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Abstract

Uplift modeling refers to estimating the causal effect of a treatment on an individual ob-
servation, used for instance to identify customers worth targeting with a discount in e-
commerce. We introduce a simple yet effective undersampling strategy for dealing with
the prevalent problem of high class imbalance (low conversion rate) in such applications.
Our strategy is agnostic to the base learners and produces a 6.5% improvement over the
best published benchmark for the largest public uplift data which incidentally exhibits high
class imbalance. We also introduce a new metric on calibration for uplift modeling and
present a strategy to improve the calibration of the proposed method.
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1. Introduction

Uplift modeling, also known as individual treatment effect (Rubin, D. B, 1974) and hetero-
geneous treatment effect (Athey and Imbens, 2015), is the art of modeling the causal effect
of some treatment on the outcome for individual observations. This is a common task in
e-commerce where various actions (ads, discounts, chat service etc.) are used to increase
conversion rates (Diemert et al., 2018; Guelman et al., 2014). The task is to identify users
for which the treatment effect is sufficiently large to merit treatment. This requires well-
calibrated estimates of both the treatment effect and the conversion rate. The same task
occurs also in medicine where a treatment should only be given to individuals that benefit
from it (Jaskowski and Jaroszewicz, 2012), and in education where identifying students that
benefit from intervention can help prevent dropping out (Olaya et al., 2020b).

Several practical methods for estimating uplift have been proposed including double clas-
sifiers (Radcliffe and Surry, 1999), class-variable transformations (Jaskowski and Jaroszewicz,
2012), revert-labeling (Athey and Imbens, 2015), tree-based methods (Rzepakowski and
Jaroszewicz, 2010), causal forests (Athey et al., 2019), and support-vector machines (Zaniewicz
and Jaroszewicz, 2013). For more exhaustive lists and reviews, see Gubela et al. (2020);
Guelman et al. (2014); Gutierrez and Gérardy (2017). Despite a rich range of methods, one
frequently occurring challenge is ignored by the existing work: Especially in e-commerce the
problem is highly imbalanced in the sense that the rate of positive instances (e.g. conver-
sion) is extremely low compared to the rate of negative instances (e.g. user leaving without
buying) regardless of whether or not a treatment was applied. For example, in the Criteo
data set (Diemert et al., 2018) the overall rate of positive instances is only around 0.23%,
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with 0.24% rate for treated observations and 0.17% for untreated ones. This challenge re-
sembles that of class imbalance in classification (see Haixiang et al. (2017) for a review)
for which it is well established that explicitly accounting for the class imbalance is critical
(Wallace and Dahabreh, 2014), but for uplift modeling the problem has remained unad-
dressed. This also explains why the Criteo dataset has remained largely neglected despite
being the largest publicly available uplift dataset by two orders of magnitude.

We fill this void. We show that for highly imbalanced problems a specific form of
undersampling leads to an equivalent learning problem that is easier to solve, although
at the expense of calibration. We formulate an uplift modeling approach combining (a)
undersampling carried out as preprocessing with (b) postprocessing calibration extended
from isotonic regression (Zadrozny and Elkan, 2002). Both steps can be combined with
multiple uplift modeling algorithms. We demonstrate the approach on the Criteo data,
achieving a 6.5% increase in the area under the uplift curve (AUUC) metric (Jaskowski and
Jaroszewicz, 2012) over the method (double-classifier with logistic regression) previously
identified as the best performing model for this data (Diemert et al., 2018; Semenova and
Temirkaeva, 2019).

We make five concrete contributions: (a) We analyze class imbalances in uplift modeling
identifying it as a problem neglected in current research. (b) We present a technique based
on undersampling the majority class for addressing class imbalance compatible with several
methods for estimating uplift. (c) We present a calibration method for correcting a bias
caused by undersampling. (d) We propose two new metrics for measuring calibration of
uplift estimates.(e) We demonstrate clear improvements in uplift metrics on the Criteo
data (Diemert et al., 2018) which has high class imbalance.

