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Abstract

The concept of k-submodularity is an extension of submodularity, of which maximization
has various applications, such as influence maximization and sensor placement. In such
situations, to model complicated real problems, we want to deal with multiple factors, such
as, more detailed parameter representing a property of a given function or a constraint
which should be imposed for a given function, simultaneously. Besides, it is preferable
that an algorithm for the modeling problem is simple. In this paper, for both monotone
k-submodular function maximization with bounded curvature and monotone weakly k-
submodular function maximization, we give approximation ratio analysis on greedy-type
algorithms on the problem with the matroid constraint and that with the individual size
constraint. Furthermore, we give an approximation ratio analysis on another type of the
relaxation of k-submodular functions, approximately k-submodular functions, with the
matroid constraint.

Keywords: k-submodular functions, Greedy algorithm, Curvature

1. Introduction

Many real-world functions often have a structure, which is called submodularity (diminishing
returns property). A set function f: 2V — R is called submodular if for any A,B C V,
f(A)+ f(B) > f(AUB) + f(AN B) hold. For submodular maximization problems, the
purpose is to find a subset of a ground set whose function value is maximized satisfying the
input constraints. Submodular maximization has been studied actively (Nemhauser and
Wolsey, 1978; Nemhauser et al., 1978; Sviridenko, 2004) and has a variety of applications,
such as influence maximization (Kempe et al., 2003), sensor placement (Krause et al., 2008),
summarization (Lin and Bilmes, 2011), and image segmentation (Jegelka and Bilmes, 2011).
For maximization of monotone nonnegative submodular functions, Nemhauser et al. (1978)
gave a (1 — 1/e)-approximation algorithm and Nemhauser and Wolsey (1978) showed that
any polynomial-time algorithm cannot achieve an approximation ratio better than 1 — 1/e.

For modeling real problems with submodular structure, to analyze approximation ratios
more in detail or to relax the condition, for submodular maximization, there have been some
approaches; paying attention to some parameter of functions or relaxing the submodularity
by allowing deviation. One of the useful concepts is curvature for monotone submodular
functions introduced by Conforti and Cornuéjols (1984). The curvature c satisfies 0 < ¢ < 1
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and represents “how much the function curves”. By using curvature ¢, Conforti and
Cornuéjols (1984) gave an approximation ratio 1/(1 + ¢) for the greedy algorithm for
monotone nonnegative submodular maximization with the matroid constraint. On relaxing
submodularity, approzimate submodularity (Horel and Singer, 2016) and weak submodularity
(deeply related to submodularity ratio (Das and Kempe, 2011)) have been introduced.

In real situations, multiple kinds of goods are often dealt with and people want to
optimize some index for those goods. The class of k-submodular functions can deal with
this kind of domain. As an extension of submodularity, k-submodularity was introduced
by this name by Huber and Kolmogorov (2012), the notion itself appearing in Cohen
et al. (2006). Let (k + 1)V be the family of all subpartitions of V to k subsets, that
is, (k+1)V :={(Vi,...., Vi) | Vi CV (Vi € [k]),VinV; = 0 (Vi,j € [k],i # j)}. For
x=(X1,...,.Xp),y=,....Y») e (k+ 1)V, xUy,zNy c (k+1)" are defined by

My := (Xlﬂyl,...,XkﬂYk) and

zUy:= [ (X1 uv)\ [ JXuY) |, (Xuy)\ (o) | |,
i#1 i7k

respectively. A function f: (k+ 1)V — R is called k-submodular if for any x,y € (k+ 1)V,
f(x)+ f(y) > f(x Uy) + f(zMy) hold!. If k = 1, then it matches the submodularity. In
this paper, we identify {0,1,...,k}" with (k + 1)"; we correspond a element in (k + 1)V,
which is a subpartition (Vi,Va,..., Vi) of V, with n-dimensional vector « € {0,1,...,k}"
by defining e-th element of & with i if e € V;. By indicating this x, we write as ¢ € (k+1)V
in this paper. As applications of maximization of monotone k-submodular functions, Ohsaka
and Yoshida (2015) list influence maximization with & kinds of items and sensor placement
with & kinds of sensors, and Qian et al. (2017) state information coverage maximization
with k topics.

For k-submodular maximization, there have been studies on approximation algorithms
with constraints. In this paper, we deal with the matroid constraint and the individual size
constraint, whose definitions are given in Section 1.1. Ohsaka and Yoshida (2015) gave an
approximation ratio 1/2 for monotone case with the total size constraint. Later, Sakaue
(2017) gave the same approximation ratio 1/2 for monotone case with the matroid constraint,
which includes the total size-constrained case. For individual-size-constrained problem,
Ohsaka and Yoshida (2015) gave an approximation ratio 1/3 of the greedy algorithm.

There are situations such that combination is needed for modeling the problem. For
example, if one deals with k kinds of things, the objective function contains some error, and
also a budget constraint should be considered, then a combined model is necessary and we
want to know performance bounds of (possibly simple) algorithms for those problems. The
details of applications setings are described in Section 1.3. Analyses in this paper are for the
framework of greedy algorithms or residual random greedy algorithms (Buchbinder et al.,
2014).

