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Abstract

In budget-constrained settings aimed at mitigating unfairness, like law enforcement, it is
essential to prioritize the sources of unfairness before taking measures to mitigate them in
the real world. Unlike previous works, which only serve as a caution against possible dis-
crimination and de-bias data after data generation, this work provides a toolkit to mitigate
unfairness during data generation, given by the Unfair Edge Prioritization algorithm, in
addition to de-biasing data after generation, given by the Discrimination Removal algorithm.
We assume that a non-parametric Markovian causal model representative of the data gener-
ation procedure is given. The edges emanating from the sensitive nodes in the causal graph,
such as race, are assumed to be the sources of unfairness. We first quantify Edge Flow in
any edge X ! Y , which is the belief of observing a specific value of Y due to the influence
of a specific value of X along X ! Y . We then quantify Edge Unfairness by formulating a
non-parametric model in terms of edge flows. We then prove that cumulative unfairness
towards sensitive groups in a decision, like race in a bail decision, is non-existent when
edge unfairness is absent. We prove this result for the non-trivial non-parametric model
setting when the cumulative unfairness cannot be expressed in terms of edge unfairness. We
then measure the Potential to mitigate the Cumulative Unfairness when edge unfairness is
decreased. Based on these measurements, we propose the Unfair Edge Prioritization algo-
rithm that can then be used by policymakers. We also propose the Discrimination Removal
Procedure that de-biases a data distribution by eliminating optimization constraints that
grow exponentially in the number of sensitive attributes and values taken by them. Extensive
experiments validate the theorem and specifications used for quantifying the above measures.

Keywords: Causal Inference, Fairness, and Public Policy

1. INTRODUCTION

Motivation and Problem: Anti-discrimination laws in the U.S. prohibit unfair treatment
of people based on sensitive features, such as gender or race (Act, 1964). The fairness of a
decision process is based on disparate treatment and disparate impact. Disparate treatment,
referred to as intentional discrimination, is when sensitive information is explicitly used
to make decisions. Disparate impact, referred to as unintentional discrimination, is when
decisions hurt certain sensitive groups even when the policies are neutral. For instance, only
candidates with a height of 6 feet and above are selected for basketball teams. This might
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Figure 1: Bail Decision Causal Graph. Each node is generated from its parents. Edges: Fair
Edges in Green, Unfair Edges in Red; Nodes: Sensitive nodes in Red, Not sensitive nodes
in Green; R: Race; A: Age, G: Gender, L: Literacy, E: Employment, C: Case characteristics,
J: Judicial Bail decision

eliminate players of a certain race. Unjustifiable disparate impact is unlawful (Barocas and
Selbst, 2016). In high-risk decisions, such as in the criminal justice system, it is imperative
to mitigate unfairness resulting from either disparate treatment or disparate impact. Con-
sidering that agencies operate in a budget-constrained scenario owing to limited resources, it
is essential to prioritize potential sources of unfairness before we take measures to mitigate
them. This paper proposes the Unfair Edge Prioritization methodology for prioritizing these
sources before mitigating unfairness during the data generation phase. Further, this paper
also proposes the Discrimination Removal procedure to de-bias data distribution after data
is generated.

We motivate our problem through the following illustration using Fig. 1. Consider the
problem of reducing unfairness in the bail decision J towards a specific racial group R. We
use an unfair edge as the potential source of unfairness as in Chiappa and Isaac (2018). An
unfair path contains at least one unfair edge. The unfairness propagates along all the unfair
paths from the racial group R to the bail decision J . Although discrimination has been
quantified in previous works (Zhang et al., 2017), it only serves as a caution against possible
discrimination. There is utility when such notes of caution, like “discrimination exists in
the bail decision J towards the racial group R”, are augmented with tangible information
to mitigate discrimination, like “unfairness in the unfair edge R ! L is responsible for
discrimination in the bail decision J towards the racial group R”. Then, the agencies can
attempt to address the real-world issues underlying R! L, such as lack of scholarships for
racial group R. The challenge lies in providing such tangible information and methodologies
for mitigating discrimination such as the amount of unfairness present in an edge, the
measure of how edge unfairness a↵ects cumulative unfairness 1, prioritizing the unfair edges,
and removing discrimination.

This paper attempts to provide such “tangible” information using Pearl’s framework of
Causal Inference (Pearl, 2009). The contributions of this paper are as follows,

1. Cumulative unfairness captures discrimination due to unequal influences of R = r on J = j as compared

to R = r0 on J = j via the directed paths from R to J .
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1. Quantify Edge Flow in any edge X ! Y , which is the belief of observing a specific
value of Y due to the influence of a specific value of X along the edge X ! Y .

2. Quantify Edge Unfairness in any edge X ! Y , which is the average di↵erence in
conditional probability of Y given its parents Pa(Y ), P(Y |Pa(Y )), with and without
edge flow along X ! Y . It measures average unit contribution of edge flow in X ! Y

to P(Y |Pa(Y )). We formulate a non-parametric model for P(Y |Pa(Y )) in terms of
edge flows along the parental edges of Y (see Theorem 10).