2. Background and Related Work

2.1. The Uplift Learning Problem

The uplift problem is general, but for clarity of presentation we map the terminology to
its e-commerce application. An observation is an individual user, the features x represent
information about the user (e.g. demographics, browsing history), a treatment t ∈ {0, 1}
indicates whether the user was treated with some marketing action (with control referring
to the group of users that was not), and an outcome y ∈ {0, 1} (i.e. class label) indicates
whether the user converted (e.g. made a purchase).

The uplift problem is then the task of estimating

τ(x) = p(y|x, do(t = 1))− p(y|x, do(t = 0)) (1)

where τ(x) is uplift for an observation with features x, and do(t = .) is the do-operator
introduced by Pearl (2009). That is, uplift is the difference between the probability of
a positive outcome y when the observation is treated (do(t = 1)) and the corresponding
probability when it is not (do(t = 0)). The task is characterized by the fundamental problem
of causal inference (Holland, 1986); for a given observation we can know the value of y either
when the treatment is applied or when it is not, but never both.

The problem can be solved by learning a model for τ(x) on a static data collection
of triplets {x, y, t} where treatments t have been applied for some subset of observations
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using a pre-determined policy. We will assume that this policy is random. This choice allows
estimating τ(x) since the groups of observations that received the treatment are independent
of the control observations. This also holds for the data used in our experiments.

Uplift models are typically evaluated using uplift curves (see Figure 2 (right) for an
example) and the area under the uplift curve (AUUC) (Jaskowski and Jaroszewicz, 2012)
which provides an overall measure of goodness.

2.2. Methods for Modeling Uplift

As mentioned in Section 1, the uplift problem can be solved with a wide range of algorithms.
We will here introduce two prominent methods used in our experiments, but note that the
undersampling approach is compatible with all other methods as well. The two methods
considered here are the double-classifier approach (Radcliffe and Surry, 1999) and the class-
variable transformation (Lai, 2006; Jaskowski and Jaroszewicz, 2012). The double-classifier
(DC) approach builds directly on Eq. (1). Since τ(x) is the difference between the two
probabilities p(y|x, do(t = 1)) and p(y|x, do(t = 0)), we can separately train two classifiers,
one for each of these problems. By using classifiers capable of providing probability estimates
p̂(y|x, t) (e.g. logistic regression), we get an estimate (here called score) for uplift as the
difference between these two quantities as

sDC(x) = p̂(y|x, t = 1)− p̂(y|x, t = 0).

Class-variable transformation (CVT) (Jaskowski and Jaroszewicz, 2012) methods define
a new binary variable z so that z = 1 if either t = 1 and y = 1, or t = 0 and y = 0.
Otherwise z = 0. This relabeling results in p(z|x) being a weighted average with p(z =
1|x) = p(t = 1)p(y|x, t = 1) + p(t = 0)p(y = 0|x, t = 0). Assuming balanced treatment and
control groups (p(t = 1) = p(t = 0) = 1/2), this results in

τ(x) = 2p(z|x)− 1. (2)

This only requires estimating one probability p(z|x) instead of estimating a difference be-
tween two quantities, and by plugging in an estimate for the class probability we get the
score sCVT(x) = 2p̂(z = 1|x) − 1. To satisfy p(t = 0) = p(t = 1) we used undersampling.
Note that this undersampling that drops excess observations in the larger group is carried
out solely for validity of Eq. (2) and is not to be confused with the proposed undersampling
scheme for addressing class imbalance.

2.3. Imbalances in Uplift Modeling

Imbalance has been used as a term in uplift modeling in multiple contexts. Olaya et al.
(2020a) used it to describe differences in treatment and control distributions arising from
a non-random treatment policy. This is more commonly referred to as confounding effects
(Austin, 2011). Betlei et al. (2018), in turn, analyzed the problem arising from imbalance
in the sample size of treatment and control groups.

