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Abstract

This paper proposes layer fusion - a model compression technique that discovers which weights to
combine and then fuses weights of similar fully-connected, convolutional and attention layers. Layer
fusion can significantly reduce the number of layers of the original network with little additional
computation overhead, while maintaining competitive performance. From experiments on CIFAR-
10, we find that various deep convolution neural networks can remain within 2% accuracy points of
the original networks up to a compression ratio of 3.33 when iteratively retrained with layer fusion.
For experiments on the WikiText-2 language modelling dataset, we compress Transformer models
to 20% of their original size while being within 5 perplexity points of the original network. We also
find that other well-established compression techniques can achieve competitive performance when
compared to their original networks given a sufficient number of retraining steps. Generally, we
observe a clear inflection point in performance as the amount of compression increases, suggesting
a bound on the amount of compression that can be achieved before an exponential degradation in
performance.
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1. Introduction

Deep neural networks (DNN5s) have made a significant impact on fields such as Computer Vision
(CV) (He et al., 2016; Iandola et al., 2014) and Natural Language Processing (NLP) (Vaswani
et al., 2017; Devlin et al., 2018). Deep Convolutional Neural Networks (CNNs) (Krizhevsky et al.,
2012) have improved performance on image classification (Krizhevsky et al., 2012), image segmen-
tation (Long et al., 2015), speech recognition (LeCun et al., 1995) and have been widely adopted in
the machine learning (ML) community. This has been accelerated due to numerous innovations such
as skip connections in ResNets (He et al., 2016) to avoid the vanishing gradient problem and batch
normalization (Ioffe and Szegedy, 2015; Ba et al., 2016) and layer normalization (Ba et al., 2016) to
reduce the effects of shifts in the training and test data distributions. Similarly, Transformer models
have shown great success in NLP due to the use of self-attention (Vaswani et al., 2017), significantly
outperforming preceding Recurrent Neural Network (RNN) based architectures (Hochreiter and
Schmidhuber, 1997) on a diverse set of NLP tasks (Radford et al., 2018; Dehghani et al., 2018;
Dai et al., 2019). However, these large overparameterized networks require more compute, training
time, storage and leave a larger carbon footprint (Strubell et al., 2019). While prior work on model
compression has mainly focused on deploying compressed models to mobile devices (Han et al.,
2015a; Wu et al., 2016), moving models from multi-GPU training to single-GPU training is now too
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a salient challenge. If achieved, this relaxes the resource requirements for ML practitioners and allow
a wider adoption of larger pretrained CNNs and Transformers.

This leads us to ask the following questions on DNNGs: are all layers of large pretrained models
required for a given target task ? If not, can we reduce the network while preserving network
density (i.e no non-zero parameters) during retraining in a computationally efficient manner ?.
Earlier work (He et al., 2016) on CNNs found that some layers may become redundant in very deep
networks, essentially copying earlier layers and performing identity mappings for the redundant
layers. While residual connections have ameliorated these problems to some degree (not only in
residual networks e.g Transformers), we assert that there may still be significant redundancy between
layers of large overparameterized networks. More recently, Zhang et al. (2019) found that whole
layers can be distinctly separated by their importance in prediction, further motivating us to seek a
compression technique that identifies and uses salient layers. However, many current compression
techniques are not equipped to preserve these salient layers during model compression of pretrained
models because they are unstructured techniques (Karnin, 1990; Hassibi and Stork, 1993; Han et al.,
2015b), resulting in a sparse model. This is a practical limitation since sparse networks require
more conditional operations to represent which elements within each parameter matrix are zero or
non-zero. Current GPU libraries such as CuSPARSE (accounting for recent improvements (Argueta
and Chiang, 2019)) are far slower than CuBLAS (Sanders and Kandrot, 2010) and current hardware
is not designed to optimize for sparse matrix operations.

In contrast, knowledge distillation (Hinton et al., 2015; Mishra and Marr, 2017; Ashok et al., 2017)
and quantization (Polino et al., 2018) preserve network density, avoiding the necessity for specialized
sparse matrix libraries to utilize the benefits of smaller and faster networks. However, quantization
leads to quantization error and requires approximate methods to compute partial derivatives during
retraining (Agustsson et al., 2017) and knowledge distillation requires more memory to store and
train the smaller network. Weight sharing reduces the network size and avoids sparsity, however it is
unclear which weights should be shared and it cannot be used when the model is already pretrained
with untied weights. The noted drawbacks of the aforementioned compression methods further
motivates us to seek an alternative structured compression method that preserves network density
while identifying and removing redundant layers. This brings us to our main contributions.

