
Proceedings of Machine Learning Research 157, 2021 ACML 2021

Quaternion Graph Neural Networks

Dai Quoc Nguyen dai.nguyen@monash.edu
Department of Data Science and AI, Monash University, Australia

Tu Dinh Nguyen v.tund21@vinai.io
VinAI Research, Vietnam

Dinh Phung dinh.phung@monash.edu

Department of Data Science and AI, Monash University, Australia

Editors: Vineeth N Balasubramanian and Ivor Tsang

Abstract

Recently, graph neural networks (GNNs) have become an important and active research
direction in deep learning. It is worth noting that most of the existing GNN-based methods
learn graph representations within the Euclidean vector space. Beyond the Euclidean
space, learning representation and embeddings in hyper-complex space have also shown
to be a promising and effective approach. To this end, we propose Quaternion Graph
Neural Networks (QGNN) to learn graph representations within the Quaternion space.
As demonstrated, the Quaternion space, a hyper-complex vector space, provides highly
meaningful computations and analogical calculus through Hamilton product compared to
the Euclidean and complex vector spaces. Our QGNN obtains state-of-the-art results on
a range of benchmark datasets for graph classification and node classification. Besides,
regarding knowledge graphs, our QGNN-based embedding model achieves state-of-the-art
results on three new and challenging benchmark datasets for knowledge graph completion.
Our code is available at: https://github.com/daiquocnguyen/QGNN.

1. Introduction

Graph representation learning has recently emerged as a new promising learning paradigm
for graph-structured data (Hamilton et al., 2017b; Wu et al., 2019b), where the goal is to
learn a parametric mapping function that embeds the nodes, the subgraphs, or the entire
graph into low-dimensional continuous vector spaces; hence the learned vectors can be useful
for downstream tasks. Recently, graph neural networks (GNNs) become an essential strand
to learn graph representations (Zhang et al., 2020a; Nguyen, 2021). In general, GNNs utilize
an aggregation function to update the vector representation of each node by aggregating
those of its neighbors (Kipf and Welling, 2017; Veličković et al., 2018; Nguyen et al., 2019b).
GNNs also use a graph-level readout function such as a simple sum pooling to obtain graph
embeddings. As a result, GNNs achieve state-of-the-art performances for downstream tasks
such as node classification and graph classification (Hamilton et al., 2017a; Xu et al., 2019).

It is noted that most of the existing GNNs learn graph representations within the Eu-
clidean space. Recently, learning representation and embeddings in hyper-complex space
have shown to be a promising and effective approach to move beyond the Euclidean space.
For example, some Quaternion space-based methods have been applied in image classifi-

c© 2021 D.Q. Nguyen, T.D. Nguyen & D. Phung.

https://github.com/daiquocnguyen/QGNN

Nguyen Nguyen Phung

cation (Gaudet and Maida, 2018; Zhu et al., 2018), speech recognition (Parcollet et al.,
2018, 2019b), knowledge graph (Zhang et al., 2019; Nguyen et al., 2020), and machine
translation (Tay et al., 2019). As the Quaternion space allows highly expressive compu-
tations through Hamilton product compared to the Euclidean and complex vector spaces
(Parcollet et al., 2019a), we introduce Quaternion Graph Neural Networks (QGNN) to
learn graph representations within the Quaternion space. Our proposed model achieves
effective performances through extensive experimental evaluation, benchmarking with cur-
rent state-of-the-art methods, and post-analysis to demonstrate the merits of the proposed
methodology, on a wide range of benchmark datasets for the tasks of node classification,
graph classification, and knowledge graph completion. In summary, our contributions can
be highlighted as follows:
•We propose Quaternion Graph Neural Networks (QGNN) to learn quaternion embed-

dings for graph-structured data. To the best of our knowledge, our work is the first to
investigate quaternion embeddings for general graphs with diverse and different structures.
• QGNN produces state-of-the-art accuracies on citation network datasets for node

classification as well as social network and bioinformatics datasets for graph classification.
• Regarding knowledge graphs, we present a new, simple yet effective method that uti-

lizes vanilla GNNs directly on a single undirected graph of entities constructed from a given
knowledge graph, followed by a score function to compute the triple score. Our QGNN-based
knowledge graph embedding model, called SimQGNN, outperforms the existing models and
obtains state-of-the-art results on three new and challenging benchmark datasets CoDEx-S,
CoDEx-M, and CoDEx-L (Safavi and Koutra, 2020) for knowledge graph completion.1

2. Related work

There have been many designs for the aggregation functions proposed in recent literature.
The widely-used one is introduced in Graph Convolutional Networks (GCNs) (Kipf and
Welling, 2017). Furthermore, Simple Graph Convolution (Wu et al., 2019a) is a simplified
variant of GCN without using the non-linear activation function g. Graph Isomorphism
Network (Xu et al., 2019) is proposed to leverage an aggregation function based on a
multi-layer perceptron (MLP) network of two fully-connected layers. Besides, Graph At-
tention Network (Veličković et al., 2018) extends GCN to compute edge weights following
the standard attention technique (Bahdanau et al., 2015) and then employs the multi-head
attention technique (Vaswani et al., 2017) to further stabilise the learning process, except
the final (prediction) layer where GAT uses averaging. UGformer (Nguyen et al., 2019b)
adapts the transformer self-attention network (Vaswani et al., 2017; Dehghani et al., 2019)
to construct an advanced aggregation function to learn node and graph representations.
Hyperbolic Graph Convolutional Neural Networks (HGCN) (Chami et al., 2019) leverages
the expressiveness of GCNs and hyperbolic geometry to map Euclidean input features to
embeddings in hyperbolic spaces to learn node representations. Moreover, Gated GNNs (Li
et al., 2016) adopts GRUs (Cho et al., 2014), unrolls the recurrence for a fixed number of
timesteps, and removes the need to constrain parameters to ensure convergence.