Our paper deals with class imbalance characterized by an imbalance in the number
of positive and negative observations which has so far been neglected in the literature.
While Gubela et al. (2020) also dealt with class imbalance in uplift modeling, they focused
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exclusively on regression and their method does not extend to binary outcomes that is the
focus of this paper. For sufficiently large and balanced data, the classifier-based methods
presented in section 2.2 work well. With severe class imbalance, however, the underlying
classification problems are difficult (Bose and Chen, 2009; Weiss, 2004) and the probability
estimates are poorly calibrated (Weiss and Provost, 2003).

The Criteo data has extreme class imbalance. The conversion rate in the control group is
0.174% and in the treatment group 0.240%. For DC we need to estimate class probabilities
that are extremely small, and avoiding naive solutions that favor the negative class with
99.8% prior probability is hard. Class imbalance also causes problems with CVT (Eq. (2)),
but the problem is not immediately apparent as the better treatment-balance masks it.
The classification problem for z follows the 85:15 split in treatments and seems reasonably
balanced, but the conditional distributions of the outcome y given the transformed variable
z are extremely imbalanced with 99.96% of the observations with z = 0 corresponding to
negative treatment observations (t = 1, y = 0) and 98.7% of the observations with z = 1
corresponding to negative control observations (t = 0, y = 0). In practice, it is more likely
for high accuracy to be achieved by learning a difference between the features of treatment
and control groups – either because the original treatment policy is not truly random, or
simply because of overlearning – rather than actually modeling the uplift.

The above example refers specifically to the Criteo data, but the low rate of positive
outcomes is prevalent in all e-commerce. Typical studies report rates in the order of 0.1−5%,
depending on whether the outcome corresponds to views, visits, or purchases (Diemert et al.,
2018; Richardson et al., 2007), but no practical methods for addressing the imbalance exists.
Notably the most interesting cases - the purchases - fall in the lower end of this spectrum.

3. Class Imbalanced Uplift Modeling

Next we address the class imbalance problem in uplift modeling. We start by presenting
how undersampling of the negative observations can be used in conjunction with both DC
and CVT, explain a practical method for selecting the undersampling factor, present a novel
calibration method that corrects for miss-calibration caused by the undersampling strategy,
and finally present novel metrics for evaluating the calibration.

3.1. Undersampling

There is a wide range of approaches for coping with high class imbalance in classification (see
Kaur et al. (2019)). One of these, namely undersampling, is a classic method carried out
by reducing the number of observations in the largest class(es), motivating us to extend the
idea for uplift modeling. Compared to other methods, such as oversampling small classes or
re-weighting the observations (Haixiang et al., 2017), it has the advantage of reducing the
computational cost and it often performs well in tasks with extreme imbalance and large
sample size, such as click-stream modeling in e-commerce (McMahan et al., 2013).

Classifiers trained on undersampled data are not calibrated for the original data, but
instead the probability estimates depend on the undersampling rate and true probability in a
non-linear manner. Since uplift corresponds to the difference between two class probabilities,
undersampling strategies for uplift modeling need to account for this. We propose to do
this by applying undersampling in a stratified manner as explained next.
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Our undersampling scheme drops observations so that Nt = k ∗ Ñt where Nt is the
number of observations before undersampling, Ñt is the number of observations after, and
k is an undersampling factor to be determined. Our undersampling scheme only drops
observations from the majority class (here assumed to be the negative class). This is done
separately for treated and control observations with the same k. Thus the number of
negative observations Ñneg,t after undersampling is

Ñneg,t =
1/k − p̄(y|t)
1− p̄(y|t)

·Nneg,t. (3)

Here 1/k−p̄(y|t)
1−p̄(y|t) is a constant that describes how large proportion of the negative observations

are kept, whereas for the positive observations we always keep all. Note that this expression
takes different values for t = 0 and t = 1. As a consequence, the average conversion rate in
the undersampled data equals k ∗ p̄(y|t) where p̄(y|t) is the average conversion rate in the
original data. This linear dependence is a very desirable property, but strictly speaking it
holds only for the averages, not for more general expressions involving x.