Contributions We propose layer fusion (LF). LF aims to preserve information across layers during
retraining of already learned models while preserving layer density for computational efficiency. We
also propose alignment measures for LF, since aligning paths, layers and whole neural networks is
non-trivial (neurons can be permuted and still exhibit similar behaviour and we desire an invariance
to orthogonal transformations). This includes (1) a Wasserstein distance metric to approximate
the alignment cost between weight matrices and (2) numerous criteria for measuring similarity
between weight covariance matrices. We use these measures as LF criteria to rank layer pairs that
are subsequently used to fuse convolutional, fully-connected and attention layers. This leads to both
computational and performance improvements over layer removal, pruning and shows competitive
results compared to tensor-decomposition and unsupervised knowledge distillation. We report results
of LF using different fusion approaches: layer freezing, averaging and random mixing. We use
current structured compression techniques as baselines for both CNNs and Transformers, with and
without retraining and identify a reoccurring inflection point w.r.t performance versus model size.
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2. Related Work

Layer Structure & Importance Zhang et al. (2019) have recently analysed the layer-wise func-
tional structure of overparameterized deep models to gain insight into why deep networks have
performance advantages over their shallow counterparts. They find that some layers are salient and
that once removed, or reinitialized, have a catastrophic effect on learning during training and subse-
quently generalization. In contrast, the remaining layers once reset to their default initialization has
little effect. This suggests that parameter and norm counting is too broad of a measure to succinctly
study the generalization properties in deep networks. These findings also motivate LF, as we posit
that important layers are more distinct and therefore will be less similar, or harder to align with
other layers, while more redundant layers may be good candidates for fusing layers. Frankle and
Carbin (2018) showed that there exists trained subnetworks that when re-initialized to their original
configuration produce the same performance as the original network in the same number of training
epochs. They also posit that stochastic gradient descent (SGD) seeks out a set of lottery tickets (i.e
well-initialized weights that make up a subnetwork that when trained for the same number of epochs
as the original network, or less, can reach the same out-of-sample performance) and essentially
ignores the remaining weights. We can further conjecture from Zhang et al. (2019) findings, that
perhaps SGD more generally seeks out important layers, which we analogously refer to as lottery
pools. Identifying whole layers that are significantly distinguished from others, in terms of their
influence on learning, further motivates us to merge or freeze layers.

Computing Layer Similarity Kornblith et al. (2019) have focused on computing similarity
between different neural representations (i.e the activation output vector for a given layer). However,
we view this comparison between layers as slightly limiting, since information is lost about what
weights and bias led to the activation outputs. Moreover, directly comparing neural network weights
allows us to avoid sampling inputs to compute the activations. In contrast, work focusing on
representational similarity across networks Li et al. (2016); Kornblith et al. (2019), we are instead
comparing weight matrices within the same network. Directly comparing weights and biases allow
us to better approximate alignments and similarities for dense networks and has the advantage that
we do not require data to be feed-forward through the network post-training to measure similarity
within or across networks, unlike representational similarity (i.e output activations).

Structured Dropout Fan et al. (2019) proposes to randomly drop whole layers during training
time and at test time they can choose a subnetwork which can be decided based on performance of
different combinations of pruned networks on the validation set or based on dropout probabilities
learned for each layer throughout training. Singh and Jaggi (2019) measure model similarity across
neural networks using optimal transport-based metrics. In contrast, our work measures intra-network
similarity and we make a distributional assumption that allows us to use such metric efficiently during
retraining, making it feasible to scale for large networks.

3. Methodology

We begin by defining a dataset as {D = (x;,y;) : ¢ = 1,...T} that contains 7" tuples of an
input vector x € R™ and a corresponding target y € {0,1}P. We define any arbitary sample
as s := (x,y) where s € D. We consider a neural network fy(x) with pretrained parameters
0 := (01,02,...0;,...,00). Here 6, :== {W;, by} where W, € R™*"+1_ b ¢ R™+1 where ny
denotes the dimension size of the ¢-th layer. Thus, a standard fully-connected fy is expressed as,
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fo(x) := WL9<~-9(W29(W1$+51) +b2> +br )]

with smooth asymptotic nonlinear function g(-) (e.g hyperbolic tangent) that performs element-
wise operations on its input. The input to each subsequent layer as z; € R™ where  := zg for m
number of units in layer £ and the corresponding output activation as Ty = g(zy). The loss function
is defined as Ly(D) := %Zf\il L(yi, fo(xi)) where for a single sample s;, £ : ) x R" — R.
A pruned 6, post- training is denoted as 97’ and a tensor decomposed 6, is expressed as 0, where
W, € R¥*de+1 and by € R%+1 and d < n. A network pruned by layer as a percentage of the lowest
weight magnitudes is denoted as f ' Where the pruned weights 6co. A percentage of the network

pruned by weight magnitudes across the whole network is denoted as f egp (i.e global pruning). Lastly,
a post layer fused network fg has fused parameters ©.

