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Abstract

We consider the query recommendation problem in closed loop interactive learning settings
like online information gathering and exploratory analytics. The problem can be naturally
modelled using the Multi-Armed Bandits (MAB) framework with countably many arms.
The standard MAB algorithms for countably many arms begin with selecting a random set
of candidate arms and then applying standard MAB algorithms, e.g., UCB, on this candi-
date set downstream. We show that such a selection strategy often results in higher cumula-
tive regret and to this end, we propose a selection strategy based on the maximum utility of
the arms. We show that in tasks like online information gathering, where sequential query
recommendations are employed, the sequences of queries are correlated and the number
of potentially optimal queries can be reduced to a manageable size by selecting queries
with maximum utility with respect to the currently executing query. Our experimental
results using a recent real online literature discovery service log file demonstrate that the
proposed arm selection strategy improves the cumulative regret substantially with respect
to the state-of-the-art baseline algorithms. Our data model and source code are available
at https://anonymous.4open.science/r/0e5ad6b7-ac02-4577-9212-c9d505d3dbdb/.
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1. Introduction

We consider the problem of query recommendation in closed loop interactive computing en-
vironments, like exploratory data analysis, and online information discovery/gathering. In
such applications, a user (data analyst) starts off a session by issuing an initial query related
to a topic of investigation/exploration to the data system and, then, exploring the topic
in-depth by executing further queries. Query recommendation algorithms are employed to
recommend these ‘future’ further queries based on previously issued queries to improve user
experience (Baeza-Yates et al., 2004). Furthermore, in this context, query recommendation
algorithms can be envisaged as a pillar component in resource-efficient decision making
methods in data management systems. In addition to providing recommendations for data
exploration tasks, effective query recommendation algorithms are expected to greatly im-
prove the way current data systems work (including query processing, pre-fetching data,
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pre-analysing data, managing cached data). Forecasting the correct next-query helps the
system to proactively reserve resources and be prepared for any immediate downstream
tasks. For example, if the forecast next query requires loading (or transferring through
the network) a considerably huge amount of data to the main memory or running a CPU
intensive task, the system can prefetch the data, free up caches and memory/processes to
accommodate the tasks to carry out in the immediate short-term future. These advantages
of timely next-query forecasting will anticipate impact on the way data centers work and
schedule tasks in terms of throughput and scalability in task scheduling. Hence, an efficient
query recommendation (forecasting) engine not only improves user engagement but also
improves system performance and application-driven Quality of Experience.

Typical use case scenarios include: (i) data scientists analyzing a large volume of data to
obtain in-depth knowledge about the data for follow-up tasks like, data trend explanation
(Savva et al., 2020), report summarization (Marcel and Negre, 2011) and (ii) users gather-
ing information by discovering scholarly articles to conduct literature review using online
services (Krause and Guestrin, 2011). These tasks can be conceptualized as the system rec-
ommending queries and the user either accepting or rejecting these recommendations, thus
forming a closed loop interactive environment. This learning environment can be viewed as
a repeated game between an online algorithm and the user. At each trial t = 1, . . . , T , the
algorithm chooses a query for recommendation from a very large query set A. Based on
the utility of the recommendation, the user chooses either to execute the query or ignore
it, thus resulting in a reward. Like in the standard recommendation settings, the rewards
are in the form of ‘clicks’ for the correctly recommended queries.

The MAB framework is popular in personalized recommender systems to model the
trade-off between exploration and exploitation over a set of items (queries in our context)
with unknown reward distribution. We model query recommendations using the MAB
framework. The standard MAB algorithms assume that the number of arms is fixed and
relatively smaller than the number of trials. In query recommendation, the total number of
queries (arms) far exceeds the number of times users will use the recommendation platform.
Hence, the number of queries for recommendation is inherently huge and assumed to be
countably many. We do not consider the queries to be infinite as there can be many im-
plausible queries and query sequences. In addition, unlike in personalized recommendation
settings, the queries can be about very general topics like COVID, MAB or SQL statements,
and need not have a personalization component. Our goal is to recommend the next query
to be executed based on past executed queries and the topic of investigation, i.e., currently
executing query.

As opposed to the standard MAB settings, countably many armed bandit algorithms
have to choose from an extremely large number of arms, often much larger than the number
of experimental trials or time horizon. The sheer volume of possible arms make it compu-
tationally impossible to try each of the arms even once. The standard way to deal with
countably many arms is to either randomly select a candidate set containing a fixed (k)
but reduced number of arms (k � T � |A|) from the pool of arms, and run standard
MAB algorithms on this reduced arm set (Wang et al., 2008; Kalvit and Zeevi, 2020; Zhu
and Nowak, 2020; Bayati et al., 2020), or exploit the benign reward structure of the arms
(Kleinberg et al., 2019; Magureanu et al., 2014). As we demonstrate in our experimental
evaluation, the random selection strategy often results in the optimal or near-optimal arms
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to be ignored in the selection process and, thus, hindering the performance of the bandit
algorithm. The algorithms that exploit the reward structure of the arm contexts also fall
short of expectations. As demonstrated in the experiments, the zooming based algorithm
(Kleinberg et al., 2019) performs sub-optimally and the OSLB (Magureanu et al., 2014)
is infeasible in our case as it requires one to solve an LP in each round. Hence, the key
component in the algorithm design for countably many armed bandit problems is the arm
selection strategy. To this end, we propose a strategy to select the candidate set of the most
promising arms based on maximizing the utility of an arm with respect to the currently
playing arm.