If we denote the true outcome probability by p(y|x, t) and the probability after under-
sampling by p̃(y|x, t), then in any local neighborhood of x we have

p̃(y|x, t) ≈ p(y|x, t)
p(y|x, t) + (1/k−p̄(y|t))

1−p̄(y|t) · (1− p(y|x, t))
. (4)

For small p(y|x, t) the denominator is dominated by the second term and 1 − p(y|x, t) is
approximately 1. Consequently for small p̄(y|t) the second term becomes approximately 1

k .
With these assumptions the linear dependence extends to the more general case so that

p̃(y|x, t = 0) ≈ k · p(y|x, t = 0) and

p̃(y|x, t = 1) ≈ k · p(y|x, t = 1).

Since both probabilities are multiplied by the factor k, we get an unbiased uplift estimate by
normalizing τ(x) ≈ 1

k τ̃(x), where τ̃(x) is the uplift as estimated from the undersampled data.
Uplift can be estimated as usual but the result has to be divided by the undersampling factor
k. This approximation does not hold for high conversion probabilities, but this is irrelevant
as the procedure is designed for addressing cases with very low conversion probabilities. One
particularly desirable property of this is that in any local neighborhood where the difference
p(y|x, t = 1)− p(y|x, t = 0) = 0, the difference will be zero also after undersampling.

Figure 1 illustrates the method from a different perspective by plotting iso-uplift con-
tours. Each line plots how the uplift τ∗ estimated from undersampled data should change
for some fixed true uplift τ as function of the conversion rate p(y|do(t = 0)). Here we used
k = 250 and p(t = 1) = 0.002 ∀t ∈ {0, 1} that roughly matches the values for the Criteo
data.

We observe that the signs are correctly retained. For modeling uplift we would also need
to retain the ranks of individual observations, but due to the non-linear transformations this
is not guaranteed. The true uplift for all points along the blue curve is 0.2% and observations
on this curve should ideally all be ranked higher than observations along the orange curve
(0.1%). Due to the curves not being constant, an observation on the orange curve may
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Figure 1: Illustration of the effect of undersampling on uplift estimates. (Left:) Iso-uplift
contours as function of base conversion probability p(y|do(t = 0)) where τ∗ refers
to the uplift that should be present in data after undersampling. The contours
in order from top down correspond to 0.2%, 0.1%, 0.0%, and −0.1% of uplift.
(Right:) The histogram showing 97.5% of all predicted conversion rates for the
Criteo data in the control group using logistic regression. The majority of the
observations fall between 0.0% and 0.25%. Note that the scales of the horizontal
axes in the plots are from 0% to 1%.

be ranked above one on the blue curve if it has considerably lower conversion probability.
The observations with the smallest conversion probabilities p(y|do(t = 0)) thus have higher
estimated uplift (for positive uplifts) and may outrank observations with higher true uplift
and high conversion probability. If the difference in conversion probabilities is small this
can only happen for small differences in uplift. The conversion probabilities generally tend
to be very close. For the Criteo data almost all conversion probabilities fall between 0.0%
and 0.25% and hence such violations are rare in practice. The iso-uplift contours in this
region are not constant, but the range is narrow enough for the the linearity assumption
to hold well. The high peak in the histogram is caused by a large number of users with
identical features, a property of the Criteo data.