3. Prove that the discrimination in any decision towards any sensitive groups is non-
existent when edge unfairness is eliminated. The proof is non-trivial in the non-
parametric model setting of CPT s as cumulative unfairness cannot be expressed in
terms of edge unfairness. We derive this result by upper bounding the absolute value
of cumulative unfairness and showing that the upper bound becomes zero when edge
unfairness is zero (see Theorem 12 and Corollary 13).

4. Quantify the Potential to Mitigate Cumulative Unfairness by calculating
the derivative of the upper bound w.r.t edge unfairness. We do this as cumulative
unfairness cannot be expressed in terms of edge unfairness in a non-parametric model
setting of CPTs.

5. Propose an Unfair Edge Prioritization algorithm to prioritize unfair edges based
on their potential to mitigate cumulative unfairness and edge unfairness. Using these
priorities, agencies can address the real-world issues underlying the unfair edge with
the top priority.

6. Propose a Discrimination Removal algorithm to de-bias data distribution by
eliminating exponentially growing constraints and subjectively chosen threshold of
discrimination.

Contents: We discuss the preliminaries in Section 2; quantify edge flow, edge unfairness,
its impact on cumulative unfairness, and prove that discrimination is absent when edge
unfairness is eliminated in Section 3; propose unfair edge prioritization and discrimination
removal algorithm in Section 4; discuss experiments in Section 6; discuss related work in
Section 3; discuss conclusion in Section 7.

2. PRELIMINARIES

Throughout the paper, we use boldfaced capital letters X to denote a set of nodes; italicized
capital letter X to denote a single node; boldfaced small letters x to denote a specific value
taken by X; italicized small letter x to denote a specific value taken by its corresponding
node X. x

A

restricts the values of x to the node-set A. Pa(X) denotes parents of X and
pa(X) the specific values taken by them. Each node is associated with the conditional
probability table P(X|Pa(X)).

Assumptions: We assume the following are given: (1) A Markovian causal model M

consisting of a causal graph G = (V,E) with variables V and edges E, (2) Conditional
probability tables (CPT s) P(V |Pa(V )) where 8V 2 V and Pa(V ) are the parents of V ,
(3) A list of sensitive nodes, whose emanating edges are potential sources of unfairness,
(4) The variables in the causal graph are discrete and observed. Even though the theorem
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results extend to the continuous variable setting, Assumption (4) is made to not digress into
inference and identifiability challenges (Avin et al., 2005). This paper does not make any
assumptions about the deterministic functions in the causal model.

Definition 1 Node interventional distribution denoted by P(Y|do(X = x)) is the
distribution of Y after forcibly setting X to x irrespective of the values taken by the parents
of X (Pearl, 2009).

Definition 2 A causal model is formally defined as a triple M =< U,V,F > where,
1. U is a set of unobserved random variables also known as exogenous variables that

are determined by factors outside the model. A joint probability distribution P(u) is
defined over the variables in U.

2. V is a set of observed random variables also known as endogenous that are determined
by variables in the model, namely, variables in U [V.

3. F is a set of deterministic functions {f
1

, ..., f

i

, ...} where each f

i

is a mapping from
U⇥ (V\X

i

) to X

i

written as,

x

i

= f

i

(pa(X
i

),u
i

) (1)

where X

i

2 V, pa(X
i

) are the specific values taken by the observed set of parents of
X

i

and u
i

are the specific values taken by unobserved set of parents of X
i

.

Each causal model is associated with a causal graph G = (V,E) where V are the observed
nodes and E are the directed edges. We assume that the causal model is Markovian which
means that all exogenous variables U are mutually independent and each node is independent
of its non-descendants conditional on all its parents. For a markovian model joint distribution
P(V) is given by,

P(V) =
Y

V 2V
P(v|pa(V )) (2)

where P(v|pa(V )) is the conditional probability table CPT associated with V .

Definition 3 Identifiability: Let G be a causal graph. A node interventional distribution
P(Y|do(X = x)), i.e., probability of Y when X is forcibly set to x is said to be identifiable
if it can be expressed using the observational probability P(V). When G comprises of only
observed variables as in our work,

P(y|do(x)) =
X

v2V\{X,Y}

Y

V 2V\{X,Y},Y=y

P(v|pa(V ))|
x

(3)

Definition 4 Total Causal E↵ect TE

y

(x
2

,x
1

) measures causal e↵ect of variables X on
decision variables Y = y when it is changed from x

1

to x
2

written as,

TE

y

(x
2

,x
1

) = P(y|do(x
2

))� P(y|do(x
1

)) (4)

Definition 5 Path-specific e↵ect SE

⇡,y

(x
2

,x
1

) measures e↵ect of node X on decision
Y = y when it is changed from x

1

to x
2

along the directed paths ⇡, while retaining x
1

for
the directed paths not in ⇡ i.e. ⇡̃ written as,

SE

⇡,Y=y

(x
2

,x
1

) = P(y|do(x
2

|
⇡

,x
1

|
˜⇡))� P(y|do(x

1

)) (5)
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Definition 6 A trail V
1

⌦ ..... ⌦ V

n

is said to be an active trail given a set of nodes X
in G if for every v-structure V

i

! V

j

 V

k

along the trail, V
j

or any descendent of V
j

is in
X and no other node in the trail belongs to X.