3.1. Desirable Properties of Weight Similarity

Ideally, we seek a measure that can compare weight matrices that are permutable and of varying
length. Formally, the main challenges with aligning weight matrices W := {Wy, ..., W, ... W}
of different layers is that, when vectorized as vec(W,) € R™("+1) W, can be permuted and
still exhibit the same behavior at the output. , the measure S must
allow for multisets of different lengths and permutations. Invariance to rotations, reflections and
scaling are all desirable properties we aim to incorporate into measuring similarity between weight
matrices. However, invariance to linear transformations has issues when there are more parameters
in a layer than training samples, as pointed out by Kornblith et al. (2019). Even though our
work mainly focuses on large pretrained models, we also seek a LF measure that is invariant to
orthogonal transformations to overcome the aforementioned issues i.e for a similarity function
s(+,+), s(W;, W) = s(W,;U, W, V) for full-rank orthonormal matrices U and V such that UTU = I
and VI'V = I. More importantly, invariance to orthogonal transformation relates to permutation
invariance (Orhan and Pitkow, 2017) which is a property we account for when measuring the
alignment between weight matrices. Lastly, we note that if two weight sets are of unequal size we
randomly downsample the larger weight set to match the paired weight set. This is required for
aligning filters in CNN networks after vectorization. We now describe a set of measures we consider
for aligning and measuring the similarity of layers.

3.2. Layer Alignment & Layer Similarity

Covariance Alignment The first layer fusion measure we consider is covariance alignment (CA).
CA accounts for correlated intra-variant distances between layers, which can indicate some re-
dundancy, although their overall distributions may differ and therefore may be good candidates
for LFE. Hence, we consider the Frobenius norm (denoted as subscript F') between pairs of weight
covariance matrices Xy, , Xy, and expectation E[W;] = E[Ws] = 0. This forms a Rieman-
nian manifold of non-positive curvature over the weight covariances. We first consider the cosine
distance as the distance measures between parameter covariance matrices as Equation 2, where
1Zwllr = [r(E{Ew)]2.

tr (2w1 . 2w2)
2w, || 72w, || F

DCOS(Zwl 5 2:Wg) = (2)
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If we assume both weight matrices are drawn from a normal distribution Wy ~ N (u, 01), Wa ~
N (p, o2) with identical means u = uw, = pw,, the KL divergence between their covariance
matrices can be expressed as:

1 by
DKL(EleEWQ) = 5[‘61" (Z‘}}ZEWI) —1In (| W1|)] 3)

The symmetrized KL divergence between positive semi-definite matrices (e.g covariances) also
acts as the square of a distance Moakher and Batchelor (2006) (see the supplementary for further
details, including descriptions of other covariance similarity measures). We consider both Equation 2
and Equation 3 for fusing convolutional layers, self-attention layers and fully-connected layers. The
KL is an asymmetric measure, therefore the divergence in both directions can be used to assign a
weight to each layer pair in layer fusion.

Optimal Transport & Wasserstein Distance Unlike an all-pair distance such as CA, Wasserstein
(WS) distance can also be used to find the optimal cost, also known as the optimal flow between two
distributions. Unlike, other distance measures, WD tries to keep the geometry of the distributions
intact when interpolating and measuring between distributions. Unlike CA and other baseline
measures, WS is invariant to layer permutations and like CA, it also accounts for mutual dependencies
between parameters in any arbitrary layer. In this work, we consider the WD between adjacent
row-normalized parameter pairs softmax(Wj, Ws) (i.e multisets) in a Euclidean metric space. Given
two multi-sets W1, Wy C W, of size d = |W;| = |W;| with corresponding empirical distributions
Pyw, and Py,, the WS distance is defined as Equation 4. However, computing WS distance is O(N?3)
using the standard Hungarian algorithm, which is intractable for large 6.

d
. 1/p
Dw, (Pw,, Pw,) = inf (; || Pywi — ng<i>||p) 4)

One way to tradeoff this computational burden is to assume that the weights are i.i.d and
normally distributed at the expense of disregarding mutual dependencies learned throughout training.
According to Lyapunov’s central limit theorem (Lehmann, 2004), we can assume the the weights
in a layer are normally distributed. Hence, if Pw, = N (uw,, 1) and Pw, = N (uw,, 22) we can
express the 2-WS distance as Equation 5, also known as the Bures metric'.

Dyy2(Pw,, Pw,) = ||lnw, — :U*W2H2 +B2<2W1a2W2)7
BQ(EWU Ew,) = t(Bw,) + tr(Zw, ) — ®)

2tr[(\/§37vvl(zw2 2W1)):|

Although we focus on the Bures metric in our experiments, an alternative approach is to find a set of
cluster centroids in W; and W3 as C'wy, and Cw, and compute I/V(PCW1 , Pcw2 ). In this approach
the centroids are converted to an empirical distribution P, such ¢ < d such that a O(N?3) cost is
feasible for computing during retraining steps. Alternatively, we could avoid softmax normalization
and directly compute W(Cwy, , Cw,) on both discrete sets. Lastly, we note that when fusing layers
with 2-WS distance, the fusion occurs between aligned weights given by the cost matrix. Hence, it is
not only used to identify top-k most similar layers, but the cost matrix also aligns which weights in
the layer pair are fused.

