric). Since the cut value of S C V is 0 if S is
111111

() or V and 2 otherwise, the joint probability V$Ct10r1 is1 q1 ? 0,5:5 5655 0) and

the marginal probability vector is then p = (1,35,5,5,5, 5,5, 0)- Hence, it must hold

that K11 = Ky = K33 = %, and the equality Ki1Kg — K12Ka1 = det(K12) = & de-
rives that Ki9Ko = %, and similarly we have that Ki3K3; = Ko3K3o = 1—12 How-
ever, we eventually find that det(K123) = K12K23K31 + K21K32K13, which is equal to

(K12K23K31)  ((K12K23K31)% + ﬁ) # 0, a contradiction to that det(Kj23) = p1og =0. B

8. Conclusion

We presented a systematic study on convex combinations of determinantal point processes.
Our contributions were fivefold: (1) extend some properties and inference algorithms on
DPPs to CC-DPPs, (2) provide lower and upper bounds on the number of kernels, (3) show
an approximation upper bound, (4) verify the superiority of the convex combination through
numerical simulations, and (5) introduce a class of distributions that can be expressed by a
polynomial number of kernels.
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