Given the currently executing query (currently playing arm)1, we define the ‘goodness
of arm for selection’ with respect to the currently playing arm based on the notion of utility.
Our assumption is similar to the assumption that the rewards are Lipschitz function of the
arm contexts (Magureanu et al., 2014; Kleinberg et al., 2019). Furthermore, we model the
likelihood, i.e., probability of a query to be preferred by the current arm as a function of
pairwise similarity between them. Specifically, the currently executing query provides us
with the context information of the topic the user is interested in, and we make use of the
shared context information between different queries, represented as real valued vectors, to
choose the best next query to run. Then, we propose an effective selection strategy based
on utility maximization. For theoretically plausible utility functions, our selection strategy
reduces to monotonic submodular maximization problem with cardinality constraint. For
a very large set of arms, the submodular maximization problem with cardinality constraint
can be solved in nearly linear time using a distributed greedy algorithm (Mirzasoleiman
et al., 2016). Our candidate set selection strategy allows us to dynamically set the number
of arms in the candidate set, following the design principles (Berry et al., 1997): (i) when the
number of trials is large, the algorithm is allowed to sacrifice short term gain by eschewing
arms with larger reward, if necessary, while exploring for arms with even larger reward
that will expect to yield a long-term benefit, (ii) when the number of trials is small, the
algorithm is allowed to eschew new arm exploration in favor of selecting an arm that has a
large immediate reward. We also elaborate on the case of setting the value of k in ‘anytime’
bandit settings.

The remainder of this paper is organized as follows: after a brief overview of the algo-
rithms for countably many armed bandit problems and query recommendations in Section 2,
we describe our framework and elaborate on the candidate set selection algorithm in Sec-
tion 3. In Section 4, we report the results of our experimental study on real world sequential
query recommendation for online literature discovery settings and compare against strong
baselines like zooming algorithm (Kleinberg et al., 2019). Section 5 concludes the paper.

2. Related Work

We present studies related to our problem in different areas.

Multi-Armed Bandits: We limit our discussion to Countably Many Armed Bandit
(CMAB) algorithms. For standard MAB algorithms, we recommend the readers to refer to

1. At the start of the session, the initial query will be the currently playing arm and as user interacts
with the system the currently playing arm will be the recommended query, if the user accepts the
recommendation, a newly issued query, otherwise.
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Cesa-Bianchi and Lugosi (2006); Lattimore and Szepesvári (2020). As opposed to standard
MAB settings, in CMAB settings, bandit algorithms have to choose from an extremely large
number of arms, often much larger than the possible number of experimental trials (T ). The
sheer volume of possible arms makes it impossible to try each of the arms even once. In
stochastic bandit problems with countably many arms, the learner is restricted to ignore
many arms without even trying them once, and dedicate the valuable exploration scheme
only to a certain number of arms. That is, in addition to the exploration-exploitation
trade-off, which is typical to sequential learning algorithms, we need also to deal with the
arm discovery-exploitation trade-off within the exploration phase. That is, while exploring,
the algorithm has to decide whether it should try a new arm or revisit an already played
arm to get a better estimate of the expected reward. Recently, many algorithms have
been proposed in the CMAB settings. These algorithms can be broadly classified into: (i)
failure-based approaches and (ii) pre-selection based approaches.

In failure-based approaches, there is no hard limit on the number of arms to explore.
Such algorithms try different arms until the number of trials is exhausted or reach a pre-
defined failure rate for the arms. Hence, the exploration phase lasts until the algorithms
hit the end of time horizon. In Berry et al. (1997), the authors proposed k-failure, where
an arm is played until it incurs k failures, and m − run, where 1-failure is used until m
arms are played or m success is obtained, algorithms for Bernoulli arms. Asymptotically,
failure-based algorithms yield lower cumulative regret; but for finite T < ∞, they tend to
perform poorly. Additionally, failure-based algorithms require prior knowledge of T . Sim-
ilarly, Herschkorn et al. (1996) proposed a non-recalling, bounded memory, failure-based
algorithm for Bernoulli arms. Kalvit and Zeevi (2020) proposed an algorithm in a setting
where the arms are partitioned into different types, and the goal is to find the arm from
the superior type. Their algorithm can be considered as failure-based, as it terminates only
when the superior type is identified with large confidence. The failure-based approaches are
better suited for pure-exploration settings.

In the pre-selection based approach, only a specific number of arms are explored. This
number can be either fixed in advance (before the start of the experiment) or adapted
as the trial progresses. Such approaches randomly choose k arms from the pool of arms
and use standard MAB algorithms on this subset of k arms downstream. Indicatively, the
pre-selection based algorithm in Wang et al. (2008) deals with selecting k randomly chosen
arms for exploration and exploitation. The exact value of k in Wang et al. (2008) is defined
as a function of the current trial count. They also adopt the ‘goodness of arm’ assumption
which states that: the probability of the mean reward of a newly explored arm differing
from the optimal arm is close to zero. Zhu and Nowak (2020) proposed an algorithm in
the CMAB settings with multiple best arms. They also used k arms selected uniformly
at random from the arms pool. In Bayati et al. (2020), authors proposed a subsampling
(uniformly at random without replacement) based greedy algorithm in CMAB settings. The
arm rewards of Lipschitz bandits Magureanu et al. (2014) are assumed to be smooth, but
arms are sampled sequentially till every arm is tried at least a fixed number of times. The
zooming algorithm proposed by Kleinberg et al. (2019) refines the region for sampling the
arms based on the arms similarity. In recent years, there is a surge of literature dealing with
bandit algorithms in countably many, and, the closely related, infinite arm settings. The
reader is advised to refer to Kalvit and Zeevi (2020); Zhu and Nowak (2020); Bayati et al.
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(2020); Kleinberg et al. (2019); Lattimore and Szepesvári (2020) and references therein for
a detailed coverage of different algorithms.