1. Often used in quantum physics for measuring quantum state correlations (Forrester and Kieburg, 2016).
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3.3. Fusing Layers

After choosing the top-k layer pairs to merge,
we then consider 3 ways to fuse the layers: (1)
freeze one of the two layers and freeze the gradi-
ents for one of the two layers, (2) take the mean

Algorithm 1 Layer Fusion algorithm. (LFA)

1:

input:alignment function D, parameters 6, k
layers to merge.

between layer pairs and compute backprop on % S = 0y jo)

the averaged layer pair and (3) sample and mix ~ 3: for W; in {Oi}ﬂl do

between the layers. Merging layer pairs with (1), 4.  for W ; in {gi}gﬂi do

refers to lines 12-14 in Algorithm 1. Choosing 5. if param_type(6;) ==
the layers to fuse for (1) is based on which of the param_type(6;) then

two is closest to the middle layer of the network. . Si; = D(vec(W;), vec(W,))

This is motivated by previous work that showed 7. end if

layers closer to the input and output are gener- §.  end for

ally more salient (Zhang et al., 2019). When 9. end for

using Jenson-Shannon divergence for choosing  10: {7} list of tuples of matrix indices arg max; S

top-k layers, we use the divergence asymme-

try for choosing which layer is frozen. This 11: for (i1,...4;) in {I} do
is achieved by taking the parameter v between 1. Wij ~ B(W;, W;)
the Jenson-Shannon divergence of two layersin  13. b, i~ B(bi, b;)

both directions to control a weighted gradient. 14. ¢, = ¢; = {Wi’ Bz}
We express the backpropogation when using LF  15. end for

with Jenson-Shannon divergence in terms of KL- 16. return 6

divergences as shown in Equation 6, where W ;

is a mixture distribution between W; and W; with a weighted gradient 0L/ 8V~V¢j that represents
the gradient for both W; and W. Thus, for the backward pass of a frozen layer from a given top-k
pair, we still compute its gradients which will influence how its original pair will be updated. This
constraint ensures that the original pair that were most similar for a given compression step remain
relatively close throughout retraining. The layer pair are then averaged at test time to reduce network
size, while maintaining similarity using the aforementioned JS divergence gradient constraint.

4. Experimental Details

We focus on Transformer-based models for language modelling on the WikiText-2 dataset

(Merity et al., 2016). For large models in NLP such as BERT (Devlin et al., 2018), OpenAI-GPT,
GPT2 (Radford et al., 2018) and Transformer-XL (Yang et al., 2019), we freeze or combine layer
weights of each multi-attention head component and intermediate dense layers, dramatically reducing
the respective number of layer and weights.

oL

W 7(8£> +(1-7) (afL) st, v = }(DKL(WiHV_VZ’j) + DKL(WjHV_Vz'j)> (6)

W; W; 2

For (2), updates during training when using , we constrain the gradients to be the average of
both layers and then average the resulting layers at the end of retraining. For (3), we interpolate
between hidden representations that are most similar, which can be viewed as a stochastic approach
of JS divergence used in (1), to remove redundancy in the network. We denote a pair of randomly
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mixed layers as VVZ ~ B(W@, Wz+1) Vi € ny. Note that we only mix between pairs of weight
matrices, the bias terms are averaged (b, + by)/2. We then compute backpropogation on 9}2 instead
of the original unmixed layer pair (0@, é@ 41) i.e mixing is carried out before the forward pass. We
summarize the standard retraining procedure in Algorithm 2 where LFA performs similarity and
merging from Algorithm 1.

For image classification on CIFAR10, we
report results for ResNet, ResNet-ELU (Shah _
et al., 2016), Wide-ResNet (Zagoruyko and Ko- 1: input: batch size M, number of batches N,

modakis, 2016) and DenseNet (Huang et al., compression epoch interval N, pretrained fy,
alignment function D.

2: for an epoch {¢;}Y | do
3. for (X, y) sampled minibatch {Bi}fil do

Algorithm 2 Retraining algorithm. (RA)

2017). We are particularly interested in ResNet
architectures, or more generally, ones that also
use skip connections. This is motivated by Veit

et al. (2016) which found that deleting or permut- 4 g = fo(X) ) o
ing residual blocks can be carried out without Upda}e gradients on fy to minimize
much degradation in performance in a pretrained ten(9,y)
ResNet. 6: end for

7:  if ¢, mod N, then

8: 0 =LFA(0,D, k)