To further justify the above approach, we clarify why some intuitively appealing al-
ternatives would not work. For DC one could use classical undersampling separately for
treatment and control models, followed by separate calibration of both before estimating
the uplift. This would require selecting two undersampling rates and running a calibration
algorithm twice, and has the risk of accumulation of calibration error in computing the
difference of two separately calibrated estimates. More importantly, this approach would
not be compatible with any other than DC-based models. Another intuitive alternative
would be to drop majority observations in treatment and control groups at the same rate.
Without further calibration this would introduce a new source of bias. More specifically, the
group with lower conversion rate would overall get too high probability estimates relative
to the estimates for the other group. The difference between these two would be systemati-
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cally biased and one consequence is that the sign of the uplift estimates after undersampling
would not necessarily equal the true sign. In contrast, our stratified approach always retains
the correct sign. While it could be possible to device a calibration algorithm to correct for
this potentially severe bias, our proposed approach has the advantage of directly providing
nearly unbiased estimates for low overall conversion rates.

3.2. Choice of Undersampling Factor

The approach has one key parameter, the undersampling factor k, which needs to be de-
termined. To improve the balance we must have k ≥ 1 (k = 1 indicates no undersam-
pling) but we also have a natural upper bound since we cannot continue undersampling
once all of the negative observations in either group have been exhausted. This implies

k < min
(

1
p̄(y|t=0) ,

1
p̄(y|t=1)

)
. We use validation to select the best k in this range, using 2/3

of the development observations for training the classifier for a set of valid k and evaluat-
ing the performance (AUUC) on the remaining 1/3. Calibration is then performed on the
validation data, using the scores s(x) obtained with the optimal k.

3.3. Calibration

A classifier is well-calibrated if the class probabilities accurately represent the true proba-
bilities, evaluated for a group of observations by comparing the average predictions to the
empirical class rate (Naeini and Cooper, 2016). We extend this to uplift modeling calling
the model well-calibrated if the average uplift estimate for a group of observations is close
to the difference in empirical conversion rates between treated and untreated observations.

To correct for the imperfections caused by the linearity assumption, we calibrate our
uplift estimates. While there are many calibration methods available for classification (see
Section 4 in Guo et al. (2017) for a recent review), we chose to extend isotonic regression
(Zadrozny and Elkan, 2002) to uplift modeling by building on revert-labeling (Athey and
Imbens, 2015). Revert-labeling is a relabeling scheme that converts the uplift problem into
a regression problem using

ri =
yi(ti − p(t = 1))

p(t = 1)(1− p(t = 1))

where p(t = 1) denotes the probability of a randomly selected observation belonging to
the treatment group.1 Modeling f(s) = r directly results in calibrated estimates so that
f(s) ≈ τ(s); see Athey and Imbens (2015) for derivations and details. We use isotonic
regression to model this.

The full calibration method is described in Algorithm 1. Note that other non-parametric
calibration methods than isotonic regression could be used with only minor adjustements.

3.4. Measuring Calibration

The uplift performance metric of AUUC is insensitive to calibration as it is based on rank-
ing alone. Hence, we need separate metrics for evaluating calibration. We propose two
new metrics extending the calibration metrics of expected calibration error and maximum

1. While revert-labeling is closely related to the class-variable transformation, the former converts the
learning problem into a regression problem whereas the latter converts it to a classification problem.
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calibration error proposed by Naeini et al. (2015) to evaluate calibration of classification
methods. We call the metrics expected uplift calibration error (EUCE) and maximum uplift
calibration error (MUCE). Both are based on binning the ranked observations into m bins
of C = N

m observations per bin so that the observations with the smallest scores are in the
first bin etc. For each bin i we estimate the uplift directly as the difference between the
empirical rates of positive outcomes for the treatment and control observations as follows:

bi =

∑iC
j=(i−1)C yj,t=1

Ni,t=1
−
∑iC

j=(i−1)C yj,t=0

Ni,t=0
.

By denoting the mean uplift estimates of the model for each bin as ui = 1
C

∑iC
j=(i−1)C τ(xj),

the expected uplift calibration error (EUCE) and the maximum uplift calibration error
(MUCE) can then be defined as

EUCE =
m∑
i=1

1

m
|bi − ui|, and MUCE = max

i
|bi − ui|.

We use m = 100 bins, which is larger than m = 10 used by Naeini et al. (2015) for evaluating
classification calibration, since we work with a considerably larger data set. However, the
metrics are general and can be used with any m.