Following (Xu et al., 2018, 2019), we also employ a concatenation over the vector rep-
resentations of node v at the different layers to construct a final vector representation ev

1. We propose Gated Quaternion Graph Neural Networks (GQGNN) in Appendix A.

Quaternion Graph Neural Networks

for each node v ∈ G. The graph-level readout function can be a simple sum pooling or
a complex pooling such as sort pooling (Zhang et al., 2018), hierarchical pooling (Cangea
et al., 2018), and differentiable pooling (Ying et al., 2018). As the sum pooling produces
competitive results (Xu et al., 2019), we use the simple sum pooling to obtain the embedding
eG of the entire graph G.

3. Quaternion background

A quaternion q ∈ H is a hyper-complex number consisting of one real and three sepa-
rate imaginary components (Hamilton, 1844) defined as: q = qr + qii + qj j + qkk, where
qr, qi, qj , qk ∈ R, and i, j, k are imaginary units that i2 = j2 = k2 = ijk = −1. The operations
for the Quaternion algebra are defined as follows:

Addition. The addition of two quaternions q and p is defined as: q + p = (qr + pr) +
(qi + pi)i + (qj + pj)j + (qk + pk)k

Norm. The norm ‖q‖ of a quaternion q is computed as: ‖q‖ =
√
q2r + q2i + q2j + q2k.

And the normalized or unit quaternion q/ is defined as: q/ = q
‖q‖

Scalar multiplication. The multiplication of a scalar λ and q is computed as: λq =
λqr + λqii + λqj j + λqkk

Hamilton product. The Hamilton product ⊗ (i.e., the quaternion multiplication) of
two quaternions q and p is defined as:

q ⊗ p = (qrpr − qipi − qjpj − qkpk) + (qipr + qrpi − qkpj + qjpk)i

+ (qjpr + qkpi + qrpj − qipk)j + (qkpr − qjpi + qipj + qrpk)k (1)

We can express the Hamilton product of q and p in the following form:

q ⊗ p =


1
i
j
k


> 

qr −qi −qj −qk
qi qr −qk qj
qj qk qr −qi
qk −qj qi qr



pr
pi
pj
pk

 (2)

We note that the Hamilton product is not commutative, i.e., q ⊗ p 6= p⊗ q.
Quaternion-inner product. The quaternion-inner product • of two quaternion vec-

tors q and p ∈ Hn returns a scalar as:

q • p = qTr pr + qTi pi + qTj pj + qTkpk (3)

Concatenation. We define a concatenation of two quaternion vectors q and p as:

[q ‖ p] = [qr ‖ pr] + [qi ‖ pi] i +
[
qj ‖ pj

]
j + [qk ‖ pk] k (4)

4. Graph representation learning within the Quaternion space

Most of the existing GNNs focus on learning graph representations within the Euclidean
space. We, however, note that learning representation and embeddings in hyper-complex
space have recently shown to be a promising and effective approach to move beyond the
Euclidean space (Parcollet et al., 2019a). This motivates us to move beyond the Euclidean
space and consider the Quaternion space – a hyper-complex vector space – which provides
highly expressive computations through the Hamilton product.

Nguyen Nguyen Phung

4.1. Quaternion Graph Neural Networks (QGNN)

ri
jk

ri
jk

ri
jk

ri
jk

…

ri
jk

ri
jk

ri
jk

…

ri
jk

Quaternion input Quaternion output

Hidden quaternion layer Hidden quaternion layer

g g g …

Figure 1: Illustration of our QGNN.

We propose Quaternion Graph Neural Networks (QGNN) to learn quaternion embeddings
for graph-structured data. Our QGNN can be seen as a generalization of GCN within the

Quaternion space. We represent each graph G =
(
V,E , {h(0),Qv }v∈V

)
, where V is a set of

nodes, E is a set of edges. In particular, the aggregation function in QGNN is defined as:2

h
(l+1),Q
v = g

 ∑
u∈Nv∪{v}

av,uW
(l),Q ⊗ h

(l),Q
u

 , ∀v ∈ V (5)

where Nv is the set of neighbors of node v; av,u is an edge constant between nodes v and

u in the re-normalized adjacency matrix D̃
− 1

2 ÃD̃
− 1

2 , wherein Ã = A + I where A is the
adjacency matrix, I is the identity matrix, and D̃ is the diagonal node degree matrix of Ã.
We use the superscript Q to denote the Quaternion space; W(l),Q is a quaternion weight

matrix; h
(0),Q
v is the quaternion feature vector of node v; and g is a nonlinear activation

function (such as ReLU or tanh) and can be adopted to each quaternion element (Parcollet
et al., 2019b) as:

g(q) = g(qr) + g(qi)i + g(qj)j + g(qk)k (6)

Correspondingly, we represent the quaternion vector h
(l),Q
u ∈ Hn and the quaternion

weight matrix W(l),Q ∈ Hm×n as:

h
(l),Q
u = h

(l)
u,r + h

(l)
u,ii + h

(l)
u,j j + h

(l)
u,kk (7)

W(l),Q = W(l)
r + W

(l)
i i + W

(l)
j j + W

(l)
k k (8)

where h
(l)
u,r, h

(l)
u,i, h

(l)
u,j , and h

(l)
u,k ∈ Rn; and W

(l)
r , W

(l)
i , W

(l)
j , and W

(l)
k ∈ Rm×n. We now

express the Hamilton product ⊗ between W(l),Q and h
(l),Q
u derived from Equation 2 as:

2. In practice, we also implement QGNN efficiently using sparse matrix multiplications.

Quaternion Graph Neural Networks

W(l),Q ⊗ h
(l),Q
u =


1
i
j
k


>


W
(l)
r −W

(l)
i −W

(l)
j −W

(l)
k

W
(l)
i W

(l)
r −W

(l)
k W

(l)
j

W
(l)
j W

(l)
k W

(l)
r −W

(l)
i

W
(l)
k −W

(l)
j W

(l)
i W

(l)
r



h
(l)
u,r

h
(l)
u,i

h
(l)
u,j

h
(l)
u,k

 (9)

Note that the quaternion components of W(l),Q are shared across the four quaternion

components h
(l)
u,r, h

(l)
u,i, h

(l)
u,j , and h

(l)
u,k. Therefore, if we use any slight change in the input

h
(l),Q
u , we get an entirely different output, leading to a different performance. This phe-

nomenon is one of the crucial reasons why the Quaternion space provides highly expressive
computations through the Hamilton product compared to the Euclidean and complex vector
spaces (Parcollet et al., 2019a). The phenomenon enforces the model to learn the potential
relations within each hidden layer and between the different hidden layers, hence increas-

ing the representation quality. Furthermore, the four quaternion components W
(l)
r , W

(l)
i ,

W
(l)
j , and W

(l)
k are shared when performing the Hamilton product; while in the Euclidean

space, all the elements of the weight matrix are different parameter variables (Tay et al.,
2019). Thus, we can keep the same complexity and reduce the number of model parameters
up to four times within the Quaternion space, similar to the parameter saving reported in
(Parcollet et al., 2019b; Tay et al., 2019).

4.2. QGNN for node classification

Given a graph G where each node belongs to one of class labels, we are given the labels of
a subset of V. The node classification task is to predict the labels of remaining nodes.

We consider h
(L),Q
v , which is the quaternion vector representation of node v at the last

L-th layer. To predict the label of node v, we simply feed h
(L),Q
v to a prediction layer

followed by a softmax layer as follows:

ŷv = softmax

 ∑
u∈Nv∪{v}

av,uW1Vec
(
h
(L),Q
v

) ,∀v ∈ V (10)

where Vec(.) denotes a concatenation of the four components of the quaternion vector.
For example,

Vec
(
h
(L),Q
v

)
=
[
h
(L)
v,r ‖ h(L)v,i ‖ h

(L)
v,j ‖ h

(L)
v,k

]
(11)

We then learn the model parameters for the classification task by minimizing the cross-
entropy loss function.

4.3. QGNN for graph classification

Given a set of M disjoint graphs {Gm}Mm=1 and their corresponding class labels {ym}Mm=1 ⊆
Y, the graph classification task is to learn an embedding eGm for each entire graph Gm to
predict its label ym.

Nguyen Nguyen Phung

Following (Xu et al., 2019), we obtain the quaternion embedding eQG of the entire graph
G as:

eQG =
∑
v∈V

eQv =
∑
v∈V

[
h
(1),Q
v ‖ h(2),Qv ‖ ... ‖ h(L),Qv

]
(12)

To perform the task, we feed eQG to a single fully-connected layer followed by a softmax layer
as:

ŷG = softmax
(
W2Vec

(
eQG

)
+ b

)
(13)

where Vec
(
eQG

)
= [eG,r ‖ eG,i ‖ eG,j ‖ eG,k]. We then also learn the model parameters by

minimizing the cross-entropy loss function.

4.4. QGNN for knowledge graph completion (SimQGNN)

Knowledge graphs (KGs) can be viewed as directed multi-relational graphs to represent
directional relationships between entities in the form of triples (head, relation, tail) denoted
as (h, r, t). However, large KGs are still incomplete, i.e., missing a lot of valid triples (West
et al., 2014). To tackle this issue, research efforts have been made to predict whether a
triple not in a knowledge graph is likely to be valid or not, which then helps to improve the
graph completeness. More specifically, many KG embedding models have been proposed to
learn entity and relation embeddings and return a score for each triple (h, r, t), such that
valid triples have higher scores than invalid ones (Bordes et al., 2011, 2013; Socher et al.,
2013). For example, the score of the valid triple (Melbourne, city Of, Australia) is higher
than the score of the invalid one (Melbourne, city Of, Germany).

It is worth mentioning that several KG embedding approaches have been proposed
to adapt GNNs for knowledge graph completion, e.g., R-GCN (Schlichtkrull et al., 2018)
and CompGCN (Vashishth et al., 2020). In general, these GNN-based models adopt an
encoder-decoder architecture, wherein the encoder module aims to capture the relation-
specific directions among entities, and then the decoder module adopts a score function to
return the triple scores. Several examples of score functions are used in TransE (Bordes
et al., 2013), ComplEx (Trouillon et al., 2016), ConvE (Dettmers et al., 2018), and ConvKB
(Nguyen et al., 2019a).

We note that the encoder modules used in the existing GNN-based KG embedding
models focus on modifying the vanilla GNNs. For example, R-GCN modifies GCNs to as-
sociate entities with relation-specific transformation matrices, and CompGCN customizes
GCNs to combine composition operations between entities and relations with relation-type
specific weight matrices. However, making these “more complicated” encoder modules is
not completely effective at improving the performance of the existing GNN-based models.
This is probably because the directions between entities in the knowledge graph can be
well-encoded by an effective score function. In particular, the GNN-based models are out-
performed by other conventional KG embedding models such as TuckER (Balažević et al.,
2019) on benchmark datasets such as FB15k-237 (Toutanova and Chen, 2015) for knowledge
graph completion (Bordes et al., 2013).