Definition 7 A is said to be d-separated from B given C in a graph G (d-sepG(A;B|C))
if there is no active trail from any A 2 A to any B 2 B given C as discussed in Pearl
(2009), and Koller and Friedman (2009) . If there is atleast one active trail from any A 2 A
to any B 2 B given C, then A is said to be d-connected from B given C in a graph G
(d-connG(A;B|C)) as shown in Fig. 1.3 in Pearl (2009).

Theorem 8 If sets X and Y are d-separated by Z in a DAG G(E,V), then X is independent
of Y conditional on Z in every distribution P that factorizes over G. Conversely, if X and
Y are d-connected by Z in a DAG G, then X and Y are dependent conditional on Z in at
least one distribution P that factorizes over G as shown in Theorem 1.2.4 in Pearl (2009).

Unfair edge S ! X: Unfair edge is a directed edge S ! X with S being a sensitive node
like race. Set of unfair edges in G is denoted by Eunfair

G . Unfair edge is a potential source of
unfairness. For instance, in Fig. 1, G ! E is unfair if the accused is denied admission to
co-ed institutions based on gender. On the other hand, G ! E is fair, if only gender-specific
institutions existed in the locality as discussed in Chiappa and Isaac (2018). Hence, the
usage of the term potential.

Unfair paths ⇡unfair

S,Y,G : Unfair paths are the set of directed paths from sensitive node S 2 S
to the decision node Y in graph G. Unfair paths capture how unfairness propagates from
the sensitive nodes onto a destination node. For instance, in Fig. 1, ⇡unfair

G,J,G consists of
G ! E ! J that captures how unfairness in the edge G ! E propagates to J . Non-causal
paths do not propagate unfairness from sensitive nodes. Suppose there is another node, say
religious belief R, and another non-causal path, say R  E ! J . Still, R  E ! J is
fair because bail decision J is taken based on employment E and not on religious belief R
as discussed in Chiappa and Isaac (2018).

3. Edge Unfairness

In this section, we quantify edge flow, edge unfairness, prove that eliminating edge unfairness
eliminates cumulative unfairness, and quantify the potential to mitigate cumulative unfairness
when edge unfairness is reduced.

Edge flow along any edge, say R! J is the belief of observing a specific value of bail
decision J due to the influence of a specific value of race R along R ! J . This can be
extended to multiple direct edges from M = {R,G} to X.

Definition 9 Edge flow PM=m

flow

(X = x) is defined as,

Pm

flow

(x) =
e

Em0⇠P(m0)SE⇡,x

(m,m

0
)

P
x

e

Em0⇠P(m0)SE⇡,x

(m,m

0
)

, where ⇡ = {M ! X|M 2M} (6)
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Edge flow is formalized using direct e↵ect SE⇡,x

(m,m0) (Avin et al., 2005). SE⇡,x

(m,m0)
is the e↵ect of M = m on X = x along the direct edges from M to X irrespective of the
value m0 set along the indirect paths ensured by averaging. SE⇡,x

(m,m0) is identifiable
because there is no recanting witness (see Definition 3, Theorem 1, and Theorem 2 in Zhang
et al. (2017)). A positive scaling like softmax ensures that the edge flow is a positive quantity
which we use to prove Theorem 12.

To quantify edge unfairness along R! J , we first decompose P(J |Pa(J)) into edge flows
along the direct edges {X ! J |X 2 Pa(J)}. The rationale is that the active trails {X !
J |X 2 Pa(J)} (Definition 6) resulting from the dependencies {(J 6? X|Pa(J)\X)|X 2
Pa(J)}, which influence J ’s value in P(J |Pa(J)) (Theorem 8), are same as the edges along
which the edge flows from Pa(J) to J propagate. The theorem below formalizes this concept.

Theorem 10 The conditional probability distribution P(X = x|Pa(X) = pa(X)) is a
function f

w of FairFlow
x,pa(X)

and UnfairFlow
x,pa(X)

given by,

P(x|pa(X)) = f

w(FairFlow
x,pa(X)

,UnfairFlow
x,pa(X)

) (7)

where, f

w : W|U
X

|+|F
X

|+1 ! [0, 1], (8)

subject to,
X

x

f

w(FairFlow
x,pa(X)

,UnfairFlow
x,pa(X)

) = 1, (9)

f

w(FairFlow
x,pa(X)

,UnfairFlow
x,pa(X)

) � 0 (10)

where w are the weights, U
X

are the parents of X along an unfair edge, F
X

are the parents

of X along a fair edge, FairFlow
x,pa(X)