In this paper, we deal with two types of constraints and three concepts on functions.
Two constraints are the matroid constraint and the individual size constraint, which are

1. It seems that k-submodular problems can be reduced to a submodular problem over an extended ground
set with a partition matroid constraint, but in general it is not.
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explained in Section 1.1. Here, we shortly explain the three concepts on functions. The
first one is curvature for monotone k-submodular functions, which represents, roughly
speaking, how much the k-submodular function curves on the increment on the addition of
a new element to some V; (i € [k]) of a subpartition (V1,..., V). The second one is weak
k-submodularity, which is a k-submodularity-like property with the relaxation on the ratio of
increment between addition of a set and addition of each elements of the set. The last one is
approzimate k-submodularity (Nguyen and Thai, 2020), which is also a k-submodularity-like
property, but with the relaxation on the lower and upper bounds of function values. The
details of these three concepts are explained in Section 3. Note that for k-submodular
maximization, greedy(-type) algorithms are well-studied ones and thus our analyses in this
paper indicate that the greedy algorithm satisfies the better bound when the curvature
is restricted or greedy-type algorithms satisfy certain approximation ratios for weakly or
approximately k-submodular maximization with some type of constraints.

1.1. Problem Settings

In this paper, we deal with two types of problems for nonnegative monotone function
maximization, with the matroid constraint and with the individual size constraint. For
x € (k+ 1)V, let supp(zx) := {e € [n] | z(e) # 0}.

Matroid Constraint A matroid is a pair (V,Z) of a set V' (called a ground set) and a set
family Z C 2V (called the family of independent sets) satisfying following three conditions:
(i) 0 € Z, (ii) for A, B CV,if AC Band B € Z, then A € Z, and (iii) for A, B € Z, if
|A| < |BJ, then there exists e € B \ A such that AU {e} € Z. The set family of maximal
elements of Z is denoted by B (called the base family). It is known that every element in B
is of the same size and this size is called the rank of the matroid. A matroid constraint for
monotone k-submodular maximization was dealt with by Sakaue (2017). Under the matroid
constraint with a matroid (V,Z), a solution & € (k + 1)V is feasible if supp(x) € Z. Note
that the matroid constraint is a generalization of the total size constraint (a matroid (V,7)
with Z = {S C V | |S] < B} (called a uniform matroid) is corresponding to the total size
constraint with B (a solution & € (k + 1)V is feasible if [supp(z)| < B)).

Individual Size Constraint A size constraint for each ¢ € [k] for k-submodular maxi-
mization is considered in Ohsaka and Yoshida (2015). More precisely, for € (k + 1) and
i € [k], let supp;(x) = {e € [n] | ®(e) = i¢}. Then, given By, Ba,..., By € Z>o such that
Zle B; < n, a solution & € (k + 1)V is feasible if |supp;(z)| < B; for each i € [k].

Problem Frameworks Problems in this paper belong to either of the followings:

Problem 1 Given a function f: (k+ 1)V — Rxq, find ¢ € (k+ 1)V maximizing f(x) with
the matroid constraint.

Problem 2 Given a function f: (k+1)V — R, find ¢ € (k+ 1)V mazimizing f(x) with
the individual size constraint.
1.2. Contribution

Our aim of this paper is to analyze approximation ratios of well-studied greedy(-type)
algorithms for several problems of k-submodular maximization and related problems.
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e (Section 4) For the maximization of monotone k-submodular functions with curvature
¢, we show that the greedy algorithm yields an approximation ratio of 1/(1 + ¢) for
the problem with the matroid constraint and 1/(1 + 2¢) for the problem with the
individual size constraint. Technically, we utilize a term which is bounded by 0 in the
analysis by Ohsaka and Yoshida (2015) and Sakaue (2017) by using curvature. Since
approximation ratio better than (k + 1)/2k cannot be achieved in polynomial time
(Iwata et al., 2016), our result shows hopeful viewpoint for maximization of some type
of k-submodular functions.

e (Section 5) For the maximization of monotone y-weakly k-submodular functions, we
show that the residual random greedy algorithm yields an expected approximation
ratio of (1 4 1/7)~2 for the problems with the matroid constraint or the individual
size constraint. These results and arguments toward the results imply that we can
expect that some type of results on submodular function maximization may be able to
be brought to the k-submodular statement by the similar discussion to ours.

e (Section 6) For the maximization of monotone e-approximately k-submodular functions,

we show that the greedy algorithm yields an approximation ratio of % Gfi) 1+1673 for
1—e¢

the problem with the matroid constraint, where B is a rank of the matroid of constraint.

This result includes the total size constrained case by Nguyen and Thai (2020). Note

that maximization of approximately k-submodular functions with the individual size

constraint was dealt with by Zheng et al. (2021) for the greedy algorithm.