To this end, we propose a new method of exploring the vanilla GNNs (such as GCN or
our QGNN) directly on a single undirected graph G of entities built from a given knowledge
graph G , as illustrated in Figure 2, so that we construct a simple yet effective adaptive

Quaternion Graph Neural Networks

Jane

Mark

Patti

John

Miami

Austinchild_
of

bo
rn
_i
n

Vanilla GNNs

encoding
decoding

score

live_in

Jane

Mark

Patti John

Miami Austin

Figure 2: Illustration of adopting the vanilla GNNs on a single undirected graph G of entities
built from a given knowledge graph G .

encoder module. As a result, we can easily adopt our QGNN on G as the encoder module
as follows:

h
(l+1),Q
e = g

 ∑
e′∈Ne∪{e}

ae,e′W
(l),Q ⊗ h

(l),Q
e′

 (14)

where Ne is the set of entity neighbors of entity node e in G. We also adapt DistMult (Yang
et al., 2015) as a decoder module to compute the score of (h, r, t) as:

f (h, r, t) =
〈
Vec

(
h
(L),Q
h

)
,Vec

(
vQ
r

)
,Vec

(
h
(L),Q
t

)〉
where h

(L),Q
h and h

(L),Q
t are taken from the last QGNN layer; h

(0),Q
h = vQ

h and h
(0),Q
t = vQ

t

are the quaternion embeddings of head entity h and tail entity t, respectively; vQ
r is the

quaternion embedding of relation r; and vQ
h , vQ

r , and vQ
t are learned during training. Vec(.)

denotes a concatenation of the four components of the quaternion vector as mentioned in
Equation 11; and 〈〉 denotes a multiple-linear dot product.

Similarity, we can also adopt GCN as the encoder module. We name our QGNN-based
KG embedding model as SimQGNN and its variant using GCN as SimRGCN.

We then employ the Adam optimizer (Kingma and Ba, 2014) to train our proposed
model by minimizing the binary cross-entropy loss function (Dettmers et al., 2018) as:

L = −
∑

(h,r,t)∈{G∪G′}

(
l(h,r,t) log

(
p(h,r,t)

)
+
(
1− l(h,r,t)

)
log
(
1− p(h,r,t)

))
(15)

in which, l(h,r,t) =

{
1 for (h, r, t) ∈ G
0 for (h, r, t) ∈ G ′

where p(h,r,t) = sigmoid (f(h, r, t)). G and G ′ are collections of valid and invalid triples,
respectively.

Nguyen Nguyen Phung

5. Experimental results

5.1. QGNN for graph classification

Datasets We evaluate our QGNN on well-known datasets consisting of three social net-
work datasets (i.e., COLLAB, IMDB-B and IMDB-M) and four bioinformatics datasets
(i.e., DD, MUTAG, PROTEINS, and PTC) (Yanardag and Vishwanathan, 2015). The so-
cial network datasets do not have available node features; thus, we follow (Niepert et al.,
2016; Zhang et al., 2018; Xu et al., 2019) to use node degrees as features on these datasets.

Evaluation protocol We follow (Xu et al., 2019; Maron et al., 2019a; Seo et al., 2019;
Chen et al., 2019) to use the same data splits and the same 10-fold cross-validation scheme to
calculate the classification performance for a fair comparison. We compare our QGNN with
up-to-date strong baselines and report the baseline results reported either in the original
papers or in (Verma and Zhang, 2018; Xinyi and Chen, 2019; Chen et al., 2019; Seo et al.,
2019; Xu et al., 2019).

Training protocol We usually evaluate the proposed models on benchmark datasets
where the Euclidean feature vectors hv are typically given and pre-fixed. Hence we set the

same hv to the four components of h
(0),Q
v as: h

(0)
v,r = h

(0)
v,i = h

(0)
v,j = h

(0)
v,k = hv This is similar to

the way applying the Quaternion space on grayscale images (Zhu et al., 2018). We vary the
number of hidden layers in {1, 2, 3, 4, 5}, and the hidden size (i.e., the number of quaternions
in the hidden layers) in {8, 16, 32, 64, 128}. We set the batch size to 4 and use the Adam
optimizer (Kingma and Ba, 2014) with the initial learning rate in

{
5e−5, 1e−4, 5e−4, 1e−3

}
.

We run up to 100 epochs to evaluate our trained model.

Table 1: Graph classification accuracies (%). The best scores are in bold.

Model COLLAB IMDB-B IMDB-M DD PROTEINS MUTAG PTC

PSCN (2016) 72.60 ± 2.15 71.00 ± 2.29 45.23 ± 2.84 77.12 ± 2.41 75.89 ± 2.76 92.63 ± 4.21 62.29 ± 5.68

GCN (2017) 79.00 ± 1.80 74.00 ± 3.40 51.90 ± 3.80 – 76.00 ± 3.20 85.60 ± 5.80 64.20 ± 4.30

GraphSAGE (2017a) 79.70 ± 1.70 72.40 ± 3.60 49.90 ± 5.00 65.80 ± 4.90 65.90 ± 2.70 79.80 ± 13.9 –

GAT (2018) 75.80 ± 1.60 70.50 ± 2.30 47.80 ± 3.10 – 74.70 ± 2.20 89.40 ± 6.10 66.70 ± 5.10

GCAPS (2018) 77.71 ± 2.51 71.69 ± 3.40 48.50 ± 4.10 77.62 ± 4.99 76.40 ± 4.17 – 66.01 ± 5.91

DGCNN (2018) 73.76 ± 0.49 70.03 ± 0.86 47.83 ± 0.85 79.37 ± 0.94 75.54 ± 0.94 85.83 ± 1.66 58.59 ± 2.47

CapsGNN (2019) 79.62 ± 0.91 73.10 ± 4.83 50.27 ± 2.65 75.38 ± 4.17 76.28 ± 3.63 86.67 ± 6.88 –