In all the above discussed work, candidate arm selection is not carried out in a struc-
tured fashion and does not make use of the arms context effectively. To the best of our
knowledge, our proposed method is the first non-random candidate arm selection strategy
that makes use of the context information, which is evaluated in the context of sequential
query recommendation systems.

Query Recommendations: Query recommendation based on historical query logs is ex-
tensively studied in the Information Retrieval (IR) and Database communities (Baeza-Yates
et al., 2004; He et al., 2009; Dimitriadou et al., 2014; He et al., 2009; Li et al., 2019; Dehghani
et al., 2017; Rosset et al., 2020). Most of the earlier work on query recommendation made
use of simple IR techniques like query similarity and query support (Baeza-Yates et al.,
2004). Dimitriadou et al. (2014) proposed a query recommendation algorithm for interac-
tive data exploration applications. The proposed algorithm works by building on-the-fly
decision tree classifiers from the user feedback obtained before the exploration starts. Other
prominent approaches include building offline probabilistic models using historical session
data. In He et al. (2009), supervised N-gram based Markov model is trained on historical
session data to predict the sequence of next queries. The Click Feedback-Aware Network
algorithm proposed in Li et al. (2019), models the sequential queries using deep neural
networks. Given a query, the proposed method predicts a ranked list of queries for recom-
mendations. The model is trained on positive and negative query instances, constructed
from the historical logs. Similar to Li et al. (2019), Dehghani et al. (2017) proposed a
sequence-to-sequence Recurrent Neural Network model with query-aware attention mech-
anism. Jiang and Wang (2018) also used sequence-to-sequence recurrent neural networks
with attention mechanisms to recommend next query. The main difference between the
above two approaches is: Jiang and Wang (2018) used a ‘query reformulation inferencer’
to obtain homomorphic embedding of the queries. As in the case of CMAB, recent years
evidenced a surge in the query recommendation literature attributed mainly to the success
of sequence-to-sequence deep learning models. The reader is advised to refer to Wu et al.
(2018); Li et al. (2019); Jiang and Wang (2018); Dehghani et al. (2017) and references
therein for a detailed coverage of different query recommendation algorithms.

All the above work considers query recommendation from a pure supervised / weakly
supervised learning setting. The user feedback is not dealt with in an online fashion.
Instead, it is used to create supervised training examples. In our limited knowledge, our
work is the first attempt to formulate query recommendation as a pure online learning task
using the MAB framework.

3. Countably Many Armed Contextual Bandits for Query
Recommendations

3.1. Problem Fundamentals

Many information filtering tasks, e.g., information discovery in the Web (Krause and
Guestrin, 2011) or exploratory data analysis (Marcel and Negre, 2011), involve interac-
tive data exploration through user issued queries, often chosen from the recommendation
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provided by a query recommendation engine. In such environments, conceptually, a (user)
session starts with a user issuing a task or topic specific initial query to the data system.
Then, the system responds with a ranked list of relevant results and a query recommenda-
tion to be potentially executed at the next step of the process. Depending on the usefulness
(or utility) of the recommended query, a user may wish to either execute it or ignore it. For
meaningful exploration, the recommended queries are anticipated to be related to the topics
corresponding to the currently executing query and, thus, expected to be semantically sim-
ilar to the current one. Normally, the recommended queries are taken or derived from the
historical query logs containing all queries executed in the past (Baeza-Yates et al., 2004).
Hence, the potential queries for recommendation are considered as countably many. We
envisage this problem as an optimal arm selection in stochastic multi-armed bandit settings
with countably many arms (Kalvit and Zeevi, 2020) where queries correspond to arms.

Let A be the set of countably many arms and ai ∈ A be the currently played arm. Our
goal is to select an arm from the set A′ = A\{ai}, which results in the maximum cumulative
reward. The reward in our setting is the same as the reward in a typical recommendation
problem using MAB. That is, rewards are in the form of clicks for the correctly recommended
queries. If the cardinality of A′ is significantly less than the time horizon, one could use
standard stochastic multi-armed bandit algorithms like Upper Confidence Bound (UCB)
(Auer et al., 2002) or ε-greedy (Lattimore and Szepesvári, 2020). However, as pointed out
earlier, in query recommendation settings, the number of arms is countably many and any
standard multi-armed bandit algorithm has to choose from an extremely large number of
arms. The sheer volume of possible arms makes it impossible to try each of the arms (even
once), and consequently the algorithm is enforced to ignore many arms and dedicate the
valuable query exploration only to a certain number of arms.

Standard CMAB algorithms randomly select a fixed number of arms, called candidate
set, from the pool of arms, and adopt standard MAB algorithms over this reduced arms set
(Wang et al., 2008; Kalvit and Zeevi, 2020; Zhu and Nowak, 2020; Bayati et al., 2020). The
random selection might result in the optimal arms to be ignored in the selection process,
thus, hindering the performance of the recommendation engine. In our method, we make
use of the shared context information between queries to select the candidate set. We
assume that the queries are represented as d-dimensional real-valued vectors encoding the
semantic content of the queries (Le and Mikolov, 2014; Mikolov et al., 2013). These vectors
can be regarded as the contexts associated with the arms. Without ambiguity, we use the
same notation ai to represent the context vector of arm ai. Conventional CMAB algorithms
do not make use of context information when generating the candidate set.