= PF

X

=pa(X)F
X

flow

(X = x) and UnfairFlow
x,pa(X)

=

{PA=pa(X)

A

flow

(X = x); A 2 U
X

}

Proof: FairFlow
x,pa(X)

= Ppa(X)F
X

flow

(x) measures the e↵ect of parents of X along the fair

edges and UnfairFlow
x,pa(X)

= {PA=pa(X)

A

flow

(X = x); A 2 U
X

} measures the e↵ect of parents

of X along the unfair edges [Definition 9]. Thus,
S

A2U
X

Ppa(X)

A

flow

(x) and Ppa(X)F
X

flow

(x) measure

the e↵ects along the direct edges {M ! X|M 2 Pa(X)}. Further, the set of active trails
resulting from the dependencies {(X 6? M |Pa(X)\M)|M 2 Pa(X)}, which influence X’s
value in P(x|pa(X)), is also {M ! X|M 2 Pa(X)} [Theorem 8]. Hence, P(x|pa(X)) can be

formulated as a function of
S

A2U
X

Ppa(X)

A

flow

(x) and Ppa(X)F
X

flow

(x) provided the function satisfies

the axioms of probability ⌅.

This theorem aids in the formulation of edge unfairness in an unfair edge, say in R! J

as the di↵erence in P(J |Pa(J)) with and without the edge flow in R! J . Edge unfairness
is formalized below.

Definition 11 Edge unfairness µ

e

of an unfair edge e = K ! X is,

µ

e

= E
(x,pa(X))⇠P(x,pa(X))

2

4
D

K

x,pa(X)

Ppa(X)

K

flow

(x)

3

5 (11)



Unfair Edge Prioritization and Discrimination Removal

Figure 2: Edge flows P{L,C,E}
flow

(J), PR

flow

(J) and PG

flow

(J) interact via function f to generate

P(J |Pa(J)). P{L,C,E}
flow

(J) result in e↵ects along the fair edges {L ! J,E ! J,C ! J} as
shown in middle-left. PR

flow

(J) result in the e↵ect along the unfair edge {R! J} as shown
in top-center. PG

flow

(J) result in the e↵ect along the unfair edge {G! J} as shown in the
middle-right. The active trails resulting as a consequence of the dependencies in P(J |Pa(J))
are {R! J, L! J,E ! J,C ! J,G! J} as shown in bottom.

where, DK

x,pa(X)

=

����CPT
K

x,pa(X)

�]CPT
K

x,pa(X)

���� (12)

CPTK

x,pa(X)

= f

X

(FairFlow
x,pa(X)

,

[

A2U
X

Ppa(X)

A

flow

(x)) (13)

]CPT
K

x,pa(X)

= f

X

(FairFlow
x,pa(X)

,

[

A2U
X

\K

Ppa(X)

A

flow

(x),Ppa(X)

K

flow

(x) = 0) (14)

Edge unfairness µ
e

is the unit contribution of edge flow PK

flow

(X) to P(X|Pa(X)). µ
e

mea-
sures the di↵erence in P(X|Pa(X)) with the edge flow along e, given by CPTK

x,pa(X)

, and

without the edge flow along e, given by ]CPT
K

x,pa(X)

. We measure per unit edge flow to capture

that a largeD
X,K

compared to PK

flow

(X) still results in large µ
e

even thoughD

K

X,Pa(X)

is small.

Now, we quantify cumulative unfairness. The objective for introducing cumulative
(overall) unfairness is twofold: (1)To prove that eliminating edge (local) unfairness eliminates
cumulative unfairness (2)To formulate the potential to mitigate cumulative unfairness. We
combine direct and indirect discrimination, discussed in Section 3 of Zhang et al. (2017), to
define cumulative unfairness towards sensitive nodes S = s in decision Y = y. Cumulative
unfairness C

S=s,Y=y

is,

C

S=s,Y=y

= E
s

0⇠P(s0)TEY=y

(s, s0) (15)

C

S=s,Y=y

measures the impact on outcome Y = y when S is forcibly set to s along the
unfair paths from S to Y irrespective of the value set along other paths. Since all edges
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emanating from a sensitive node are potential sources of unfairness, the total causal e↵ect
TE (see Definition 4) is used to formulate cumulative unfairness. Proving the result that
eliminating edge unfairness µ

e

in all unfair edges e eliminates cumulative unfairness C
S=s,Y=y

is not straightforward as C
S=s,Y=y

cannot be expressed in terms µ
e

. We first upper bound
|C

S=s,Y=y

| by C

upper

S=s,Y=y

that can be expressed in terms of µ
e

. Then, the result follows from
the theorem.