GIN-0 (2019) 80.20 ± 1.90 75.10 ± 5.10 52.30 ± 2.80 – 76.20 ± 2.80 89.40 ± 5.60 64.60 ± 7.00

IEGN (2019b) 77.92 ± 1.70 71.27 ± 4.50 48.55 ± 3.90 – 75.19 ± 4.30 84.61 ± 10.0 59.47 ± 7.30

PPGN (2019a) 81.38 ± 1.42 73.00 ± 5.77 50.46 ± 3.59 – 77.20 ± 4.73 90.55 ± 8.70 66.17 ± 6.54

GFN (2019) 81.50 ± 2.42 73.00 ± 4.35 51.80 ± 5.16 78.78 ± 3.49 76.46 ± 4.06 90.84 ± 7.22 –

QGNN 81.36 ± 1.31 77.56 ± 2.45 53.78 ± 3.83 79.92 ± 3.54 78.47 ± 3.30 92.59 ± 3.59 69.92 ± 2.59

Experimental results Table 1 presents the accuracy results of our QGNN and other
up-to-date baselines. In general, our QGNN produces state-of-the-art accuracies on most
datasets; hence this demonstrates a notable impact of our model. Especially, QGNN out-
performs the existing baseline models and produces state-of-the-art accuracies on IMDB-B,
IMDB-M, DD, PROTEINS, and PTC, respectively. QGNN also obtains competitive accura-
cies on COLLAB and MUTAG, respectively. Furthermore, compared to GCN, the obtained
results demonstrate the effectiveness of QGNN to generalize GCN within the Quaternion
space for the graph classification task.

Quaternion Graph Neural Networks

5.2. QGNN for node classification

Datasets We use three well-known benchmark datasets consisting of Cora, Citeseer
(Sen et al., 2008) and Pubmed (Namata et al., 2012) that are citation networks.

Evaluation protocol As mentioned in (Fey and Lenssen, 2019; Pei et al., 2020), the
experimental setup used in (Kipf and Welling, 2017; Veličković et al., 2018) is not fair
to show the effectiveness of existing GNN models when only using one fixed data split of
training, validation, and test sets from (Yang et al., 2016). Therefore, for a fair comparison,
we use the same 10 random data splits used in (Pei et al., 2020), where each data split
consists of 60%, 20%, 20% numbers of nodes, equally distributed for each node class, for
training, validation, and testing, respectively. We also follow (Pei et al., 2020) to report the
mean classification accuracy on the test sets over the 10 data splits.

Training protocol We also we set the same hv to the four components of h
(0),Q
v . The

architecture used in (Pei et al., 2020) is a 2-layer GCN, wherein the hidden sizes are 16 for
Cora and Citeseer, and 64 for Pubmed. Hence, we construct one QGNN layer followed
by a prediction layer and then a softmax layer (referring to our QGNN for node classification
as mentioned in Equation 10). We use the corresponding hidden sizes of 4 for Cora and
Citeseer, and 16 on Pubmed. We also set the same Adam initial learning rate to 0.05,
and the same number of epochs to 100 for both Cora and Citeseer; while they are 0.1 and
200 respectively for Pubmed. We also provide the accuracy results of Hyperbolic Graph
Convolutional Neural Networks (HGCN) (Chami et al., 2019) following these evaluation
and training protocols.

Table 2: Node classification accuracies (%).

Dataset GAT GCN HGCN QGNN

Cora 86.37 85.77 86.09 87.48

Citeseer 74.32 73.68 74.84 76.03

Pubmed 87.62 88.13 87.13 87.65

Experimental results Table 2 presents the node classification accuracies, where the
results of GCN and GAT are also taken from (Pei et al., 2020). Our QGNN achieves the
accuracies of 87.48%, 76.03%, and 87.65% on Cora, Citeseer, and Pubmed respectively.
In particular, QGNN outperforms GCN, GAT and HGCN on Cora and Citeseer, and
produces competitive results on Pubmed, e.g., QGNN obtains absolute gains of 1.39%,
1.19%, and 0.52% over HGCN on Cora, Citeseer, and Pubmed, respectively.

5.3. QGNN for knowledge graph completion (SimQGNN)

We evaluate our proposed method for the knowledge graph completion task, i.e., link pre-
diction (Bordes et al., 2013), which aims to predict a missing entity given a relation with
another entity, e.g., inferring a head entity h given (?, r, t) or inferring a tail entity t given
(h, r, ?). The results are computed by ranking the scores returned by the score function f
on triples in the test set.

Nguyen Nguyen Phung

Datasets Safavi and Koutra (2020) point out issues with existing KG completion datasets
and thus present three new and more appropriately difficult benchmark datasets CoDEx-
S, CoDEx-M, and CoDEx-L. These three open-domain CoDEx datasets are derived from
Wikidata and Wikipedia to cover more diverse and interpretable content and make a more
challenging prediction task. Therefore, we use these new datasets in our experiments.

Evaluation protocol Following Bordes et al. (2013), for each valid test triple (h, r, t),
we replace either h or t by each of all other entities to create a set of corrupted triples. We
also use the “Filtered” setting protocol (Bordes et al., 2013). We rank the valid test triple
and corrupted triples in descending order of their scores to calculate mean reciprocal rank
(MRR) and Hits@10. The final scores on the test set are reported for the model which
obtains the highest Hits@10 on the validation set.

Training protocol We set the batch size to 1024 and employ the Adam optimizer
(Kingma and Ba, 2014) to train our model up to 4,000 epochs on CoDEx-S and CoDEx-M,
and 2,000 epochs on CoDEx-L. We set the same dimension value for both the quaternion em-
bedding size and the hidden size, wherein we vary the dimension value in {32, 64, 128, 256}.
We also vary the number of hidden layers in {1, 2, 3} and the Adam initial learning rate
in
{

1e−4, 5e−4, 1e−3, 5e−3, 1e−2
}

. We use grid search to select the best model checkpoints,
wherein we compute the Hits@10 scores after each training epoch on the CoDEx-S and
CoDEx-M validation sets and after each 5 training epochs on the CoDEx-L validation set.