1.3. On Applications

In this section, we state the applications of constraints or function types appearing in
this paper. Matroid constraint includes partition matroid constraint, which corresponds
with constraints for groups of candidate places (see, e.g., Friedrich et al. (2019) (not for
k-submodular functions)). Individual size constraint corresponds with, for instance, the
budget for each type of items (see, e.g., Ohsaka and Yoshida (2015)).

For a ground set V', the curvature of a monotone submodular function can be calculated
in linear times of function calls, and thus in a situation such that function value can be
estimated, then we can estimate the curvature. For k-submodular functions, if k is not
so large, then we can estimate the value of curvature in some situations. Curvature for
k-submodular functions is useful to know the performance bound of the algorithm.

Weak submodular functions have applications on machine learning (Elenberg et al.,
2017; Chen et al., 2018). The weakly k-submodular function is a certain relaxation of the
k-submodular function and thus it can be utilized in a situation such that the objective
function is close to k-submodular but precisely not.

If the objective function f(.S) (S C V) is a submodular function and for observation F(.S)
there is an inconsistent noise (f(S) = E[F(S)]), then if noise is bounded and one observes
enough times, then the estimated value obeys an approximately submodular function (Horel
and Singer, 2016). By the same type of argument, approzimately k-submodular functions
are useful when the objective function is a k-submodular function and observation has
some bounded inconsistent noise. Note that Zheng et al. (2021) stated on the cases that a
function is not exactly k-submodular because of noise or uncertainty and they dealt with
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approximately k-submodular maximization with the total size constraint and that with the
individual size constraint.

Combination of the above constraints or concepts is necessary for modeling of complex
real-world problems. Influence maximization for k types of items and sensor placement
for k types of sensors are listed as applications of monotone k-submodular maximization
(with the total size constraint or the individual size constraint) by Ohsaka and Yoshida
(2015), and information coverage maximization with k topics is stated by Qian et al. (2017).
For example, in influence maximization application, the following requirements may arise
simultaneously; (i) the sender wants to spread k kinds of information and the objective is
to maximize the number of people who influenced by at least one type of information, (ii)
fair constraint on the candidate places, and (iii) the observed function contains inconsistent
noise. For the above situation, monotone approximately k-submodular maximization with
the matroid constraint can be utilized. Other combinations also can be considered similarly.

2. Related Works

Tables 1, 2, and 3 are the results of this paper and those of corresponding previous works
that our algorithm utilizes.

Table 1: Approximation ratios for monotone k-submodular maximization with general
curvature (without bound) and bounded curvature c.

matroid constraint

individual size constraint

general

T
2
(Sakaue, 2017)

T
3
(Ohsaka and Yoshida, 2015)

bounded curvature

I
T+c
(Theorem 1)

T
142c¢
(Theorem 2)

Table 2: Approximation ratios for monotone weakly (k-)submodular functions. The term ~y
appearing in the right two approximation ratios is one used for the definition of
~v-weakly k-submodular functions (Definition 2). (If £ = 1, then the property of
this v matches those of the v appearing in the leftmost approximation ratio.)

v-weakly k-submodular
(matroid constraint)

(1e3)°

(Theorem 5)

~v-weakly submodular
(matroid constraint)

()

(Chen et al., 2018)

~v-weakly k-submodular
(individual size constraint)

(2)

(Theorem 6)

For bisubmodular functions, which are k-submodular functions with k& = 2, approximate
maximization algorithm was studied in Singh et al. (2012). For unconstrained problems,
Ward and Zivny (2014) gave the first approximation-guaranteed algorithm for k-submodular
maximization, the approximation ratio of which is 1/(1 + \/k/2). Iwata et al. (2016)
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g-approx. submodular
(matroid constraint)

g-approx. k-submodular
(total size constraint)

g-approx. k-submodular
(matroid constraint)

1 (1—a> 1
B
2 \ 1+« 1+:£

(Horel and Singer, 2016)

1 (1—a> 1
B
2 \ 1+« 1+:£

(Zheng et al., 2021)

1 (1—5) 1
B
2 \ 1+4¢ 1+15:

(Theorem 7)

gave a randomized 1/2-approximation algorithm for nonmonotone case and a randomized
k/(2k — 1)-approximation algorithm for monotone case. Later, Oshima (2021) gave a
randomized (k% + 1)/(2k? + 1)-approximation algorithm for nonmonotone case. Iwata et al.
(2016) also showed that an approximation ratio better than (k 4 1)/2k for monotone k-
submodular maximization would need exponential queries. For online setting, Soma (2019)
gave algorithms corresponding to Iwata et al. (2016)’s results above, that is, no 1/2-regret
algorithm for nonmonotone case and no k/(2k — 1)-regret algorithm for monotone case.