4.1. Compression Without Retraining
9:  endif

For magnitude-based pruning, we prune a per- 1¢. end for
centage of the weights with the lowest magni- 1. peturn fo(")
tude. This is done in one of two ways: a percent-
age of weights pruned by layer (layer pruning),
or a percentage of the network as whole (global
pruning). For quantization, we use k-means whereby the number of clusters for a given layer is
specified as a percentage of the original size of that layer (i.e number of parameters in the tensor).
For tensor decomposition, we reduce the number of parameters by approximating layers with a
lower rank using singular value decomposition (SVD). Specifically, we use randomized truncated
SVD (Halko et al., 2011) where QR factorization on W, such that Q%Wz = Ry where Q, are the
orthonormal columns of W,. Randomized methods are used to approximate the range of 6y, and
reduce computation from O(min(n,_1n2,n?_ ng)) to O(ng_1n,log(k)) where k represents the
approximate rank of §,. We also perform dimensionality reduction on the layers by using 1-hidden
layer denoising autoencoders which use the same activation functions for reconstruction as the origi-
nal architecture and a mean squared error loss is minimized. The encoder layer of each denoising
AE (DAE) is the used in replacement of the original layer. For both truncated SVD and DAE, this is
carried out sequentially from bottom to top layer so that the reconstruction of a given layer [ also
accounts for cascade approximation errors of dimensionality reduction from previous layers. We
refer to this type of layer reconstruction technique as student rollout because the pretrained teacher
network is iteratively rolled out and reconstructed from the first layer to the last.

4.2. Layer Fusion & Compression ReTraining

For retraining we consider two main schemes: (1) for each retraining step we carry out network
compression (e.g via pruning), retrain the resulting network and iteratively repeat until the final
epoch, and (2) in the case where network compression leads to non-zero weights (e.g LF), we freeze
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the network weights apart from those which have been identified for LF in which case we retrain
before tying.

Layer averaging, mixing and freezing are experimented with for fusing layers. To maintain
uniformity across each compression step, we prune, quantize, fuse and decompose a percentage of
the weights as opposed to using other criteria such as the weight magnitude thresholding.

This ensures comparability between compression methods e.g thresholding weights in pruning
does not have a direct equivalent to quantization or weight decomposition, unless network reduction
is proportional to the number of weights pruned via thresholding.

5. Results
5.1. Image Classification

Figure 1(a)subfigure shows the results of pruning, quantization, weight decomposition and our pro-
posed LF without any retraining. A general observation is that an exponential decline in performance
occurs at around 70% (some variance depending on the compression method) of the original network
is compressed. For example, fusing layers using the WS distance for alignment allows accuracy to
be closer to the original networks accuracy up to 70%. In contrast, pruning convolutional layers in
ResNet models leads to a faster accuracy drop. This is surprising given that unstructured pruning is
less restrictive, when applying LF to CNN architectures. We also allow filters from the same layer to
be fused, in comparison to dense layers in self-attention blocks for Transformers.

Figure 1(b)subfigure shows results of the compression techniques with retraining. We see the
results of model compression methods retraining on CIFAR-10 for ResNet-50, ResNet-50 with
exponential linear units (ELUs), Wide-ResNet and DenseNet. We test each combination of layer
pairs for averaging layers as 0; = éj = (0; + 6;/2) where (é) are the total number of layers (e.g
24 layers results in 276 possible pairs). The performance change is measured from the original
network when layer averaging by choosing the top L x % and measuring which averaged layer pair

ResNet ResNet-Elu Wide-ResNet DenseNet ResNet ResNet-Elu Wide-ResNet DenseNet

96 1

94 44

©
©

©
S

Accuracy (%)
Accuracy (%)

3
3

86 4

* T T T T T T T T T

60 = r r 4 r r 4 r r 4 r r 25 50 75 25 50 75 25 50 75 25 50 75

25 50 75 25 50 75 25 50 75 25 50 75 Percentage of filters pruned, quantized, tensor decomposed or fused
Percentage of filters pruned, quantized, tensor decomposed or fused

baseline -®- fi i k quantize @ 32
baseline —k=- svd-tune fuse-euclidean-mean - layer-prune —®- fuse-covariance-mean —~®- fuse-wasserstein-mix
—#— layer-prune -®- fi steil —-®- fuse-kl —#— global-prune fuse-wasserstein-drop —®- fuse-covariance-mix