4. Experiments

The proposed technique is compatible with any uplift modeling method. We demonstrate
it with DC and CVT explained in Section 2.2 using two choices for the base classifier
for estimating the class probabilities: logistic regression (LR) and random forest (RF)
as implemented in scikit-learn (Pedregosa et al., 2011). We denote these models as DC-
LR, DC-RF, CVT-LR and CVT-RF, and evaluate them with and without undersampling.
DC-LR has been identified as the best performing uplift model for the Criteo data in
two separate studies (Diemert et al., 2018; Semenova and Temirkaeva, 2019), whereas RF
was chosen because it produces well-calibrated probabilities (Niculescu-Mizil and Caruana,
2005). Methods based on causal trees and forests were excluded from the comparison due
to their poor performance in earlier evaluations (Belbahri et al., 2020; Gubela et al., 2020;
Munting, 2020) and excessively high memory consumption.

We ran the experiments on the Criteo data (Diemert et al., 2018). It is the largest
publicly available uplift data with 25 million observations. It has two class labels, ’visit’
and ’conversion,’ and 12 anonymized features. We split the data so that randomly selected
75% of the observations are used as development set, and the remaining 25% are used as
test set. We evaluate the uplift using AUUC and use the newly proposed EUCE and MUCE
for measuring the calibration.

The main experiment evaluates the effect of undersampling in tasks with high class
imbalance, and therefore we use the conversion-label with staggering 99.8 : 0.2 ratio of
negative to positive observations. The other experiment investigates the method over a
range of different imbalance rates. We do this on semi-synthetic data obtained by under-
sampling the positive observations of the visit-label of the data. For visits the real positive



Uplift Modeling with High Class Imbalance

CVT-RF
DC-RF

CVT-LR
DC-LR

Model

0.0001

0.0002

0.0003

0.0004

A
U

U
C

Baseline

Optimal k

0.00036

0.00038

0.00040

0.00042

0.00044

0 25 50 75 100

Fraction of treated samples [%]

0.00

0.02

0.04

0.06

0.08

0.10

U
p

lif
t

[%
]

ran
dom

random
random
random

CVT-LR (baseline)

DC-LR (baseline)

CVT-LR (k∗ = 201)

DC-LR (k∗ = 7)

Figure 2: Results on the conversion-label of Criteo data. (Left:) Test set AUUC and vari-
ability over 10 different random data splits. Undersampling improves the perfor-
mance for every model, but dramatically for CVT-based methods. CVT-LR with
undersampling outperforms all other methods (paired t-test; p < 0.01). Note that
the three rightmost items use a different scale for clarity.
(Right:) Uplift as function of the fraction of observations being treated. The verti-
cal axis measures the increase in conversion rate as percentage points. The peak of
CVT-LR (k = 201) around 50% treatment rate is just above 0.09%, and hence the
conversion rate at this treatment rate is approximately 0.17% + 0.09% = 0.26%.

rate is 4.1%, and to study the transition we create five additional data sets with rates
0.1%, 0.2%, 0.5%, 1% and 2% by randomly dropping positive observations.2

5. Results

Table 1 reports the results for the main experiment providing all evaluation metrics for
four models trained in three ways: (a) trained on the full data as is conventionally done
(baseline), (b) using the proposed undersampling approach (uncalibrated), and (c) using the
proposed undersampling approach together with calibration (calibrated). The results are
averages over ten different random splits into development and test sets so that the optimal
k was chosen without accessing the test data. For all models, undersampling consistently
improves AUUC and calibration as measured by EUCE and MUCE. The calibration method
further improves calibration in three of the cases, but at the expense of a drop in AUUC.