For constrained problems, as written in Section 1, Ohsaka and Yoshida (2015) gave
approximation ratios 1/2 and 1/3 for the total size constrained problem and for the individual
size constrained problem, respectively, and Sakaue (2017) gave an approximation ratio 1/2
for the matroid-constrained problem. Recently, Tang et al. (2021) proposed a (% — 2—16)—
approximation algorithm for monotone k-submodular maximization under a knapsack
constraint. There has been another approach from the view of multi-objective evolutionary
algorithms, and Qian et al. (2017) gave an algorithm whose expected number of iterations
to obtain a 1/2-approximate solution for monotone k-submodular maximization with the
total size constraint is polynomial.

Curvature (Conforti and Cornuéjols, 1984) is a parameter which indicates, roughly
speaking, how much the function curves. When curvature is ¢, Conforti and Cornuéjols
(1984) showed that the greedy algorithm gives 1/(1 + ¢)-approximation for monotone
submodular maximization with the matroid constraint. Especially, for the problem with the
uniform matroid constraint, Conforti and Cornuéjols (1984) gave an approximation ratio
(1—e¢)/c for the greedy algorithm. Later, Vondrék (2010) gave the same approximation ratio
(1 —e7¢)/c for the general matroid constraint. Many studies on submodular maximization
utilize the curvature of a function to give an approximation ratio (Sviridenko et al., 2017;
Friedrich et al., 2019).

Submodularity ratio was introduced by Das and Kempe (2011) and later there have been
extensive works on weakly submodular maximization; matroid-constrained problem (Sun
et al., 2020), introducing another definition for nonmonotone functions (Santiago and Yoshida,
2020), and streaming setting with the total size constraint (Elenberg et al., 2017).

Related to approximate submodularity (Horel and Singer, 2016), Hassidim and Singer
(2017) gave an approximation algorithm for maximization of submodular functions with
noisy oracle with size constraint. Approximately k-submodular functions are defined and
dealt with by Nguyen and Thai (2020) (they called functions as “under noise”). In fact,
Nguyen and Thai (2020) dealt with a generalized problem, that is, streaming setting with
the total size constraint. Recently, Zheng et al. (2021) gave approximation algorithms for
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maximization of approximately k-submodular functions with the total size constraint and
the individual size constraint.

Setting with the combination of concepts was also considered. For example, Bian et al.
(2017) gave an analysis for non-submodular functions utilizing curvature and submodularity
ratio.

Another generalization of submodular functions on domain is DR-submodular functions
on the integer lattice, dealt with by Soma and Yoshida (2015).

3. Preliminaries

In this paper, the cardinality of a set V' is denoted by n. We often identify [n| with V for
the notational convenience. For @,y € (k4 1)V, we say = and y are support-disjoint if
supp(z) Nsupp(y) = 0. For z,y € (k+ 1)V, we write as ¢ < y if x Uy = y holds. For
e € [n] \ supp(zx) and i € [k], we denote by x + (e, i) the vector in (k + 1)V obtained from
@ by changing element corresponding to e from 0 to i. Similarly, we denote by x — (¢’,i’)
the vector in (k + 1)V obtained from x by setting e’-th element (that is, i’) to 0. For
e € [n] \ supp(x) and i € [k], Acif(x) := f(x + (e,i)) — f(x). In this paper, we often abuse
the notation for € (k + 1)V by identifying the vector and the set of its elements; i.e.,
x={(1,2(1)),(2,2(2)),...,(n,x(n))}. Note that for the above notation, it is necessary
to be well-defined; e.g., for € (k4 1)V with x(e) # 0, « + (e,4) is not well-defined.
For support-disjoint z,y € (k + 1)V, let f(y | ) := f(x Uy) — f(x). We sometimes
write a singleton {e} just as e. A characterization of k-submodularity was given by Ward
and Zivny (2016); f is k-submodular if and only if f is orthant submodular and pairwise
monotone. A function f is called orthant submodular if A ;) f(z) > A4 f(y) holds for
any x,y € (k+ 1)V with x < y when e ¢ supp(y) and i € [k], and f is called pairwise
monotone if A ;) f(€) + A(e,)f () > 0 holds for any € (k + 1) with e ¢ supp(x) and
i1 # i3. A k-submodular function f is called monotone if for any z,y € (k+1)" with = < v,
f(@) < f(y) holds.

Curvature for k-Submodular Functions Curvature for a monotone submodular func-
tion was introduced by Conforti and Cornuéjols (1984). Intuitively, curvature represents
how far the function is from a modular function. For a monotone submodular function
f: 2V = Rsg, the curvature c is defined by ¢ = 1 — min,ey W If f is monotone,
then 0 < ¢ <1 holds. There have been studies considering curvature for nonmonotone func-
tions in, e.g., Friedrich et al. (2019). By using curvature for submodular functions, Conforti
and Cornuéjols (1984) showed that the greedy algorithm gives 1/(1 + ¢)-approximation for
monotone submodular maximization with the matroid constraint. By the extension of the
curvature of submodular functions, a curvature of k-submodular functions can be considered.
Note that if £ = 1, then Definition 1 coincides with the curvature of submodular functions.
Also note that quite similar curvature for normalized monotone k-multi-submodular functions
was introduced in Santiago and Shepherd (2019).