Theorem 12 The magnitude of cumulative unfairness in decision Y = y towards sensitive
nodes S = s, C

S=s,Y=y

, is upper bounded by C

upper

S=s,Y=y

as shown below,

|C
S=s,Y=y

|  C

upper

S=s,Y=y

(16)

where,

C

upper

S=s,Y=y

=
X

s

02S\s

P(s0)

2

4
X

v2V\{S,Y }

Y

V 2V\{S,Y },Y=y

X

A2U
V

2

4Ps

A

_pa(V )

A

flow

(v)

P(v, pa(V ))|
s

+
Ps

0
A

_pa(V )

A

flow

(v)

P(v, pa(V ))|
s

0

3

5
µ

A!V

3

5

(17)

s
A

_ pa(V )
A

⌘ A =

(
s
A

, if A 2 S

pa(V)
A

otherwise
(18)

Proof Sketch of Theorem:
Cumulative unfairness C

S=s,Y=y

cannot be expressed in terms of edge unfairness when
the conditional probability is modeled by a non-parametric model f . Therefore, we write
C

S=s,Y=y

in terms of conditional probabilities CPT s. Each CPT is substituted by its
functional model f (see Theorem 10), because the edge unfairness is expressed in terms of f
(see Definition 12). To bring edge unfairness µ

e

into the formulation, we upper bound each
f of a node present along an unfair edge e with the following quantities: edge unfairness
µ

e

and f having no edge flow along e. The rationale of this step comes from the definition
of edge unfairness µ

e

(see Definition 12) and the fact that the modulus operation is a
non-negative quantity. This proves the result C

S=s,Y=y

 C

upper

S=s,Y=y

. By following similar

steps and using modulus operation to lower bound f , we arrive at C
S=s,Y=y

� �Cupper

S=s,Y=y

.
(see Supplementary for full proof) ⌅

Corollary 13 The cumulative unfairness in decision Y = y towards sensitive nodes S = s,
C

S=s,Y=y

, is non-existent when edge unfairness µ

e

in all unfair edges is eliminated.

We now measure the potential to mitigate cumulative unfairness when edge unfairness is
reduced. Using the potential measure and edge unfairness, agencies can then prioritize the
unfair edges before taking measures to mitigate them.

Sensitivity measures the variation in C

upper

S=s,Y=y

when edge unfairness µ
e

in unfair edge e

is varied. Since C

upper

S=s,Y=y

is a linear function in edge unfairness, higher order derivatives

(� 2) of Cupper

S=s,Y=y

with respect to µ

e

are 0.
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Definition 14 Sensitivity of Cupper

S=s,Y=y

w.r.t edge unfairness in edge e µ

e

is,

S

S=s,Y=y

e

=
@C

upper

S=s,Y=y

@µ

e

����
µ⇤

(19)

where, µ⇤ are the current edge unfairness obtained from observational distribution P(V).

The following quantity measures the potential to mitigate C

upper

S=s,Y=y

when edge unfairness

µ

e

in unfair edge e is decreased. C

upper

S=s,Y=y

is used to measure the potential contrary to
C

S=s,Y=y

because C

S=s,Y=y

cannot be expressed in terms of edge unfairness. Experiment
5.3 validates that decreasing C

upper

S=s,Y=y

decreases C
S=s,Y=y

.

Definition 15 Potential to Mitigate Cumulative Unfairness when µ

e

is decreased.

P

S=s,Y=y

e

=

8
><

>:

-

����S
S=s,Y=y

e

���� if Cupper

S=s,Y=y

= 0

SS=s,Y=y

e

if Cupper

S=s,Y=y

> 0

(20)

P

S=s,Y=y

e

states that if Cupper

S=s,Y=y

= 0, then C

upper

S=s,Y=y

deviates from 0 (indicative of no-

discrimination) as edge unfairness is decreased. The potential of Cupper

S=s,Y=y

to move towards

0 or to get mitigated is then quantified by �|SS=s,Y=y

e

| wherein negative is due to C

upper

S=s,Y=y

deviating from 0. Similarly, one can analyze the other case.

4. Unfair Edge Prioritization & Discrimination Removal

Based on the theorems and the definitions, we present pseudo-codes for fitting the CPTs in
Algorithm 1, computing priority of the unfair edges in Algorithm 2, and removing discrimi-
nation in Algorithm 3. Algorithm 2 aids the agencies to mitigate unfairness underlying the
unfair edges in the real-world during the data generation phase. Algorithm 3 de-biases data
distribution after the data generation phase. Algorithm 2 calls Algorithm 1. Algorithm 1
does not call Algorithm 2 and Algorithm 3. Algorithm 3 does not call Algorithm 2 and
Algorithm 1.

(1)fitCPT() Algorithm 1: It takes the causal model (G,P), the set of unfair edges Eunfair

G ,
and the attribute X as inputs and approximates the CPTs P(X|Pa(X)) by the model fw

using the least-squares loss.

Algorithm 1 fitCPT(G,P,Eunfair

G ,X)

1: Initialize w randomly
2: Y  P(X = x|Pa(X) = pa(X))
3: Compute FairFlow

x,pa(X)

and UnfairFlow
x,pa(X)

(Theorem 10)

4: Ŷ
X

(w) f

w(FairFlow
x,pa(X)

,UnfairFlow
x,pa(X)

) (Theorem 10)

5: w⇤  argmin
w

||Y � Ŷ
X

(w)||2 subject to Eq. 9 & Eq. 10
6: Output: w⇤
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(2)computePriority() Algorithm 2: It computes priorities of the unfair edges based on
the edge unfairness and the potential to mitigate the cumulative unfairness. The priorities
can be used to address unfairness in the real world.