Figure 2 presents AUUC representing also the variability over the ten folds. As seen
already in Table 1, CVT-LR with undersampling performs best and to our knowledge
reaches new state-of-the-art for this task. DC-LR with undersampling is almost as good.
The effect of undersampling is best seen in CVT that benefits dramatically, but also for
DC we see clear gains, especially with the RF classifier. We also show the uplift curves for
CVT-LR and DC-LR with and without undersampling. CVT without undersampling fails

2. Code for reproducing the experiments is available at https://github.com/Trinli/ACML-2021-uplift.



Nyberg Kuśmierczyk Klami

Table 1: Average performance on test set of the proposed method (with and without cal-
ibration) vs. the baseline without undersampling. For all model variants, under-
sampling improves the primary metric of AUUC. Calibration helps in terms of the
calibration metrics (note that EUCE and MUCE values are in [0, 2]), but reduces
AUUC especially for DC-based methods.

MODEL AUUC ↑ EUCE ↓ MUCE ↓
DC-LR (baseline) 0.00038 0.0006 0.0293
DC-LR (uncalibrated) 0.00040 0.0004 0.0074
DC-LR (calibrated) 0.00031 0.0006 0.0153

CVT-LR (baseline) 0.00005 0.6890 0.8618
CVT-LR (uncalibrated) 0.00041 0.0008 0.0122
CVT-LR (calibrated) 0.00039 0.0006 0.0057

DC-RF (baseline) 0.00023 0.0020 0.0743
DC-RF (uncalibrated) 0.00027 0.0007 0.0121
DC-RF (calibrated) 0.00019 0.0005 0.0069

CVT-RF (baseline) 0.00007 0.7536 1.0003
CVT-RF (uncalibrated) 0.00020 0.0016 0.0052
CVT-RF (calibrated) 0.00020 0.0005 0.0019

Table 2: AUUC for baseline (no undersampling) and optimal undersampling for the con-
version rate experiments. The last column p̃(y) is the resulting positive rate in the
training set after optimal undersampling. The conversion rate p(y) in the synthetic
data was varied from 0.001 to 0.041 by dropping positive observations (visit-label)
from the Criteo dataset.

p(y) Baseline Optimal Optimal p̃(y)

0.001 -0.00003 0.00016 0.300
0.002 -0.00002 0.00037 0.408
0.005 0.00024 0.00089 0.300
0.010 0.00134 0.00181 0.380
0.020 0.00374 0.00374 0.020
0.041 0.00768 0.00768 0.041

catastrophically, but with undersampling it outperforms all other models both in AUUC
and peak conversion rate.

Figure 3 (left) shows that the method is robust to the choice of the undersampling
factor, and that very aggressive undersampling can be performed to reduce computation
time. AUUC is nearly identical for any k between 100 and 300, and the results over different
folds are highly consistent. The plots show the behavior for CVT-LR, but the results are
similar for other choices (omitted due to lack of space).

Table 2 shows the best-performing CVT-LR method with and without undersampling
on the semi-synthetic data sets with varying class imbalance, so that AUUC is scaled by
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Figure 3: (Left:) Average (top) and individual run (bottom) test AUUC as function of k,
with consistent performance over a wide range of values.
(Right:) CVT-LR performance with and without undersampling for different true
conversion rates. AUUC is here normalized by the conversion rate to make the
results comparable. Undersampling has clear benefits for all rates below 2%, and
for low rates the baseline with no undersampling is worse than random.

the inverse conversion rate to normalize for differences in best achievable uplift for better
comparison. This is also visualized in Figure 3 (right). The benefit of undersampling
increases when the imbalance grows. For rates above 2% uplift modeling works well even
without accounting for the imbalance. For the smallest rates standard CVT-LR is worse
than random, but undersampling fully mitigates this.