Definition 1 For a k-submodular function f: (k+ 1)V — R>q, the curvature c is defined
by

_ . Ae,if("‘)
c=1-— min —_— -
ie[ke€lnl.ac(k+1)V\ e} f((e,7))
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Weakly k-Submodular Functions For set functions, as a measure for the closeness
to submodular functions, submodularity ratio was introduced by Das and Kempe (2011).
Deeply related to the submodularity ratio, weak submodularity was defined as follows.
(Note that the below definition of weak submodularity corresponds with the definition of
submodularity ratio which can be seen, for example, in Chen et al. (2018).) A nonnegative
monotone function f: 2V — Rsq is called y-weakly submodular if for all disjoint S,7 C V/,
Yoecr fle ] S) > ~f(T|S) holds. A generalized concept of weak submodularity to weak
k-submodularity can be considered as follows.

Definition 2 A nonnegative monotone function f: (k + 1)V — Rsq is called y-weakly
k-submodular if for all support-disjoint =,y € (k + 1)V, it holds that

> fed) @) > vf(y | @)

(esi)ey

Approximately k-Submodular Functions In Horel and Singer (2016), apporoximately
submodular functions were defined as follows. For ¢ > 0, f: 2V — R is e-approximately

submodular if there exists a submodular function f: 2V — R satisfying (1 — ¢)f(S) <
f(S) < (1 +¢e)f(S) for all S € V. As a generalization of approximate submodularity,
approximate k-submodularity was introduced by Nguyen and Thai (2020) in which the

notion is considered as k-submodularity “with noise”.

Definition 3 (Nguyen and Thai (2020)) Fore >0, f: (k+1)V — R is e-approzimately
k-submodular if there exists a k-submodular function f satisfying

(1-o)f(2) < flx) < (1 +¢)f(2)
for allx € (k+1)V.

Greedy Algorithm In this paper, we utilize the frameworks of greedy algorithm and
residual random greedy algorithm (Buchbinder et al., 2014). For residual random greedy
algorithm, we explain details in Section 5. Here, we describe the framework of greedy
algorithm for f: (k+ 1)V — R in Algorithm 1. For the matroid constraint, B is equal to
the rank of an input matroid by Lemma 1 in Sakaue (2017), and for the individual size
constraint, B is equal to the sum of the input constants B; for ¢ € [k]. In Algorithm 1, for
each step j = 1,..., B, we select (e),i0)) to add to sU—1.

Algorithm 1 Greedy Algorithm for the (Approximately) k-Submodular Maximization
Problem
s 0.
for j=1,...,B do
Let (e¥),i0)) € ([n]\supp(sU~1)) x [k] be a pair such that sU~1) + () i) is feasible
maximizing f(sU~=D + (e(),i0))).
s 5= 4 (el0) 50)),
end for

Return s(B).
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4. Bounded Curvature

In this section, we give approximation ratios for greedy algorithms on monotone nonnegative
k-submodular maximization with the matroid constraint or the individual size constraint by
utilizing the curvature of a k-submodular function (Definition 1).

4.1. Matroid Constraint

We give the following approximation ratio of greedy algorithm using curvature for the
problem of monotone k-submodular maximization with the matroid constraint. Note that
the approximation ratio in Theorem 1 matches that for the matroid constrained case given
by Sakaue (2017) if ¢ = 1. In the case of ¢ < 1, our approximation ratio is better than 1/2.
Since the matroid constraint is the generalization of the total size constraint, we have the
same approximation ratio result for the problem with the total size constraint.

Theorem 1 The greedy algorithm yields an approximation ratio 1/(1 + ¢) for monotone
k-submodular mazimization with the matroid constraint, where ¢ is the curvature of an input
function.

Proof For the proof of Theorem 1, we utilize the following lemma by Sakaue (2017). (B is
a base family of a matroid (V,Z).)

Lemma 1 (Sakaue (2017)) Let S€Z, T € B with S C T, and e ¢ S with SU {e} € Z.
Then, there exists ¢ € T\ S with (T \ {€'}) U{e} € B.

Proof follows Sakaue (2017); the analogical discussions can be seen in, e.g., Ohsaka
and Yoshida (2015); Iwata et al. (2016); Ward and Zivny (2016). Let o be an optimal
solution. We define s(@, s ... s(B) 00 o) oB) a5 50 =0, 09 = o, and as for
each step j € [B], we add (e, i) which is selected in step j of the greedy algorithm to
obtain s from sU—Y. Let o) := el) if e() € supp(o(jfl)), otherwise, set o) such that
(supp(oU =)\ {0@}) U {el)} € B holds. Note that 0¥ satisfying the above property exists
by virtue of Lemma 1. We make o) from oU~Y by setting 0\/)-th element to 0 and setting
eU)-th element to i¥). Then, s(&) = 0(F) holds and we denote this by s.