We base our reasoning on using the context associated with an arm by analyzing a real
query log files of an online literature discovery service. We plot the sequences of queries
executed in five random user-sessions in Figure 1. Specifically, we plot the 2-dimensional
query context vectors (we used PCA to reduce the original dimension d = 128) for five
random user-sessions in five different colours (further details about the queries and sessions
is given in Section 4 and the supplementary file). From the plot, one can observe that the
queries issued within each session are contextually similar with respect to standard simi-
larity measures like cos, and form relatively small loose clusters. Based on this observation
on query similarity, we propose to make use of the shared context information between
the currently executing query and queries in A′ for candidate selection. The crux of our



Max-Utility Based Arm Selection Strategy

approach is the assumption that arms with similar context, with respect to a given arm,
have similar utility. We formalize this assumption using the following definition of utility
adopted from the information-theoretic interpretation of utility function in multi-agent sys-
tems. Specifically, one can conceive utility in terms of the preference probabilities for being
at different states as given in (Ortega and Braun, 2010).

Definition 1 Goodness of Arm for Selection (Ortega and Braun, 2010, Definition 1)
Given the currently playing arm ai, let g

(
{aj}, {ai}

)
= p(aj |ai) be the conditional probability

of the arm aj to be included in the candidate set by a selection strategy. Then, there exists
a real-valued utility function util which is: (i) sub-additive2, i.e., util

(
g
(
{aj , ak}, {ai}

))
≤

util
(
g
(
{aj}, {ai}

))
+util

(
g
(
{ak}, {ai}

))
; and (ii) consistent, i.e., g

(
{aj}, {ai}

)
> g
(
{ak}, {ai}

)
⇔

util
(
g
(
{aj}, {ai}

))
> util

(
g
(
{ak}, {ai}

))
.

The conditional probability, p(aj |ai) can be considered as the normalized preference
score for the arm aj to be played next conditioned on the event that ai is the currently
playing arm. The utility function util defined above assigns a scalar value to each possible
arm such that arms with higher utility correspond to arms that are more preferred. However,
the challenge in our setting is that the preference scores p(aj |ai) are not known a priori.

3.2. Arm Preference Probability

Typical multi-armed bandit algorithms work by adaptive hypothesis testing. From an
abstract point, such algorithms randomly pick two arms (assuming only two types of arms:
optimal and non-optimal) and run on-the-fly hypothesis testing for a predefined duration to
estimate statistical properties of the arms. As noted earlier, contextually similar arms are
preferred and, thus, query similarity is correlated to its utility. Hence, instead of randomly
selecting the candidate set, we argue that the pair of arms is chosen using a joint probability
distribution defined over the similarity of the arms.

Given two arms ai, aj and a similarity function evaluation oracle sj,i = sim(aj , ai), let
Si≥(ε) = {aj : sim(aj , ai) ≥ ε} and Si<(ε) = {aj : sim(aj , ai) < ε} be the partition of
the arms for a given similarity threshold value ε > 0. Based on this similarity indices, a
distribution is induced on the elements of Si≥(ε) (Si<(ε)) as:

sj,i(ε) = p(aj |aj ∈ Si≥(ε)) =
sj,i∑

k sk,iJak ∈ Si≥(ε)K

s̄j,i(ε) = p(aj |aj ∈ Si<(ε)) =
sj,i∑

k sk,iJak ∈ Si<(ε)K
,

where J·K is the indicator function. Extending over the whole population of arms, we define

π?,i(ε) = p(Si≥(ε)) =

∑
j sj,iJaj ∈ Si≥(ε)K∑

j sj,i
and π̄?,i(ε) = 1− π?,i(ε).

Given the currently playing arm ai, we posit that the candidate set of arms for adap-
tive hypothesis testing is sampled according to the following joint distribution; note, with
(sj,i, sk,i) ≥ εi, we denote the pairwise comparison: sj,i ≥ ε ∧ sk,i ≥ ε.

2. Theorem:3 in Ortega and Braun (2010) holds for both additive and sub-additive utilities
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p(aj , ak|ai, ε) =p(aj , ak|(sj,i, sk,i) ≥ ε ∨ (sj,i, sk,i) < ε)

=
π2?,i(ε)sj,i(ε)sk,i(ε) + π̄2?,i(ε)s̄j,i(ε)s̄k,i(ε)

π2?,i(ε) + π̄2?,i(ε)
.

(1)

Derivation: By assumption, the candidate set of arms (aj , ak) for adaptive hypothesis
testing are selected among those that satisfy (am, an) ∈ Si≥(ε)×Si≥(ε) or (am, an) ∈ Si<(ε)×
Si<(ε). Therefore, the probability of selecting the pair (aj , ak) is

p(aj , ak|ai, ε) = p(aj , ak|Si≥(ε)
2 ∪ Si<(ε)

2
) =

p(aj , ak, S
i
≥(ε)

2 ∪ Si<(ε)
2
)

p(Si≥(ε)
2 ∪ Si<(ε)

2
)

=
p(aj , ak, S

i
≥(ε)

2
) + p(aj , ak, S

i
<(ε)

2
)

p(Si≥(ε)
2
) + p(Si<(ε)

2
)

=
p(Si≥(ε)

2
)p(aj , ak|Si≥(ε)

2
) + p(Si<(ε)

2
)p(aj , ak|Si<(ε)

2
)

p(Si≥(ε)
2
) + p(Si<(ε)

2
)

=
π?,i(ε)

2sj,i(ε)sk,i(ε) + (1− π?,i(ε))2s̄j,i(ε)s̄k,i(ε)
π?,i(ε)2 + (1− π?,i(ε))2

,

where the second line follows from the fact that Si≥(ε) and Si<(ε) are mutually exclusive
events, whereas the last line follows from the independence of arms.

The rationale behind the above sampling scheme is that, given the currently playing
arm ai, we independently draw two arms aj and ak and accept/reject them only if pairs are
similar/dissimilar to ai with confidence ε. To understand the concept, a detailed worked-
example is given in the supplementary file.