For other baseline models including DistMult (Yang et al., 2015), SACN (Shang et al.,
2019), R-GCN (Schlichtkrull et al., 2018), and CompGCN (Vashishth et al., 2020), we apply
the same evaluation protocol. The training protocol is the same w.r.t. the optimizer, the
hidden layers, the initial learning rate values, and the number of training epochs.

Table 3: Experimental results on the test sets. Hits@10 (H@10) is reported in %. The best
scores are in bold, while the second best scores are in underline. ∗ denotes the results taken
from (Safavi and Koutra, 2020), while ♣ denotes our own results for other baseline models.
We get an out-of-memory for SACN on the large dataset CoDEx-L.

Method
CoDEx-S CoDEx-M CoDEx-L

MRR H@10 MRR H@10 MRR H@10

TransE∗ 0.354 63.4 0.303 45.4 0.187 31.7

ComplEx∗ 0.465 64.6 0.337 47.6 0.294 40.0

ConvE∗ 0.444 63.5 0.318 46.4 0.303 42.0

TuckER∗ 0.444 63.8 0.328 45.8 0.309 43.0

DistMult♣ 0.435 64.6 0.320 46.8 0.307 42.7

R-GCN♣ 0.275 53.3 0.124 24.1 0.073 14.2

SACN♣ 0.374 59.4 0.294 44.3 – –

CompGCN♣ 0.395 62.1 0.312 45.7 0.304 42.8

SimRGCN 0.427 64.7 0.322 47.5 0.307 43.2

SimQGNN 0.435 65.2 0.323 47.7 0.310 43.7

Quaternion Graph Neural Networks

Experimental results We report the results on the CoDEx datasets for our proposed
SimQGNN and SimRGCN, and other baseline models in Table 3. SimQGNN performs bet-
ter than the more complicated models R-GCN, SACN, and CompGCN, e.g., SimQGNN ob-
tains absolute Hits@10 improvements of 3.1%, 2.0%, and 0.9% over CompGCN on CoDEx-
S, CoDEx-M, and CoDEx-L, respectively. In general, our SimQGNN obtains the highest
Hits@10 scores and achieves competitive MRR scores on CoDEx-S and CoDEx-M. Further-
more, SimQGNN produces the highest MRR and Hits@10 scores on the large and more
challenging dataset CoDEx-L.

It is worth mentioning that our SimRGCN outperforms R-GCN, SACN, and CompGCN;
hence this clearly shows the effectiveness of our proposed method of exploring the vanilla
GNNs directly on the single undirected graph G of entities built from the given knowl-
edge graph G . Besides, it is noted that, compared to SimQGNN, the results degrade for
SimRGCN, implying the advantage of our QGNN over GCN.

6. Conclusion

We propose Quaternion Graph Neural Networks (QGNN) to learn graph representations
within the Quaternion space. Our proposed QGNN obtains state-of-the-art accuracies on
well-known benchmark datasets for node classification and graph classification. Further-
more, regarding knowledge graphs, our QGNN-based embedding model, named SimQGNN,
outperforms the existing models and produces state-of-the-art results on three benchmark
datasets CoDEx for knowledge graph completion.3

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. ICLR, 2015.

Ivana Balažević, Carl Allen, and Timothy M Hospedales. Tucker: Tensor factorization for
knowledge graph completion. In EMNLP, pages 5185–5194, 2019.

Antoine Bordes, Jason Weston, Ronan Collobert, and Yoshua Bengio. Learning Structured
Embeddings of Knowledge Bases. In AAAI, pages 301–306, 2011.

Antoine Bordes, Nicolas Usunier, Alberto Garćıa-Durán, Jason Weston, and Oksana
Yakhnenko. Translating Embeddings for Modeling Multi-relational Data. In NeurIPS,
pages 2787–2795, 2013.

Cătălina Cangea, Petar Veličković, Nikola Jovanović, Thomas Kipf, and Pietro Liò. Towards
sparse hierarchical graph classifiers. arXiv preprint arXiv:1811.01287, 2018.

Ines Chami, Zhitao Ying, Christopher Ré, and Jure Leskovec. Hyperbolic graph convolu-
tional neural networks. In NeurIPS, pages 4869–4880, 2019.

3. We introduce Gated Quaternion Graph Neural Networks (GQGNN) to learn graph representations in
Appendix A. Our GQGNN-based text classification model, called TextQGNN, performs better than the
existing models on well-known benchmark datasets for inductive text classification.

Nguyen Nguyen Phung

Ting Chen, Song Bian, and Yizhou Sun. Are powerful graph neural nets necessary? a
dissection on graph classification. arXiv:1905.04579, 2019.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using
rnn encoder–decoder for statistical machine translation. In EMNLP, 2014.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser.
Universal Transformers. ICLR, 2019.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional
2D Knowledge Graph Embeddings. In AAAI, pages 1811–1818, 2018.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geo-
metric. arXiv preprint arXiv:1903.02428, 2019.

Chase J Gaudet and Anthony S Maida. Deep quaternion networks. In 2018 International
Joint Conference on Neural Networks (IJCNN), pages 1–8, 2018.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on
large graphs. In NeurIPS, 2017a.

William L. Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs:
Methods and applications. arXiv:1709.05584, 2017b.

William Rowan Hamilton. Ii. on quaternions; or on a new system of imaginaries in algebra.
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 25
(163):10–13, 1844.

Diederik Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv
preprint arXiv:1412.6980, 2014.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In ICLR, 2017.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated Graph Sequence
Neural Networks. ICLR, 2016.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful
graph networks. In NeurIPS, 2019a.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equiv-
ariant graph networks. ICLR, 2019b.