We show that for each j € [B],

c(f(s9) = £(sU71)) = f(U7V) — f(oV)

holds. For each j € [B], let 0U~1/2) be a vector made from oU~1) by setting o¥)-th
element to 0, and let yU) := Ae(j)’i(j)f(s(jil)), aU=1/2) .= Ao(j)70(j—1)(0(j))f(0(j71/2))7 and
al) i= Ay 400 f(0U1/2). Note that f(s0)) — f(sU~1) =y and f(007D) ~ f(o) =
2G-1/2) _ o0

Since (eV),i(9)) is chosen by the greedy algorithm, y(/) > Ao(j),O(j_l)(o(j))f(s(jfl)) holds.
Since sU~1) < 0U=1/2) we have that Aom7O(j,1)(o<j))f(s(j_1)) > alU=1/2) Hence, aV—1/2) <
yY) holds. Now, by the definition of curvature, we have that o) = Ae(j)7i(j)f(o(j_1/2)) >
(1- c)Ae(j)i(j)f(s(j*l)) = (1 — ¢)yY9). Therefore, we get that aV=1/2) — () < ¢yl which
derives the inequality. Then, we have that f(o) — f(s) = ZjE[B](f(o(jfl)) — f(o))) <
Y ierm(F(89) = f(sU=D)) = c(f(s)— £(0)) < cf(s), which implies that f(s) > 1 f(0). B
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4.2. Individual Size Constraint

For the problem of k-submodular maximization with bounded curvature with the individual
size constraint, we obtain the following approximation ratio, which is better than (resp.
matches) that given by Ohsaka and Yoshida (2015) if ¢ < 1 (resp. ¢ = 1).

Theorem 2 The greedy algorithm yields an approzimation ratio 1/(1 + 2¢) for monotone
k-submodular maximization with the individual size constraint, where c is the curvature of
an input function.

Proof Proof follows Ohsaka and Yoshida (2015). We show for each j € [B] that
2¢(f(sY) = f(sU71)) = f(0U7V) = (o)

holds. Let SZ-(j) := supp; (0U 1)\ supp;(s7=1). For step 7, if el) is in SZ.(,j) for some 7’ # i),
then we define as follows: 0U~=1/2) be a vector obtained from oU~1) by setting 0 to ol)-th
and e)-th elements and oU) be a vector obtained from oU~1/2) by setting i) to e9)-th
element and #/ to 0ol9)-th element. Otherwise, we define as follows: 0U~1/2) be a vector
obtained from o~ by setting 0 to e?)-th element and o) be a vector obtained from
0U=12) by setting i) to el)-th element.

Let us denote aU—1/2) = Ao(j)’i(j)f(o(j_l/Q)), ald) = Ae(j)yi(j)f(o(j_l/z)), pU-1/2) =
Aem’i,f(o(j_l/z)), and bU) = Ao(j)J/f(o(j_l/Q)). Since we use greedy method in each step,
y) > Ao(j)7i(j)f(s(j_1)) and y() > Ae(j>7i,f(s(j_1)) hold. From sU—Y < 0U=1/2) and
orthant submodularity, Ae<j>7i,f(s(j_1)) > aU~Y2) and Ae(j>7i,f(s(j_1)) > pli=1/2) hold.
Thus, 2y > aU=1/2) 4 pli=1/2) holds. By the definition of curvature of k-submodular
functions, a¥) > (1 — ¢)y¥) and b9 > (1 — ¢)y¥) hold. Therefore, we obtain 2cyl?) >
ai=1/2) _ q0) 4 pli=1/2) _ p(), ]

5. Weakly k-Submodular Functions

In this section, we give an expected approximation ratio of residual random greedy algorithms
for problems of maximizing a y-weakly k-submodular function with the matroid constraint
and individual size constraint. We utilize the algorithm framework of residual random
greedy algorithm, appearing in Buchbinder et al. (2014). Chen et al. (2018) applied
this residual random greedy algorithm to weakly submodular function maximization with
matroid constraint. We apply the residual random greedy framework for maximizing weakly
k-submodular functions. The general framework of the algorithm is in Algorithm 2.

Note that we can set the iteration number B in advance since for both matroid-constrained
problem and individual size-constrained problem B can be decided from the input constraint
due to the monotonicity of the input function. Algorithm 2 can be used for the problems
with the matroid constraint or the individual size constraint. The techniques and lemmas
are k-submodular counterpart for those in Chen et al. (2018) on the maximization of weakly
submodular functions. Chen et al. (2018) showed that the residual random greedy algorithm
enjoys the approximation ratio of (1 4 1/9)~2 for maximization of monotone y-weakly
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Algorithm 2 Common Framework of Residual Random Greedy Algorithm for the (Weakly)
k-Submodular Maximization Problem
s 0.
for j=1,...,B do
Construct m) € (k + 1)V such that sU~Y 1m0 is a maximal feasible solution
maximizing > . yem) A(eﬂ-)f(s(J_l)).
Pick up (e, i) from m") uniformly at random.
s sU-1) 4 () (0)),
end for

Return s(8).

submodular function with the matroid constraint. We list the counterparts of Lemma 3.3,
Observation 3.4, Corollary 3.5, Theorem 3.6, and Theorem 1.1 in Chen et al. (2018).