An Illustrated Example

Example 1 Assume, we have four arms with contexts a0, a1, a2, a3. Let us say, user started
the information gathering session by playing the arm a0. The learning algorithm has to
choose one of the arm from the remaining three arms (1,2,3) for recommendation. Assume
that the similarity values are sim(a1, a0) = 0.4, sim(2, a0) = 0.55, sima3,a0 = 0.6. Let us take
ε = 0.5, now estimating the different quantities in the equation, we get
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π?,0(0.5) =
0.55 + 0.6

0.4 + 0.55 + 0.6
= 0.742

π2?,0 = 0.550

π̄?,0 = 0.258, π̄2?,0 = 0.067

s1,0(0.5) =
0.4

0.55 + 0.6
= 0.348

s̄1,0(0.5) =
0.4

0.4
= 1

s2,0(0.5) =
0.55

0.55 + 0.6
= 0.478

s̄2,0(0.5) =
0.55

0.4
= 1.375

s3,0(0.5) =
0.6

0.55 + 0.6
= 0.522

s̄3,0(0.5) =
0.6

0.4
= 1.5

(2)

Now, estimating the joint probability for sampling the pairs, we get

p(a1, a2|a0, 0.5) =
0.550× 0.348× 0.478 + 0.067× 1× 1.375

0.550 + 0.067
= 0.297

p(a1, a3|a0, 0.5) =
0.550× 0.348× 0.522 + 0.067× 1× 1.5

0.550 + 0.067
= 0.324

p(a2, a3|a0, 0.5) =
0.550× 0.478× 0.522 + 0.067× 1.375× 1.5

0.550 + 0.067
= 0.445

(3)

Now, let us try the same with ε = 0.6

π?,0(0.6) =
0.6

0.4 + 0.55 + 0.6
= 0.387

π2 = 0.150

π̄?,0 = 0.613, π̄2 = 0.376

s1,0(0.6) =
0.4

0.6
= 0.667

s̄1,0(0.6) =
0.4

0.4 + 0.55
= 0.421

s2,0(0.6) =
0.55

0.6
= 0.917

s̄2,0(0.6) =
0.55

0.4 + 0.55
= 0.579

s3,0(0.6) =
0.6

0.6
= 1

s̄3,0(0.6) =
0.6

0.4 + 0.55
= 0.632

(4)
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Now, as before, let us estimate the joint probability, we get

p(a1, a2|a0, 0.6) =
0.150× 0.667× 0.917 + 0.376× 0.421× 0.579

0.150 + 0.376
= 0.349

p(a1, a3|a0, 0.6) =
0.150× 0.667× 1 + 0.376× 0.421× 0.632

0.150 + 0.376
= 0.380

p(a2, a3|a0, 0.6) =
0.150× 0.917× 1 + 0.376× 0.579× 0.632

0.150 + 0.376
= 0.523

(5)

Estimating the joint probability for every pair of arms is time consuming and compu-
tationally inefficient. In Lemma 2, we show that arms similar to the currently playing arm
are selected with the probability in (6). This will help us to select a candidate set based on
marginal probabilities only.

Lemma 2 Given the set of arms A′ and the currently playing arm ai, candidate arms are
independently drawn with probability

P (aj |ai, ε) =
π2?,i(ε)sj,i(ε) + π̄2?,isj,i(ε)

π2?,i(ε) + π̄2?,i(ε)
. (6)

Proof From our assumption, arm pairs {(aj , ak)} from A′ are drawn ∼ P (aj , ak|ai). In
order to get the marginal probability, we sum over ak,

P (aj |ai) =
∑
k 6=j

P (aj , ak|ai)

=

π2?,i(ε)sj,i(ε)
∑
k

sk,i(ε) + π̄2?,i(ε)s̄j,i(ε)
∑
k

s̄k,i(ε)

π2?,i(ε) + π̄2?,i(ε)

=
π2?,i(ε)sj,i(ε) + π̄2?,i(ε)s̄j,i(ε)

π2?,i(ε) + π̄2?,i(ε)

A naive approach for generating candidate arms set will be to fix a probability threshold
and take all the arms with highest marginal probability according to (6), or randomly sample
k arms with the estimated marginal probability. However, such an approach is not effective
in practice, i.e., users do not prefer to issue the most similar queries in data exploration
tasks, as demonstrated in our experimental study in Section 4. Moreover, in the CMAB
settings, there can be a huge number of similar arms for a fixed threshold. So randomly
picking k number of arms as per the marginal probability might lead the optimal or near-
optimal arms to be ignored as discussed in our problem statement. The number of arms
for different threshold values of marginal probability is given in Table 2. To this end, we
propose to select a candidate arms set that maximizes the utility of the arms as given in
Definition 1. Furthermore, we elaborate on an easy-to-implement distributed framework
for finding a candidate set with varying numbers of candidate arms.
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3.3. Candidate Arm Selection Using Maximum Utility

To select arms based on utility, we need a function that realizes real valued utilities from
the probabilistic preference scores obtained using the similarity between shared contextual
information content. According to Theorem 3 (Ortega and Braun, 2010), the logarithm
function is the only function that can express such a relationship between the preference
probability scores and utility function. For completeness, we restate Theorem 3 by Ortega
and Braun (2010).

Theorem 3 ((Ortega and Braun, 2010, Theorem 1)) Given the arm set A with the
probability space defined as in (6), a function util is a utility function on the probability
space, if and only if for all ai, aj ∈ A, util

(
g
(
{aj}, {ai}

))
= c · log

(
g
(
{aj}, {ai}

))
, where

c > 0 is an arbitrary constant.