6. Discussion

The AUUC values in Table 1 can be contrasted with earlier results. The DC-LR baseline
outperforming other baselines is consistent with both Diemert et al. (2018) and Semen-
ova and Temirkaeva (2019). The former compared DC and CVT with LR as base-learner,
whereas the latter considered also RF, XGBoost SVM, and uplift random forests (Guelman
et al., 2015). DC-LR was identified as the best method in both studies. Using undersam-
pling we outperform that method by 6.5% with CVT-LR and by 3.9% with DC-LR. As an
interesting sidenote, this is in contrast to the results by Rudaś and Jaroszewicz (2018) that
showed a DC model should theoretically perform better than a CVT model, although their
results applies only to regression.

The new calibration metrics reveal clear differences in calibration, providing another
view of how CVT-based methods perform poorly without undersampling and verifying that
the proposed calibration method works. For DC, however, calibration negatively impacts
the main evaluation metric of AUUC. We currently recommend calibrating CVT-based
methods, but leaving DC-based methods uncalibrated.

Finally, Figure 3 reveals an essential observation: for true conversion rates over 2%,
conventional uplift models work well, but fail catastrophically for rates below 1%, at least
with this data set. Based on figure 3 it seems the reason for this is not that the linearity
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assumption is violated with conversion rates above 2%, but that the algorithm has identified
most if not all of the uplift identifiable in the data. Typically the rates are smaller for the
outcomes that are more important for businesses (e.g. ’purchase’ vs. ’visit’) and hence
undersampling is particularly valuable for the use cases with the highest value. For higher
rates one can safely proceed without undersampling.

We demonstrated improved performance on both labels of the Criteo data that can be
seen as two separate tasks, but nevertheless a limitation of our work is that the results are
shown only for one data source. This is because there are no other suitable sources. While
virtually all companies in e-commerce work with this kind of data, they are not publishing
their data due to regulations or privacy concerns. For instance, Athey and Imbens (2015)
used search engine data and Zhao et al. (2017) used airline reservation data that both
would have been large enough but the data sets remain proprietary. The few publicly
available data sets, in turn, are too small or otherwise unrealistic. In particular, the second
and third largest public data (the Voter data (Gerber et al., 2008) and the Hillstrom data
(Radcliffe and Surry, 1999)) do not have high class imbalance and they are also too small
for reliably carrying out a semi-synthetic experiment where the class imbalance is artificially
increased as we did with the visit-label of the Criteo data. For both we would only have
around 200 positive observations in the treatment group for class rate of 1% and around 20
positive observations for rate 0.1%. To cope with the lack of data some authors have used
synthetic data (Kuusisto et al., 2014), or resorted to artificially creating an uplift data set
by redefining some feature as the label for an uplift task (Zaniewicz and Jaroszewicz, 2013).
Such data does not reflect any realistic setting and would not provide additional value.

7. Conclusion

We showed how uplift models can be significantly improved in cases with high class imbal-
ance (e.g. low conversion rates), a property that holds almost universally in e-commerce.
The approach is intuitive and easy to use in conjunction with current uplift methods only
requiring a simple pre-processing step of stratified undersampling and post-processing to
correct for potential calibration errors. Even though undersampling has been studied ex-
tensively in classification, we are the first to apply it to uplift modeling and presented all
of the necessary technical details.

We used undersampling for two prominent uplift models on the largest available bench-
mark data and observed that the improvement depends on the method and the amount
of class imbalance. For some cases (CVT-based methods, high class imbalance) undersam-
pling is the technique that improves an uplift model from useless to great, whereas in other
cases (DC-LR, data with less imbalance) there is virtually no improvement. We have not
yet encountered a case where using the proposed strategy would hurt. Hence, we consider
it safe to adopt the strategy as part of a standard pipeline for uplift modeling; the only
drawback is the computational cost of determining k. Even though additional computation
is spent, the final model is trained on less data due to aggressive undersampling and is very
fast. For the optimal CVT-LR model we only used 0.4% of the data for training and still
reached a new state-of-the-art result.

The most common application of uplift modeling is currently in e-commerce, and we
wrote the paper using terminology and benchmark data from that field. However, we
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would like to encourage researchers to explore applications also beyond e-commerce, and
consequently included references to examples of uses in medicine and education.
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