In order to apply the proof framework for submodular maximization with matroid
constraint in Chen et al. (2018) to the k-submodular maximization problems, we have
to construct g;: mU) — 0~V for each j € [B] (and 0o, 0 ... 0B € (k+ 1)V are
constructed recursively) such that the followings hold for each j € [B]: (i) s¢) and o)
are support-disjoint, and sU) U 0\ is a maximal feasible solution, (ii) 0(®) is an optimal
solution, and (iii) there exists a bijection g;: mU) — 0~ such that for each (e,i) € m\),
gi((e,3)) U{(e,i)} # 0 and that ((s¥=D UoU=D)\ g;((e,1))) U{(e,i)} is a maximal feasible
solution. If s¢), mU) o) satisfy the above three conditions, then the same proof framework
as Chen et al. (2018) can be utilized. In the following, we show that, for each problem, we
can take s¢), m(), 009 satisfying the above conditions.

5.1. On Common Framework

Suppose that we have m(), o(j),gj with the desired property. Given that mW) and olU—1
are fixed for some j, we can see that g;((el?),i0))) is a uniformly random sample from oU~1),
since (e(j),i(j )) is chosen from m) uniform randomly and that g; is a one-to-one mapping.
Hence, each o) is a random subset of 0o* of size B — j. The following statements are the
counterparts of Lemma 3.3, Observation 3.4, Corollary 3.5, Theorem 3.6, and Theorem 1.1
in Chen et al. (2018), respectively.

Lemma 2 (Counterpart of Lemma 3.3 in Chen et al. (2018)) For all0 < j < B,

Bl 2 (1- (£55) ) s,

Lemma 3 (Counterpart of Observation 3.4 in Chen et al. (2018)) For all j € [B],

E[f(oU~D | sU7D)]

E[f(sV) —Elf(sV" N 27 =57

Lemma 4 (Counterpart of Corollary 3.5 in Chen et al. (2018)) For all j € [B],

. ; — (3 Y f(o*) — sli—1
BIF(s)] - ELf(s0°0)] 2 - = UAE LT = B




MATSUOKA OHSAKA

By discussion analogous to that in Chen et al. (2018), we obtain an approximation factor
(1+1/4)"2 - 0O(B™Y) (Counterpart of Theorem 3.6 in Chen et al. (2018)). By applying the
corresponding discussion in Appendix B in Chen et al. (2018), we obtain the following.

Theorem 3 (Counterpart of Theorem 1.1 in Chen et al. (2018)) Residual random
greedy algorithm (Algorithm 2) has an expected approzimation ratio (1+1/v)~2 for the input
problem of monotone y-weakly k-submodular mazximization.

In the following, we claim that for the matroid-constrained and the individual size-constrained
problems, Algorithm 2 can be used by change of the procedure to obtain m(). (On removal
of term O(B~1), analogous to Chen et al. (2018), we add enough number of dummy elements
V' to V and set a new k-submodular function f': (k + 1)VYV" — R>o from the original
function f: (k+ 1)V — Rsq such that for 2’ € (k+1)V"YY, f/(2') is equal to f(z), where
is the element in (k + 1)V having the same elements for coordinates corresponding to V.
Analogously, for the individual size-constrained problem, we add enough dummy elements
V' to V and increase B; or keep as it is for i = 1,..., k such that Zle B; is increased by
|[V']. The new function f’ is defined the same as that in the matroid-constrained case.)

5.2. Matroid Constraint

In order to use the framework of Algorithm 2 for the matroid-constrained problem, we
confirm how to construct m() in the algorithm and o) in the proof. Let M denote
the matroid of the given constraint. Then, in the algorithm, for step j, let M U) be a
matroid obtained by contraction of supp(sU~1) for M. (For a matroid (V,Z), the rank
function r: 2V — Zsq is defined by r(V’) := maxyncy/ {|V"| | V" € T}. For V! C V,
contraction of V' for (V,Z) is also a matroid with the ground set V' \ V' and the rank
function #(V") := r(V" U V') — (V') (V" C V' \ V').) For each e € [n]\ supp(sV~1), we set
wl = max;e(y) w(e,i). Then, let mU) € (k+1)V be a vector corresponding to a maximum
weight independent set (base) for M (9), Note that this step can be done in polynomial time
since we can find a maximum weight independent set for a given matroid in polynomial time
by greedy algorithm by virtue of Edmonds (1971). The function g; must be a one-to-one
function that satisfies g;((e, 7)) L{(e,7)} # () and is a base. Existence of such g; is guaranteed
by the following theorem by Brualdi (1969). Note that this logic is same as the argument in
Chen et al. (2018).

Theorem 4 (Brualdi (1969)) Let M be a matroid and Ai, Ay are bases of M. Then,
there exists a bijection g: Ay — Ag such that for each i € Ay, Ay U{g(i)} \ {i} is a base of
M.