Algorithm 2 computePriority(G,P,Eunfair

G ,s,y,w
u

,w
p

)

1: w⇤ = {} . Optimal weights of the approximated CPT s
2: for V in V do
3: w⇤

V

 fitCPT(G,P,Eunfair

G , V ) . See Algorithm 1
4: w⇤  w⇤ [ {w⇤

V

}
5: priorityList = {}
6: for e = S ! V in Eunfair

G
7: Compute µ

e

using f

w

⇤
V from Eq. 12

8: Compute P

S=s,Y=y

e

. See Definition 15
9: priority = w

u

µ

e

+ w

p

P

S=s,Y=y

e

. w

u

and w

p

are weights
10: priorityList = priorityList [{(e, priority)}
11: Output: priorityList

(3)removeDiscrimination() Algorithm 3: It removes discrimination by regenerating new
CPT s for the causal model (G,P) with unfair edges Eunfair

G . These CPT s are approximated
by solving an optimization problem of minimizing the overall edge unfairness subject to
the axioms of probability as constraints. A data utility term, which is the Mean Squared
Error (MSE ) between P(V) and the new joint distribution computed from the product of
approximated CPT s, is added to the objective function to ensure that the influences from
other insensitive nodes are preserved. For instance, a sensitive node like religious belief R
can have insensitive nodes like literacy L as a parent. By minimizing only the edge unfairness
in the objective function, indirect influences like L! R! J can get altered, thereby not
preserving data utility. Also, this algorithm gets away with the subjectively chosen threshold
of discrimination in the constraints, unlike previous works. This circumvents the problem of
the regenerated data distribution being unfair had a smaller threshold been chosen.

Algorithm 3 removeDiscrimination(G,P,Eunfair

G )

1: w⇤  argmin
w

X

e2Eunfair
G

µ

e

+

�����P(V)�
Y

Z2V
f

w(FairFlow
z,pa(Z)

,UnfairFlow
z,pa(Z)

)

�����

2

subject to Eq. 9 and Eq. 10 (Theorem 10)

2: P
new

(V) 
Y

Z2V
f

w

⇤
(FairFlow

z,pa(Z)

,UnfairFlow
z,pa(Z)

) (Theorem 10)

3: Output: P
new

(V)

5. EXPERIMENTS

In this section, we perform experiments to validate the model and input specifications
for approximating CPT s using the criminal recidivism graph as shown in Fig. 1. The
e↵ectiveness and e�ciency of algorithms depend upon their building blocks: (1) Edge
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Unfairness, (2) Theorem 3, (3) Algorithm 1. Hence, we focus the experimental section on
Edge Unfairness formulation, Theorem 12 and Algorithm 1 as they are used in Algorithm 2
and Algorithm 3. In particular, we analyze the relationship between Cumulative Unfairness
and the upper bound of Cumulative Unfairness, and the applicability of our method to
realistic scenarios where the causal model and the CPT s are unavailable. We first define the
causal model by constructing the CPT s.

5.1. Causal Model

This paper uses the causal graph shown in Fig. 1 for experiments. This graph is similar
to the one constructed in VanderWeele and Staudt (2011); the di↵erence is in the usage of
the defendant’s attributes like race as nodes contrary to the judge’s attributes. The values
taken by the nodes are discrete and specified in Supplementary material. For each attribute
V in the graph, the conditional probability distribution P(V |Pa(V )) is generated by the
following quantities:

• Parameters : ✓
A!V

2 [0, 1] 8A 2 Pa(V ) where ✓

A!V

quantifies the direct influence of
parent A on V that is independent of the specific values taken by A and V . ✓

A!V

is a
property of the edge A! V .

• Scores: �

A=a!V=v

2 [0, 1] 8A 2 Pa(V ) where �

A=a!V=v

quantifies the direct influ-
ence of parent A on V . It is dependent on the specific values of A and V .

CPT of node V is computed as the weighted sum of �
A=a!V=v

with ✓

A!V

being the weights,

P(v|pa(V )) =
X

A2Pa(V )

✓

A!V

�

A=pa(V )

A

!V=v

(21)

To ensure that the CPT s satisfy marginality conditions, the following constraints are defined
over the parameters and scores:

P
A2Pa(V )

✓

A!V

= 1 and
P
v

�

A=a!V=v

= 1, 8A 2 Pa(V ). We

generate 625 models with di↵erent combinations of {✓
A!J

, ✓

B!E

|A 2 Pa(J), B 2 Pa(E)}
that are used to generate CPT s while keeping �

A=a!V=v

fixed.