—#— global-prune —+— autoencode —k~- svd-tune —®- fuse-covariance-drop

(a) No Retraining (b) Retraining

Figure 1: CIFAR-10 Test Accuracy With And Without Retraining
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Table 1: CIFAR-10 Test Accuracy with WS-Based CNN Layer Fusion

| RES | RES-ELU | WIDE-RES | DENSENET

ORIG. 93.75 - | 9440 - 9582 - |9631 -
25% | 92.39 94.77 | 93.45 95.39 | 92.66 96.57 | 91.04 96.06
E 50% | 91.24 94.53 | 92.12 95.93 | 88.51 95.97 | 92.78 96.42
S 75% | 87.41 92.30 | 88.20 93.94 | 87.36 95.63 | 86.58 94.78
80% | 83.40 89.90 | 81.06 90.23 | 80.94 90.23 | 77.36 88.50
90% | 69.22 86.48 | 71.20 89.24 | 70.38 89.90 | 68.87 91.57
o 25% | 91.17 93.67 | 93.71 93.33 | 92.45 95.14 | 92.36 96.81
2 50% | 91.67 93.32 | 92.88 93.87 | 91.06 94.57 | 92.03 96.19
E 75% | 83.50 92.28 | 90.02 93.58 | 86.10 91.73 | 87.11 92.43
80% | 82.27 87.12 | 84.12 88.95 | 82.49 87.55 | 78.35 85.63
90% | 71.34 85.38 | 74.60 86.23 | 72.78 85.63 | 67.09 87.12
o 25% | 93.67 93.22|93.33 94.03 | 95.14 96.78 | 96.81 96.44
£ 50%|93.32 9246 | 93.24 93.87 | 94.57 95.42|96.19 95.08
S 70% | 9228 91.98 19031 93.58|91.73 93.13 | 92.43 93.78
80% | 84.12 90.60 | 85.58 88.95 | 87.55 90.20 | 91.32 91.92
90% | 73.2 86.13 | 73.50 85.58 | 80.63 87.63 | 78.12 88.70

produced the smallest difference in accuracy when compared to the original network. When the same
layer within the top L x % is coupled with more than one other layer, we take the mean of multiple
pairs to reduce computation to 2 ( Lf% ) We find a reoccurring pattern that early on retraining, we
observe up to a reduction of 25% of the network improves the results, and even up to 25% - 50%
in some cases (e.g global pruning and layer pruning). From 75% we see a significant decrease
in performance, typically 2-4% drop in accuracy percentage points across each model. Given an
allowance of NV retraining epochs, allocating the amount of model compression for each compression
step is a critical hyperparameter. Concretely, less retraining time is necessary for during initial model
compression, whereas past a compression ratio of 3.33 (i.e 75%), the interval between retraining
steps should become larger. This is highlighted in bold across Table 1, where left subcolumns are
with no retraining and right subcolumns are with retraining. For all fusion types (mean, freezing
and mixing), we find a significant increase in accuracy after retraining. Mean layer fusion using
the WS-2 distance outperforms freezing layers, while random layer mixing performs comparably to
averaging. Layer mixing interpolates between neurons a top-k most similar layer pair. Hence, it can
change the sign of some of the original incoming weights into the resulting mixed layer. Therefore,
it is somewhat surprising that accuracy has remained relatively high, suggesting that similar layers
have weights with a shared sign, not only a similar magnitude.
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Table 2: WikiText-2 Test Perplexity Without Fine-Tuning Or Retraining.

| Trans-XL ~ GPT-2 GPT | Trans-XL  GPT-2 GPT | Trans-XL  GPT-2  GPT | Trans-XL GPT-2  GPT
Original 21.28 26.61 67.23 \ 21.28 26.61 67.23 \ 21.28 26.61 67.23 \ 21.28 26.61 67.23

‘ Layer Pruning via Weight Magnitude Global Pruning via Weight Magnitude Randomized SVD Denoising AutoEncoder
@ 10% 21.25 25.44 69.33 21.15 25.04 69.54 20.29 25.44 69.33 19.69 23.14 65.14
@ 20% 21.26 27.02 88.19 21.08 27.03 79.33 20.69 27.02 88.19 19.43 24.46 81.08
@ 30% 22.05 35.87 1452.96 21.54 46.15 140.22 21.68 35.87 1452.96 20.57 29.07 921.06
@ 50% 57.12 1627.22 3260.52 53.90 3271.52 2159.42 64.12 162722 314541 55.07 1258.05  2654.88
@70% | 3147.31  24946.66 21605.02 901.534  13464.17 18068.86 3679.13  26149.57 22140.12 | 295841  19206.78 19035.38

‘ Layer Averaging (Euclidean Distance)  Layer Freezing (Euclidean Distance) Global WS-LF Adjacent WS-LF
@ 10% 21.74 25.78 81.14 23.09 28.70 83.44 22.15 25.79 69.29 22.52 25.58 69.90
@ 20% 22.21 29.74 94.80 25.19 30.88 94.32 22.37 27.38 90.70 22.61 27.35 89.77
@ 30% 25.27 38.90 1903.14 27.81 40.01 97.11 24.79 38.18 1533.24 22.82 36.11 1493.37
@ 50% 62.04 1807.31 3724.47 64.38 1944.51 3790.12 61.68 1690.31 3123.39 59.70 1691.23  3357.02
@ 70% | 3695.01 2631.52 29117.82 3583.16  23583.10 30258.78 3201.97 2513030 22448.15 | 3198.16  25270.21 21732.58

5.2. Language Modelling

We begin by showing how all compression methods suffer in performance when no retraining is used
in Table 2. At high compression rates, all compression methods, including out LF techniques (i.e
Layer Averaging, Freezing, Gloval WS-LF and Adjacent WS-LF), cannot recover from performance
degradation after a one-shot compression step.