It can be easily verified that the log function satisfies all the properties given in the
Definition 1 with our preference probability space defined in (6). Given log as the utility
function, c = 1 and currently executing arm ai, a candidate set C of cardinality k realizes
the optimal utility if it solves3:

max
C⊆A′

|C|≤k

log
(
g
(
C, {ai}

))
(7)

Since log is a concave function, the objective function in (7) is a submodular maxi-
mization problem with cardinality matroid constraint. Though submodular maximization
is NP-hard in general, a simple greedy heuristic due to Nemhauser et al. (1978) guarantees
a solution with constant approximation factor equal to 1− 1

e . Our CMAB algorithm with
max-utility based candidate arm selection procedure is given in Algorithm 1. The input to
the algorithm is A′ and the currently running query (arm) ai. The algorithm starts with
an initial set of candidate arms with fixed cardinality. This set is constructed following the
greedy heuristic. At each trial, the algorithm dynamically updates the candidate set based
on the current trial count using Algorithm 2. At the initial stages of trials, we allow the
candidate set to grow as the algorithm is allowed to sacrifice short term gain by exploring
for arms with even larger reward that will expect to yield a long-term benefit. As the trial
progresses we keep the candidate set fixed as the algorithm is allowed to eschew new arm
exploration, by exploiting the unimodality of tαe−t. Finally, we run the standard stochastic
contextual MAB algorithm using the candidate set and currently executing arm.

3.4. Fast Submodular Function Evaluation

The standard greedy algorithms for submodular maximization guarantee a near-optimal
candidate selection, without room for further improvement using current computing envi-
ronments. However, greedy algorithms do not scale well when applied to massive data and,
thus, initialization of C will incur considerable computation time. The greedy algorithms
work well for centralized submodular maximization problems; but this requires O(nk) value
oracle calls to select k arms from n arms. The adaptive addition of new arms to the existing

3. For the set C, g(C, ai) is defined as the joint probability of the arms in C conditioned on ai
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Algorithm 1: Max-utility based Count-
ably Many-armed Contextual Bandits

Input : A′, ai
1 Initialize C by executing Algorithm 3 for

t = 1, . . . , T do
2 run Algorithm 2 to update C;
3 run standard stochastic contextual

bandit algorithm on arm set C using
ai as context;

4 end

Algorithm 2: Candidate Selection

Input : A′, C, t, α ≥ 1
1 kt = tαe−t ;
2 S = A′ \ C ;
3 while |C| < kt do
4 e? = argmaxe∈S log

(
g
(
C∪{e}, {ai}

))
;

5 C = C ∪ {e?};
6 S = S \ {e?};
7 end

Output: C

Algorithm 3: Distributed Submodular Maximization

Input : A′, k,m, ai
1 Partition A′ into m sets A1,A2, · · · Am (arbitrarily/at random);
2 Run standard (lazy) greedy algorithm on each Ai to obtain solution with cardinality k

that maximizes log
(
g
(
Ai, {ai}

))
to get set Pi ;

3 Find Pmax = argmaxPi|1...m log
(
g
(
Pi, {ai}

))
;

4 Merge the sets into B =
m⋃
i=1
Pi;

5 Run lazy greedy algorithm on B to obtain solution that maximizes util to get PB;
Output: argmaxe∈{Pmax,PB} log

(
g
(
e, {ai}

))
C (Algorithm 2) can be achieved in linear time, as the number of arms to be added will be
relatively very small. For large data, submodular maximization with cardinality constraint
can be solved in nearly linear time using a distributed greedy algorithm (Mirzasoleiman
et al., 2016). We use a faster version of the submodular maximization algorithm (Mirza-
soleiman et al., 2016), which can be parallelized. The proposed algorithm adopted to our
setting is then given in Algorithm 3. In line 2 & line 3 of the Algorithm 3, as mentioned
earlier, g is the joint probability of all the arms in the input set conditioned on the currently
playing arm. Due to the use of a greedy algorithm, we do not explicitly calculate it, but
incrementally construct the set.

3.5. Choosing k and Anytime Algorithm

If the total number of trials T is known beforehand, one can choose a value of k that
minimizes the regret associated with the underlying bandit algorithm. For instance, in the
UCB-∞ algorithm in Wang et al. (2008), for a distribution specific parameter β, one can

choose k to be of the order of T
β
2 or T

β
β+2 depending on the range of β4. When the number

of trials T is not known in advance, one can adaptively choose k depending on the current
trial number. A MAB algorithm is anytime, if the regret bounds on the expected regret
holds for all values of T (up to constant factors). We can make our algorithm anytime by

4. Better approximation for k can be achieved by adopting the Lambert W function.



Max-Utility Based Arm Selection Strategy

employing anytime bandit algorithm like UCB-∞ in line 3 of Algorithm 1. For example, in

case of using UCB-∞, we can use kt−1 < t
β
2 or kt−1 < t

β
β+1 (depending on the value of β)

as shown in line 1 of Algorithm 2.

4. Experimental Evaluation & Comparative Assessment

We discuss the dataset, baselines, and provide in-depth analysis to verify the performance of
the proposed arm selection scheme. Our source code is available at: https://anonymous.

4open.science/r/0e5ad6b7-ac02-4577-9212-c9d505d3dbdb/.

4.1. Dataset & Context Vector

Our experiments are conducted on recent large scale query logs from SemanticScholar an
online literature discovery service. The application works by accepting a user query and
returning a list of the most relevant research articles to the query. The logs contained
around 4.5 million queries grouped into 547740 user sessions. For our experimental study,
as a pre-processing step, we removed user sessions with less than 4 queries and more than
50 queries. We also removed sessions containing non-English queries. The statistics of the
final data used in the experiment are given in Table 3.

Details Of Queries: The log file contains the user issued search queries, in the form
of free text, to a popular online literature discover service. For each user session, the log
file contains the unique session id, timestamp and the query text. The query text covers
diverse topics like ’knowledge graph embeddings’, ’cryptocurrencies’, ’COVID 19’ etc. It
also contains non-science topics like politics, behavioural studies etc.