5.2. Approximating the CPTs

We implement Algorithm 1 for each CPT and solve the constrained least-squares problem
(CLSP) to find the optimal solution w⇤ (Algorithm 1: Step 5). CLSP is a well-known
optimization problem for the linear model. In the case of a non-linear model, we implement
a neural network and apply Adam optimizer (Kingma and Ba, 2014) with default hyper-
parameters to minimize the MSE loss. These two models were implemented using scikit-

learn library and PyTorch library respectively (Paszke et al., 2019).

5.3. Experiment 1: Relationship between |C
S=s,Y=y

| and C

upper

S=s,Y=y

Utility: We know from Theorem 12 that Cupper

S=s,Y=y

= 0 and C

S=s,Y=y

= 0 when edge

unfairness µ
e

= 0 in all the unfair edges e. Here, we investigate whether decreasing C

upper

S=s,Y=y

decreases |C
S=s,Y=y

|. This investigation provides utility for the formulation of Potential
to Mitigate Cumulative Unfairness quantity in terms of Cupper

S=s,Y=y

as C
S=s,Y=y

cannot be
expressed in terms of edge unfairness.
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Setting: We set ✓
A!V

= 0 for all A along an unfair edge to 0 except the racial parent R.
✓

A!V

is indicative of edge unfairness µ
A!V

from Experiment 5.2. Next, we plot Cupper

R=0,J=1

and |C
R=0,J=1

| with varying ✓

R!J

for di↵erent values of ✓
R!E

(Fig. 3(a)) and ✓

G!J

(Fig.
3(b)) respectively.

Inference: We observe that for small edge unfairness, decreasing C

upper

R=0,J=1

decreases
|C

R=0,J=1

|. Both converge to 0 when all the edge unfairness are eliminated. This inference
helps the policy makers to mitigate cumulative unfairness |C

R=0,J=1

| by mitigating the
upper bound C

upper

R=0,J=1

. On the other hand, as we increase the edge unfairness in the edges
other than R! J , this linear trend diminishes as observed for ✓

R!E

= 0.33 (Fig. 3(a)) and
✓

G!J

= 0.24 (Fig. 3(b)).

Figure 3: Decreasing C

upper

S=s,Y=y

decreases |C
S=s,Y=y

| when edge unfairness µ
e

in all unfair
edges e are small. (a) ✓

R!J

, indicative of edge unfairness µ
R!J

, is varied for di↵erent ✓
R!E

.
(b) ✓

R!J

is varied for di↵erent ✓
G!J

. When ✓

R!J

is large, decreasing C

upper

S=s,Y=y

does not
decrease |C

S=s,Y=y

| as seen from the purple graph.

5.4. Experiment 2: Edge Unfairness with Finite data

Utility: We investigate the applicability of our approach to realistic scenarios where
the causal model and the CPT s are unavailable. We do not dwell on discovering causal
structures using finite data.2 Instead, we focus on estimating CPT s using a finite amount
of data and compare the edge unfairness calculated using original CPT s, P, with the one
by estimated CPT s, Pm, where m is the number of samples drawn randomly from P for
estimation. Intuitively, the distance should decrease as m increases because a large number
of i.i.d. samples produce a better approximation of the original distribution P, thereby
reducing the euclidean distance.

Setting: In Fig. 4, we plot the euclidean distance DP
L

(m) between w⇤(P) and w⇤(Pm) by
varying m. Here, CPT s are approximated using the linear model for di↵erent distributions
P that are randomly generated as shown in di↵erent colors. Similarly, the euclidean distance
D

P
NL

(m) between µ(P) and µ(Pm) assuming the non-linear model is shown in Fig. 4(b).
Inference: We observe that w⇤(Pm) moves closer to w⇤(P) as m increases. Moreover,

since P was randomly generated, we also observe that there exists an empirical bound

2. TETRAD software discussed in Ramsey et al. (2018) can be used for this purpose.
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Figure 4: Edge unfairness decreases as the number of samples increases. (a) ||w⇤(P) �
w⇤(Pm)||

2

= D

P
L

(m) vs. number of samples m. (b) ||µ(P)�µ(Pm)||
2

= D

P
NL

(m) vs. number
of samples m.

over Euclidean distance for a given m. For instance, in Fig. 4(a), DP
L

(m) is less than 0.01
for m greater than 103. A similar observation can be made in Fig. 4(b). Further, more
samples are required to make D

P
L

(m) and D

P
NL

(m) comparable. For instance, around 103

samples are required to observe D

P
L

(m) = 0.01, while at least 104 samples are required to
observe D

P
NL

(m) ⇡ 0.2. The presence of an empirical bound motivates one to investigate
the possibility of a theoretical bound over the Euclidean distance. In addition to the above
experiments, we empirically show that the Edge Unfairness is a property of an edge and
discuss the benefits of using a non-linear model in the Supplementary Material.

6. Related Work

Mitigating Unfairness in the Data Generation Phase: Gebru et al. (2018) suggests
documenting the dataset by recording the motivation and creation procedure. However, it
does not attempt to provide a solution for mitigation with limited resources.