In Figure 2, we find an exponen-
tial trend in perplexity (note the log-
scale y-axis) increase with respect to
the compression ratio for layer prun-
ing and global pruning. Interestingly,
Transformer-XL can maintain similar
performance up to 50% pruning from
the pretrained model without any re-
training. In contrast, we see that the
original OpenAI-GPT is more sensitive
and begins to show an exponential in-
crease at 30%. This insight is impor-
tant for choosing the intervals between
compress steps during iterative pruning,
likewise for LF and tensor decomposi-
tion. Concretely, we would expect that
the larger the increase in perplexity be-
tween compression steps, the more re-
training epochs are needed. We also

posit that this monotonically increasing trend in compression is related to the double descent phe-
nomena (Belkin et al., 2019), whereby when more data is added or the model complexity is reduced,

Perplexity

Retrained Test Perplexity on WikiText-2

—— layer_prune-transxl|
—— layer_prune-gpt2
—— layer_prune-openai-gpt

=

o
[
L

107 4

global_prune-transxl
—— global_prune-gpt2
—— global_prune-openai-gpt

A

10 20 30

40 50 60

% of Network Compression

Figure 2: Wikitext-2: Pruning Without
Retraining
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the network can fall back into the critical regime region (Nakkiran et al., 2019) and even further
into the underparameterized regime. This is reinforced by the fact that a large network such as
Transformer-XL contains a smaller global weight norm of fully-connected layers in comparison to
GPT and is able to maintain similar performance up to 50% without retraining. Therefore, instead
of choosing a uniform amount of compression at each compression step V., we allocate more
compression earlier but more retraining steps later.




NEURAL NETWORK COMPRESSION VIA LAYER FUSION

Query-Key-Value Attention Output Attention Core Network Layer 1 Core Network Layer 2

’ n
20000
_

n n 15000 6000
9

10 10000 2 4000
" " n
12 12 12
13 13 3
1 5000 44 2000 4
15 15 15
16 16 16

17161514131211109 8 76 54 32 1 0 17161514131211109 8 7 6 54 3 2 1 0 17161514131211109 8 76 5432 1 0 17161514131211109 6 76 54 3210

25000

20000

15000

idean Distance
Boo~woobenao
Bor~Noaswn=o

clidean Distance

10000

Figure 3: Euclidean Distance Between Trans-XL Weights:(1) Query-Key-Value
Attention, (2) Output Attention, (3, 4) FC Layer

Figure 3 shows the similarity between pretrained layers on Transformer-XL using the sum of
pairwise Euclidean distances. In general, we can see that closer layers have a smaller Euclidean
distance. This more pronounced in the output attention (3) and fully connected layers (4) and slightly
more sporadic among query-key-value attention weights (1).

Figure 4 shows subfigures of retraining GPT (4(a)subfigure), GPT-2 (4(b)subfigure) and Transformer-
XL (4(c)subfigure) with all aforementioned compression methods for GPT, GPT2 and Transformer-
XL respectively. Firstly, we find retraining with a sufficient number of compression steps to be
worthwhile for drastically reducing the network size while maintaining performance for both struc-
tured and unstructured approaches. Past 30% of network reduction wee find a weakly linear increase,
in contrast to the exponential increase with no retraining. We find that global pruning generally
outperforms layer pruning as it doesn’t restrict the percentage of weights pruned to be uniform
across layers. This suggests that many layers are heavily pruned while others are preserved. This
also coincides with findings from (Zhang et al., 2019) that some layers are critical to maintain
performance while removing the remaining layers has little effect on generalization. Table 3 shows
the results of LF for compression ratio of 2 using layer averaging (Mean), layer freezing (Freeze) and
mixing layers (-Mix) when ranking weight similarity using Euclidean distance (ED), KL and WS
distance and CA. For all models CA produces the best results, slightly outperforming WS. Lastly, we
compare the best results of Table 3 with LayerDrop (Fan et al., 2019, LD), a method that has shown
SoTA for structured compression that require no additional overhead, akin to layer fusion. Table 4

Retrained Test Perplexity on WikiText-2 Retrained Test Perplexity on WikiText-2 Retrained Test Perplexity on WikiText-2

— layer,| —— fuse_euclid — layer prune-gpt2  —— fuse_euclidean-gpt2 241 — layer_prune-transxl  —— fuse_euclidean-transxl
— global_p penai-gpt  —— penai-gpt 261 — global prune-gpt2 —— quantization-gpt2 / — global_prune-transxl  —— quantization-transxl /
P — d — baseline-gpt2 —— autoencode-gpt2 21— | . i |
fuse_kl-openai-gpt — truncated_svd-openai-gpt 2 fuse_ki-gpt2 — truncated_svd-gpt2 fuse_KI-transx| — truncated_svd-transx!
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Figure 4: Language Modelling Compression on WikiText-2 with Retraining
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shows that the best results obtained from LF outperforms LD when evaluating the models at 50%
reduction of their original size. For LD, this corresponds to a dropout rate of 0.5 (best results at 0.5 in
Fan et al. (2019)) during retraining on WikiText-2 followed by pruning 50% of layers post-retraining.
For all 3 architectures, we find our best LF results improve over LD.