Analogous to the case for submodular functions with matroid constraints in Chen et al.
(2018), by Theorem 4, we can show that we can construct o) with the desired property by
the following argument. Note that 09 = o*. Suppose 0/~ has already been constructed
with the desired property. Then, since supp(s(j_l) U o(j_l)) and supp(s(j_l) L m(j)) are
bases, we can take g;: m) — 01 satisfying the desired property. Therefore, we can use
the same-type logic as that in Chen et al. (2018) and obtain the following.

Theorem 5 Residual random greedy algorithm (Algorithm 2) has an expected approzimation
ratio (14 1/v)~2 for the monotone vy-weakly k-submodular mazimization problem with the
matroid constraint.
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5.3. Individual Size Constraint

We can determine a vector m() maximizing the sum of unit increasing cost and satisfying
individual size constraint by using the technique of maximum weight b-matching. In maximum
weight b-matching problem, given a graph G = (V, E), edge-weight function w: E — R>,
and b: V — Z>q, find a maximum weight edge subset such that for each v € V, degree of v
is less than or equal to b(v). Precisely, in step j, we make an auxiliary weighted bipartite
graph such that (i) one vertex set V; is corresponding to each e € [n] \ supp(sU—1), (ii)
the other vertex set V4 is corresponding to each i € [k], (iii) for each edge, the weight is
f((e,i) | sU~V), and that (iv) for i € [k], b(i) is B; — |{e € [n] | (e,i) € sU~D}|. Since
both sU=Y 40U~ and sV + m) have the desired property, we can set a bijection
gi: mY) — 0= such that for each (e,i) € mU), g;((e,7)) has the same element i € [k].
We set o) = 01 — g;((eV),19))). Since maximum weight b-matching can be solved in
polynomial time (see, e.g., Edmonds (1965)), the algorithm runs in polynomial time. By
setting as above, we obtain the following.

Theorem 6 Residual random greedy algorithm (Algorithm 2) has an expected approzimation
ratio (14 1/v)~2 for the monotone y-weakly k-submodular mazimization problem with the
individual size constraint.

6. Approximately k-Submodular Functions

In this section, we utilize the concept of approximate k-submodularity (Definition 3) and

give an approximation ratio for the matroid-constrained problem. Corresponding to the

l—¢
1+e

Horel and Singer (2016), we show an approximation ratio for approximately k-submodular
functions. We give the same approximation ratio as Zheng et al. (2021)’s result on total
size constrained problem for the matroid-constrained problem, which includes the total size

approximation ratio % ( ) T for approximately submodular maximization obtained by

constrained problem.

Theorem 7 Let (V,I) be an input matroid, f: 2V — R>0o be a monotone e-approzimately
k-submodular function, and s be the output of the greedy algorithm. Then, it holds that

1/1—-¢ 1
> — .
025 (152) 15 22 o apimger’ ™)

Proof The proof here is analogous to that in Horel and Singer (2016) and Zheng et al.
(2021). We define s s sB) 00 o) . olB) same as those in the proof of The-
orem 1, that is, (0 = 0, 0¥ is an optimal solution, and as for each step j € [B], we
add (e\),i09)), selected by the greedy algorithm with s~ to obtain s(). Also o\ is
the samely defined as in the proof of Theorem 1; o(j) = el if el) ¢ supp(o(j_l)), other-
wise, set 0l9) such that (supp(oU~—1)\ {o)}) U {e )} € B holds. Let t9) be a vector in
(k 4+ 1)V obtained by adding 0= (o)) at 09) to sU~1). Then since f(sV)) > f( ) we
obtain %J_’Z f(sW) > f(#Y). By the orthant submodulatiry and monotonicity, 1+€ f(sW)y —

F(sU=D) > F@0) = F(sUD) = AL om0 (8U7D) > A pu-1 (0 f(0 ol=3)) >
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Aom,o(j—n(o(j))JZ(O(j_%)) — Ay ;0 F(0U72)) = f(0U=) — f(o1). By taking the summa-
tion from j = 1 to B, £ 3.7, f(sY) + f(s(P) — f(s©) > f(o®) — f(o®). Thus,
we obtain 2 <1 + %) f(sB)) > f(0). By using the e-approximation, we obtain the
statement of the theorem. |

7. Concluding Remarks

In this paper, we utilized the three concepts, curvature for k-submodular functions, weak k-
submodularity, and approximate k-submodularity, and analyzed approximation ratios of the
greedy and residual random greedy algorithms. Concretely, (i) for k-submodular functions
with bounded curvature, we gave an approximation ratio of the greedy algorithm for the
problem with the matroid or the individual size constraints, (ii) for weakly k-submodular
functions, we gave an approximation ratio of the residual random greedy algorithm with the
matroid or the individual size constraints, and (iii) for approximately k-submodular functions,
we gave an approximation ratio of the greedy algorithm for the matroid-constrained problem.
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