Galileo Mark Namata, Ben London, Lise Getoor, and Bert Huang. Query-driven active
surveying for collective classification. In MLG Workshop, 2012.

Dai Quoc Nguyen. Representation Learning for Graph-Structured Data. 2021.
doi: 10.26180/14450496.v1. URL https://bridges.monash.edu/articles/thesis/

Representation_Learning_for_Graph-Structured_Data/14450496.

https://bridges.monash.edu/articles/thesis/Representation_Learning_for_Graph-Structured_Data/14450496
https://bridges.monash.edu/articles/thesis/Representation_Learning_for_Graph-Structured_Data/14450496

Quaternion Graph Neural Networks

Dai Quoc Nguyen, Dat Quoc Nguyen, Tu Dinh Nguyen, and Dinh Phung. Convolutional
Neural Network-based Model for Knowledge Base Completion and Its Application to
Search Personalization. Semantic Web, 10(5):947–960, 2019a. doi: 10.3233/SW-180318.

Dai Quoc Nguyen, Tu Dinh Nguyen, and Dinh Phung. Universal graph transformer self-
attention networks. arXiv preprint arXiv:1909.11855, 2019b.

Dai Quoc Nguyen, Thanh Vu, Tu Dinh Nguyen, and Dinh Phung. Quatre: Relation-aware
quaternions for knowledge graph embeddings. arXiv preprint arXiv:2009.12517, 2020.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning Convolutional
Neural Networks for Graphs. In ICML, pages 2014–2023, 2016.

Titouan Parcollet, Ying Zhang, Mohamed Morchid, Chiheb Trabelsi, Georges Linarès, Re-
nato De Mori, and Yoshua Bengio. Quaternion convolutional neural networks for end-to-
end automatic speech recognition. In Interspeech, pages 22–26, 2018.

Titouan Parcollet, Mohamed Morchid, and Georges Linarès. A survey of quaternion neural
networks. Artificial Intelligence Review, pages 1–26, 2019a.

Titouan Parcollet, Mirco Ravanelli, Mohamed Morchid, Georges Linarès, Chiheb Trabelsi,
Renato De Mori, and Yoshua Bengio. Quaternion recurrent neural networks. In ICLR,
2019b.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-GCN:
Geometric Graph Convolutional Networks. In ICLR, 2020.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. GloVe: Global Vectors
for Word Representation. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing, pages 1532–1543, 2014.

Tara Safavi and Danai Koutra. CoDEx: A Comprehensive Knowledge Graph Completion
Benchmark. In EMNLP, pages 8328–8350, 2020.

Michael Schlichtkrull, Thomas Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and
Max Welling. Modeling relational data with graph convolutional networks. In European
Semantic Web Conference, pages 593–607, 2018.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina
Eliassi-Rad. Collective classification in network data. AI magazine, 29(3):93, 2008.

Younjoo Seo, Andreas Loukas, and Nathanael Peraudin. Discriminative structural graph
classification. arXiv:1905.13422, 2019.

Chao Shang, Yun Tang, Jing Huang, Jinbo Bi, Xiaodong He, and Bowen Zhou. End-to-
end structure-aware convolutional networks for knowledge base completion. In AAAI,
volume 33, pages 3060–3067, 2019.

Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng. Reasoning With
Neural Tensor Networks for Knowledge Base Completion. In NeurIPS, 2013.

Nguyen Nguyen Phung

Yi Tay, Aston Zhang, Anh Tuan Luu, Jinfeng Rao, Shuai Zhang, Shuohang Wang, Jie Fu,
and Siu Cheung Hui. Lightweight and efficient neural natural language processing with
quaternion networks. In ACL, pages 1494–1503, 2019.

Kristina Toutanova and Danqi Chen. Observed Versus Latent Features for Knowledge Base
and Text Inference. In CVSC Workshop, pages 57–66, 2015.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard.
Complex Embeddings for Simple Link Prediction. In ICML, pages 2071–2080, 2016.

VAnonymous. ReGVD: Revisiting graph neural networks for vulnerability detection. In Sub-
mitted to ICLR 2022, 2021. URL https://openreview.net/forum?id=wVFkD13GpeX.
under review.

Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar. Composition-based
multi-relational graph convolutional networks. In ICLR, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need. In NeurIPS,
pages 5998–6008, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and
Yoshua Bengio. Graph Attention Networks. ICLR, 2018.

Saurabh Verma and Zhi-Li Zhang. Graph capsule convolutional neural networks. The Joint
ICML and IJCAI Workshop on Computational Biology, 2018.

Robert West, Evgeniy Gabrilovich, Kevin Murphy, Shaohua Sun, Rahul Gupta, and Dekang
Lin. Knowledge Base Completion via Search-based Question Answering. In Proceedings
of the 23rd International Conference on World Wide Web, pages 515–526, 2014.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger.
Simplifying graph convolutional networks. In ICML, pages 6861–6871, 2019a.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu.
A comprehensive survey on graph neural networks. arXiv:1901.00596, 2019b.

Zhang Xinyi and Lihui Chen. Capsule Graph Neural Network. ICLR, 2019.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and
Stefanie Jegelka. Representation learning on graphs with jumping knowledge networks.
In ICML, pages 5453–5462, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful Are Graph
Neural Networks? ICLR, 2019.

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In SIGKDD, pages 1365–
1374, 2015.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding Entities
and Relations for Learning and Inference in Knowledge Bases. In ICLR, 2015.

https://openreview.net/forum?id=wVFkD13GpeX

Quaternion Graph Neural Networks

Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised
learning with graph embeddings. In ICML, pages 40–48, 2016.