Additional Observations In language mod-

elling, the effects of model reduction typically Table 3: WikiText-2: Perplexity of
follow an exponential increase in perplexity for LF-Retraining @50% reduction

a compression ratio greater than 2 (correspond-

ing to @50%) when no retraining steps are used. \ Mean Freeze Mix
Unlike CIFAR10 image classification, language TransXL-KL | 1223 1502 13.75
modelling is a structured prediction task that has TransXL-ED | 13.08 17.13 14.88
a relatively large output dimensionality which TransXL-WS | 11.48 1440 12.17
we posit has an important role in the amount of TransXL-CA | 11.13  13.97 14.73
compression that can be achieved. Yang et al. GPT2-KL 1556 19.04 15.87
(2017) have noted the softmax bottleck whereby GPT2-ED 16.03 21.14 16.73
the restriction on the size of the decoder results GPT2-WS 13.71 1831 13.58
in information loss when calibrating the condi- GPT2-CA 14.03  21.28 14.59
tional distribution, while (Belkin et al., 2019) GPT-KL 2357 28.01 24.82
have also noted the double descent phenomena GPT-ED 25.07 29.68 24.73
is dependent on the number of classes. We con- GPT-WS 19.10 23.17 18.90
jecture that pruning and other such methods can GPT-CA 18.48 22.01 20.39

exacerbate this bottlenecking and therefore the
compression ratio will be generally lower compared to classification problems with relatively less
classes, such as CIFAR-10.

Table 4: WikiText-2: Perplexity With LayerDrop & Layer Fusion

TransXL. GPT2 GPT
Layer Fusion 11.13 13.71  13.58
LayerDrop 14.30 1893 21.01

6. Conclusion

In this paper we proposed layer fusion for structured model compression. We find that merging
the most similar layers during retraining of deep networks leads to competitive performance when
compared against the original network, while maintaining layer density. Layer fusion is also
competitive with pruning, layer decomposition and knowledge distillation without the use of any
additional parameters. Mixing weight matrices during layer fusion performs comparably to layer
averaging. We also compared how much compression can be achieved with and without retraining
for both tasks and the importance of the number of epochs and compression steps. By using an
exponential curriculum schedule to allocate the percentage of compression at each compression step,
we find improvements over distributing the compression percentage uniformly during retraining.
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Lastly, a clear inflection point was observed in both tasks where performance rapidly decreases for
all compression methods and models.
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Appendix A. Further Details

Machine Specification. We use an ASUS ROG Strix GL503VS SCAR gaming laptop with an
NVIDIA GTX 1070 8GB Graphics Processing Unit (GPU) card for training all models.

Fusing Layers of Unequal Size For a pair of vectorized tensors of column size d and d + k, we
remove k weights that have the smallest magnitudes from the 2" tensor until both match. We also
considered using PCA and SVD to fix the dimension for each layer pair. However, this is less of an
issue in the case of convolutional layers since filters that are most similar tend to be in the same layer.
For Transformer models, the same parts of each attention block are fused e.g the key weight tensor
from one layer could not be fused with a value weight tensor from another, only another key weight
tensor, and these are the same dimensions, hence the same length when vectorized.

Approximating the Covariance Matrix For our experiments, some of the layers can be relatively
large. For example, the large GPT-2 a weight matrix from a given hidden layer is w € R2048%2048
and a total of 4,194,304 parameters. We split W into block matrices to perform covariance estimation.
The row d,- and column d + ¢ dimensionality are restricted to d,, < d, < 128. A submatrix w; ; can
be represented as,

Wi1 ... Wig4,
Wij =
Wd, 1 Wd,..de

and all submatrices of W € R™ ™ are then formed where m = round(d /128) and n =
round(d./128). Given a pair of submatrices from two adjacent layers W - C W" and w, ”1 -
W+ from layers ny and ng, 1 respectively, we estimate the covariance 51m11ar1ty between them.
This is computed for all adjacent 1, n submatrix pairs, assuming that d?* = d,"“** and d?¢ = dp.**".
The complete covariance similarity is then estimated by its mean as,

ZZdCOU (Buper Byren) (7

lel

The covariance estimation techniques are then applied to compute covariance matrix similarity.
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