Below, we give three examples of the queries issued during the literature discovery
service, with session ids anonymized. In Table 1, we list queries issued in three different
sessions. Though the queries can be broadly classified under very specific topics, it covers
diverse aspects within the topic. For example, the queries in the first session are related
to detecting coding errors, and within the session the user explores different aspects of the
topic by exploring implementation details, details about specific tools and details about
specific errors.

For the query context vector, we used a transformer-based deep neural network (Vaswani
et al., 2017) to extract the contexts from the queries. We train a bidirectional BERT model
(Devlin et al., 2019) on queries to get a word level vector embeddings. We feed these
embeddings to a sentence embedding algorithm (Reimers and Gurevych, 2019) to get the
final context vector representation for each query in the log. We set the dimension of the
context vectors d = 128.

4.2. Models Under Comparison

We compare our max-utility selection strategy against a variant of the zooming algorithm
(Kleinberg et al., 2019) and the random selection strategy that is used in standard CMAB
algorithms (Wang et al., 2008; Kalvit and Zeevi, 2020; Zhu and Nowak, 2020; Bayati et al.,
2020). In random selection, we randomly select k arms and pass to the downstream MAB
algorithm whereas in max-utility we follow the Algorithm 1. In case of random and max-
utility schemes, we experimented with four different contextual bandit algorithms (LinUCB,

https://anonymous.4open.science/r/0e5ad6b7-ac02-4577-9212-c9d505d3dbdb/
https://anonymous.4open.science/r/0e5ad6b7-ac02-4577-9212-c9d505d3dbdb/
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Table 1: Example Queries

Session ID Timestamp Query Text

XXXX495 2020-X-X X:04:03 protocol state fuzzing of tls implementations
XXXX495 2020-X-X X:08:45 aflnet a greybox fuzzer for network protocols
XXXX495 2020-X-X X:33:04 protocol learning fuzzing
XXXX495 2020-X-X X:42:33 improving grey box fuzzing by modeling program behavior
XXXX495 2020-X-X X:03:22 poster fuzzing iot firmware via multi stage message genera-

tion
XXXX495 2020-X-X X:05:34 fuzzguard filtering out unreachable inputs in directed grey

box fuzzing through deep learning
XXXX495 2020-X-X X:13:17 a functional method for assessing protocol implementation

security
XXXX495 2020-X-X X:19:17 not all bytes are equal neural byte sieve for fuzzing
XXXX229 2020-X-X X:17:21 modeling relational data with graph convolutional networks
XXXX229 2020-X-X X:19:00 representing text for joint embedding of text and knowledge

bases
XXXX229 2020-X-X X:19:25 convolutional 2d knowledge graph embeddings
XXXX229 2020-X-X X:21:42 deeppath a reinforcement learning method for knowledge

graph reasoning
XXXX078 2020-X-X X:47:55 bitcoin transfer system
XXXX078 2020-X-X X:49:38 cryptocurrency transfer system
XXXX078 2020-X-X X:49:55 cryptocurrency transaction system
XXXX078 2020-X-X X:06:49 cryptocurrency transaction analysis from a network perspec-

tive
XXXX078 2020-X-X X:20:19 cryptocurrency trackability

Table 2: # arms for different p(aj |ai)
p(aj |ai, 0.5) COUNT

0.25 1,116,801
0.40 949,365
0.50 523,750
0.60 161,529

Table 3: Dataset Statistics

Description COUNT

# of queries (original) 4,687,947
# queries (pre-processed) 1,120,461
# user sessions (") 159,237
# avg queries/session (") 7

LinThompSamp, Random and Similar) as downstream MAB algorithms and for the zooming
variant, we used LinUCB as the downstream MAB algorithm.

Linear UCB (LinUCB) was proposed in the context of news recommendation (Li et al.,
2010) where the algorithm sequentially selects news articles based on contextual informa-
tion about the users and articles, while simultaneously adapting to the user-click feedback.
LinUCB models the reward as a linear function of the context vector.

Linear Thomson Sampling(LinThompSamp)was proposed as an extension to the
Thomson sampling scheme to the stochastic contextual bandit settings (Agrawal and Goyal,
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Figure 1: Similarity of the queries in five user
sessions in five different colors.
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Figure 2: Per-round regret for the different al-
gorithms.

2013). The rewards are assumed to be a linear function of the context vectors. The algo-
rithm itself is based on Bayesian ideas and assumes that the reward likelihood and mean
parameter follow the Gaussian distribution.

Most Similar strategy recommends one query from the top-five queries with highest condi-
tional marginal probability with respect to the currently executing query from the candidate
set. In Figure 1, we plot the context vectors associated with queries issued in five different
user sessions in five different colors. Each data point represents a query. The queries in each
session are contextually similar and form relatively loose clusters. Looking at the figure,
one might expect that recommending the most similar query might be a useful strategy.
We used this baseline strategy to demonstrate that the naive strategy of picking the queries
with high marginal probability or similarity with respect to the currently executing query
underperform compared to other algorithms.

Random strategy randomly selects a query for recommendation from the candidate set.

Zooming LinUCB is based on the zooming algorithm proposed by Kleinberg et al. (2019).
It combines the upper confidence bound technique with an adaptive refinement step that
selects a candidate set region. For each currently executing query, we select candidate arms
that is equal or higher than the similarity threshold and run LinUCB on this arm set.