Assumptions: Zhang et al. (2017) assumes that the sensitive variable S has no parents
as it is an inherent nature of the individual. We follow Zhang et al. (2019) that relaxes this
assumption because sensitive nodes such as religious belief can have parents like literacy L.
Nabi and Shpitser (2018) and Chiappa (2019) propose discrimination removal procedures in
the continuous node setting by handling the non-identifiability issues. We do not discuss
the continuous variable setting to avoid digressing into the intractability issues. Wu et al.
(2019) formulates cumulative unfairness as a solution to the optimization problem for
the semi-markovian setting. We restrict our discussion to the markovian setting to avoid
digressing into the challenges of formulating cumulative unfairness in terms of edge unfairness.
Ravishankar et al. (2020) solves the problem for the trivial linear case when the cumulative
unfairness can be expressed in terms of edge unfairness.

Edge Flow: Decomposing direct parental dependencies of a child into independent
contributions from each of its parents helps in quantifying the edge flow. Srinivas (1993),
Kim and Pearl (1983), and Henrion (2013) separate the independent contributions by using
unobserved nodes in the representation of causal independence. To overcome the issues of
intractability in unobserved nodes, Heckerman (1993) proposed a temporal definition of
causal independence. It states that if and only cause c transitions from time t to t+ 1, then
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the e↵ect’s distribution at time t + 1 depends only on the e↵ect and the cause at time t,
and the cause at time t + 1. Based on this definition, a belief network representation is
constructed with the observed nodes that make the probability assessment and inference
tractable. Heckerman and Breese (1994) proposes a temporal equivalent of the temporal
definition of Heckerman (1993). The aforementioned works do not quantify the direct
dependencies from the parents onto the child as in our work.

Edge Unfairness: Multiple statistical criteria have been proposed to identify discrimi-
nation (Berk et al., 2018) but it is mathematically incompatible to satisfy them all when
base rates of the dependent variable di↵er across groups (Chouldechova, 2017; Kleinberg
et al., 2016). Consequently, there is an additional task of selecting which criterion has to
be achieved. Moreover, statistical criteria caution about discrimination but do not help in
identifying the sources of unfairness. Zhang et al. (2017) uses path-specific e↵ects to identify
direct and indirect discrimination after data is generated but does not address the problem
of mitigating unfairness in the data generation phase. Unlike Zhang et al. (2017) that uses
the presence of a redlining attribute in an indirect path and the presence of a sensitive node
on a direct path to determine the unfairness of a path, our work uses the notion of an unfair
edge as the potential source of unfairness akin to Chiappa and Isaac (2018).

Discrimination Removal Procedure: Zhang et al. (2017) and Kusner et al. (2017)
remove discrimination by altering the data distribution. Firstly, the optimization technique
in Zhang et al. (2017) and the sampling procedure in Kusner et al. (2017), scale exponentially
in the number of nodes (and values taken by the sensitive nodes) that eventually increases the
time to solve the quadratic programming problem. Secondly, the constraints in Zhang et al.
(2017) depend on a subjectively chosen threshold of discrimination that is disadvantageous
because the regenerated data distribution would remain unfair had a smaller threshold been
chosen. Our paper formulates a discrimination removal procedure without exponentially
growing constraints and a threshold of discrimination.

7. CONCLUSION

We introduce the problem of quantifying edge unfairness in an unfair edge. We give a novel
formulation that models CPTs in terms of edge flows to quantify edge unfairness. We prove
a result that eliminating edge unfairness eliminates cumulative unfairness. Proving this
result is not straightforward because cumulative unfairness cannot be expressed in terms of
edge unfairness when CPTs are modeled as a non-parametric function of the edge flows.
Hence, we prove the result via an intermediate theorem that upper bounds the magnitude of
cumulative unfairness by a quantity that can be expressed in terms of edge unfairness. To
analyze the impact of edge unfairness on cumulative unfairness, we quantify the potential
to mitigate cumulative unfairness when edge unfairness is decreased. This formulation
uses the upper bound of cumulative unfairness as it can be expressed in terms of edge
unfairness. Experimental results validate that mitigating cumulative unfairness mitigates
its upper bound as well, thereby establishing the rationale for using the upper bound of
cumulative unfairness in the formulation. Using the theorem result and measures, we present
an unfair edge prioritization algorithm and a discrimination removal algorithm. The unfair
edge prioritization algorithm gives tangible directions to agencies to mitigate unfairness in
the real world while the data is being generated. There is no utility in making cautionary
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claims of potential discrimination when it is not complemented with information that aids in
mitigating unfairness causing discrimination. On the other hand, the discrimination removal
algorithm de-biases data after the data is generated. In the future, we aim to evaluate the
impact of edge unfairness on subsequent stages of the machine learning pipeline such as
selection, classification, etc. We also plan to extend to the semi-Markovian causal model
(Wu et al., 2019) and continuous nodes settings (Nabi and Shpitser, 2018).
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