Liang Yao, Chengsheng Mao, and Yuan Luo. Graph convolutional networks for text classi-
fication. In AAAI, volume 33, pages 7370–7377, 2019.

Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, and Jure
Leskovec. Hierarchical graph representation learning with differentiable pooling. In
NeurIPS, pages 4805–4815, 2018.

Daokun Zhang, Jie Yin, Xingquan Zhu, and Chengqi Zhang. Network representation learn-
ing: A survey. IEEE Transactions on Big Data, 6:3–28, 2020a.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An End-to-End Deep
Learning Architecture for Graph Classification. In AAAI, 2018.

Shuai Zhang, Yi Tay, Lina Yao, and Qi Liu. Quaternion knowledge graph embeddings. In
NeurIPS, pages 2731–2741, 2019.

Yufeng Zhang, Xueli Yu, Zeyu Cui, Shu Wu, Zhongzhen Wen, and Liang Wang. Every
document owns its structure: Inductive text classification via graph neural networks. In
ACL, pages 334–339, 2020b.

Xuanyu Zhu, Yi Xu, Hongteng Xu, and Changjian Chen. Quaternion convolutional neural
networks. In ECCV, pages 631–647, 2018.

Appendix A. Gated Quaternion Graph Neural Networks (GQGNN)

We propose Gated Quaternion Graph Neural Networks (GQGNN), which can be seen as a
generalization of Gated GNNs (Li et al., 2016) within the Quaternion space as follows:

a
(l+1),Q
v =

∑
u∈Nv

av,uh
(l),Q
u

z
(l+1),Q
v = σ

(
Wz,Q ⊗ a

(l+1),Q
v + Uz,Q ⊗ h

(l),Q
v

)
r
(l+1),Q
v = σ

(
Wr,Q ⊗ a

(l+1),Q
v + Ur,Q ⊗ h

(l),Q
v

)
h̃
(l+1),Q
v = g

(
Wo,Q ⊗ a

(l+1),Q
v + Uo,Q ⊗

(
r
(l+1),Q
v � h

(l),Q
v

))
h
(l+1),Q
v =

(
1− z

(l+1),Q
v

)
� h

(l),Q
v + z

(l+1),Q
v � h̃

(l+1),Q
v (16)

where z and r are the update and reset gates; σ is the sigmoid function; � is element-wise
multiplication; and g is a nonlinear activation function (such as ReLU).

Nguyen Nguyen Phung

A.1. GQGNN for inductive text classification (TextQGNN)

We follow (Zhang et al., 2020b) to build a graph G for each textual document by representing
unique words as nodes and co-occurrences between words as edges. We then employ our
proposed GQGNN to update node representations. To obtain the graph embedding eQG , we
follow (VAnonymous, 2021) to define a readout function as:

eQv = σ
(
wTVec

(
h
(L),Q
v

)
+ b
)
� g

(
WQ ⊗ h

(L),Q
v

)
(17)

eQG =
∑
v∈V

eQv �max pooling
{
eQv
}
v∈V (18)

where σ
(
wTVec

(
h
(L),Q
v

)
+ b
)

acts as soft attention mechanisms over nodes. Finally, we

also follow Equation 13 to perform the task. We name our GQGNN-based text classification
model as TextQGNN.

A.2. Experimental setup and results

Datasets We follow (Yao et al., 2019; Zhang et al., 2020b) to use four benchmarks – R8,
R52, Ohsumed, and MR.

Training protocol We also follow (Zhang et al., 2020b) to use random vectors or pre-
trained Glove (Pennington et al., 2014) with the dimension size of 300 to initialize the
Euclidean feature vectors. Then, for each Euclidean feature vector, we simply split it
into four parts to create four corresponding components of a Quaternion feature vector
with the dimension size of 75. We follow (Yao et al., 2019; Zhang et al., 2020b) to con-
struct 2-layer steps. We set the quaternion hidden size to 96 and vary the learning rate in{

1e−4, 5e−4, 1e−3, 5e−3
}

. We use the Adam optimizer to train the model up to 150 epochs
to evaluate our trained model.

Evaluation protocol For each dataset, we report the mean accuracy and standard devi-
ation over 10 times, wherein for each time, we randomly sample 10% text from the training
set to construct the validation set for hyper-parameter turning.

Table 4: Text classification accuracies (%) on the test sets. Some baseline results are taken
from (Yao et al., 2019). We report the new results of TextING for the model which obtains
the highest accuracy on the validation set for a fair comparison.

Dataset MR R8 R52 Ohsumed

Bi-LSTM 77.68 ± 0.86 96.31 ± 0.33 90.54 ± 0.91 49.27 ± 1.07

fastText 75.14 ± 0.20 96.13 ± 0.21 92.81 ± 0.09 57.70 ± 0.49

TextGCN 76.74 ± 0.20 97.07 ± 0.10 93.56 ± 0.18 68.36 ± 0.56

TextING 78.86 ± 0.26 96.90 ± 0.23 93.34 ± 0.24 69.72 ± 0.30

TextQGNN 78.93 ± 0.29 97.02 ± 0.28 94.45 ± 0.35 69.93 ± 0.31

Experimental results Table 4 presents the text classification accuracies of our Tex-
tQGNN and the baselines. In general, our TextQGNN works better than the baselines on
the benchmark datasets.

	Introduction
	Related work
	Quaternion background
	Graph representation learning within the Quaternion space
	Quaternion Graph Neural Networks (QGNN)
	QGNN for node classification
	QGNN for graph classification
	QGNN for knowledge graph completion (SimQGNN)

	Experimental results
	QGNN for graph classification
	QGNN for node classification
	QGNN for knowledge graph completion (SimQGNN)

	Conclusion
	Gated Quaternion Graph Neural Networks (GQGNN)
	GQGNN for inductive text classification (TextQGNN)
	Experimental setup and results