4.3. Results & Analysis

We used the cumulative regret to compare the performance of the algorithms. Formally, we
compare the quantity

R(T ) = T −
T∑
t=1

r(at),

where r(at) is the reward obtained from the arm played at the tth round. In the experiments,
we used the first query in each user session as the initial query and A′ is given as the input
to the candidate set selection algorithm. We used cosine as the similarity function between
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Figure 3: Per-round regret for different k.
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Figure 4: Per-round regret for different ε.

arms. If the recommended query is the one of the next queries executed in the corresponding
user session, the algorithm is rewarded with r(a) = 1, otherwise, r(a) = 0. The per-round
regret of different MAB algorithms against the random and max-utility selection strategies
is shown in Figure 2. At round t, the per-round regret is defined as R(t)

t . As it can be
seen from the plot, random selection strategy results in optimal or near-optimal arms to
be ignored whereas max-utility based candidate selection always includes optimal or near-
optimal arms in the candidate set. Though the zooming algorithm with LinUCB performed
as well as LinThompSamp with max-utility, it resulted in higher regret compared to LinUCB
with max-utility. Our results are also inline with the regret guarantees proved for LinUCB
and LinThompSamp. In the case of LinUCB, the per-round regret is of the order of d√

T

whereas in the case of LinThompSamp it is of the order of d2√
T

. Thus LinUCB resulted

in lower regret compared to LinThompSamp with max-utility. Even with superior regret
guarantees of the LinUCB algorithm, the zooming algorithm failed to achieve the regret of
LinUCB with max-utility. Looking at the plot in Figure 1, one might be tempted to use
simple strategies like recommending similar queries (our Similar strategy), but from the
performance comparison in Figure 2 it is very evident that even with the proper candidate
selection strategy, it performs very badly in the longer runs.

Another interesting observation is that with the max-utility arm selection strategy, even
the trivial random recommendation strategy performs better than random recommendation
with random arm selection strategy. Moreover, random recommendation with max-utility
arm selection strategy results in lower regret than recommending similar queries from a
randomly picked candidate set.

Hyperparameter Analysis. We further investigated the effect of the size of the can-
didate set and the similarity threshold (ε) on the algorithm performance. For this set of
experiments, we used LinUCB as the downstream MAB algorithm. Our results are shown
in Figure 3 & Figure 4. In Figure 3, we varied the value of k from 10 to 500 and compared
the performance as a function of k. Here, we used ε = 0.5. Keeping the cardinality of
the candidate set to small or high does not give any performance advantage. Though the
average number of queries per session in our dataset is ∼7, setting k = 10 performed very
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poorly. So it is very important to choose the correct size for the candidate set. Precisely, k
should be chosen large enough such that the candidate set contains all possible, relevant and
diverse queries with respect to the currently running query. We also analyzed the perfor-
mance of the max-utility candidate selection strategy for different values of ε. Probability
preference score for an arm is determined by the value of ε, thus, it is an hyperparameter
of the selection strategy. The performance of the LinUCB algorithm for different values
of ε is plotted in Figure 4. Here, we used k = 250. For small and very large values of ε,
the per-round regret is slightly higher than mid-range (0.4 - 0.6) values of ε. By keeping ε
to small and large values, we make the preference probability score between the currently
running query and the remaining queries to be high and low respectively. As a result, we
notice the same trend as in Figure 3. When ε is small many irrelevant queries will have high
preference probability scores. Similarly, when ε is large, many diverse but relevant queries
will have low preference probability scores.

5. Conclusions

We modelled the query recommendation problem in closed loop interactive learning settings
like online information gathering using a MAB framework with countably many arms. The
standard way to solve MAB problems with countably many arms is to select a small set of
candidate arms and then apply standard MAB algorithms on this candidate set downstream.
We showed that such a selection strategy often results in higher cumulative regret and
proposed a selection strategy based on the maximum utility of the arms. Our experimental
results using a real online literature gathering service log file demonstrated that the proposed
arm selection strategy significantly improves the cumulative regret compared to zooming
algorithm and the commonly used random selection strategy for a variety of contextual
multi-armed bandit algorithms.
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Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents. In
ICML, pages 1188–1196. PMLR, 2014.

Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach
to personalized news article recommendation. In WWW, pages 661–670, 2010.

Ruirui Li, Liangda Li, Xian Wu, Yunhong Zhou, and Wei Wang. Click feedback-aware
query recommendation using adversarial examples. In WWW, pages 2978–2984, 2019.

Stefan Magureanu, Richard Combes, and Alexandre Proutiere. Lipschitz bandits: Regret
lower bound and optimal algorithms. In COLT, pages 975–999. PMLR, 2014.



Max-Utility Based Arm Selection Strategy

Patrick Marcel and Elsa Negre. A survey of query recommendation techniques for data
warehouse exploration. In EDA, pages 119–134, 2011.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In NIPS, pages 3111–
3119, 2013.

Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and Andreas Krause. Distributed
submodular maximization. JMLR, (1):8330–8373, 2016.

George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approxi-
mations for maximizing submodular set functions. Mathematical Programming, (1), 1978.

Pedro A. Ortega and Daniel A. Braun. A conversion between utility and information. In
Proceedings of the 3rd Conference on Artificial General Intelligence (2010), pages 47–52.
Atlantis Press, 2010.

Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence Embeddings using Siamese
BERT-Networks. In EMNLP-IJCNLP, pages 3973–3983, 2019.

Corbin Rosset, Chenyan Xiong, Xia Song, Daniel Campos, Nick Craswell, Saurabh Tiwary,
and Paul Bennett. Leading conversational search by suggesting useful questions. In
Proceedings of The Web Conference 2020, pages 1160–1170, 2020.

Fotis Savva, Christos Anagnostopoulos, Peter Triantafillou, and Kostas Kolomvatsos. Large-
scale data exploration using explanatory regression functions. Transactions on Knowledge
Discovery from Data, 14(6), 2020. ISSN 1556-4681.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez,  Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS,
pages 6000–6010, 2017.
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