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1. Proof of Propositions

In the appendix we present the proofs of propositions presented in the paper.

1.1. Proof of Proposition 1

The adjacency matrix A consists of entries such that A(i, j) ≠ 0, if there exists a directed
edge starting at node i and terminating at node j, while A(i, j) = 0 indicates that there is
no directed edge between i and j. The adjacency matrix can be used to factorize the joint
probability distribution function as (Koller and Friedman, 2009)

p(t,X∣KA) = p(t∣X,KA)p(X∣KA) (1)

= p(t∣Xpa(L+1)) ∏

i∈V,i≠L+1

p(Xi∣Xpa(i)). (2)

In the above, we use p(X∣KA) = ∏i∈V,i≠L+1 p(Xi∣Xpa(i)) (Koller and Friedman, 2009), where
Xpa(i) specifies the parents of the i-th vertex, as specified by the directed edge coming into
the node i. In particular, Xpa(L+1) specifies the parent nodes of the target. We see from
above that the adjacency matrix factorizes the joint distribution, and hence characterizes
it.

1.2. Proof of Proposition 2

First we prove the sufficiency, i.e., if the i-th term in the factorization of p(t,X∣KA) given
by p(Xi∣Xpa(i)) (as given in (2)) is not equal to p(Xi), for any i. If A(j, i) ≠ 0 for any j
where i ≠ j, it implies that Xpa(i) = {Xj}, and hence, the i-th term in the factorization is
given by p(Xi∣{Xj}).

In order to prove the necessary condition, we use the contradiction argument, where we
first assume that if p(Xi∣Xpa(i)) ≠ p(Xi) for any i, then A = 0. However, if p(Xi∣Xpa(i)) ≠

∗ * indicates equal contribution

© 2021 A.K. Sharma*, R. Kukreja*, R. Prasad & S. Rao.



Sharma* Kukreja* Prasad Rao

p(Xi), it implies that Xpa(i) ≠ {}, which further implies that node i has incoming edges,
i.e., A(j, i) ≠ 0 for some j. Hence, by contradiction, we prove the necessary condition.

1.3. Proof of Proposition 3

Using the chain rule (Cover, 1999) for entropy,

H(X) =
L

∑

i=1

H(Xi∣Xpa(i)), (3)

where the k-th entry in the factorization of p(t,X∣KA), given by p(Xk∣Xpa(k)) is not equal
to p(Xk). Hence, we rewrite the above expression as

H(X) ≤H(Xk∣Xpa(k)) +

L

∑

i=1,i≠k

H(Xi) <

L

∑

i=1

H(Xi), (4)

since we know that H(Xk∣Xpa(k)) <H(Xk). This completes the proof.

2. Additional Experimental Results

In this section, we present additional results that help us better understand the proposed
DAGSurv framework.

2.1. KKBox Dataset

We performed experiments with the high-dimensional KKBox dataset. This dataset is from
KKBOX, which is Asia’s music streaming service that consists of Asia-Pop music library
with more than 30 million tracks. This dataset was the part of a data challenge at WSDM
2018, where the key questions involved design of algorithms to predict users’ preference
regarding a new song or a new artist, so that appropriate recommendations were made to
new users. This dataset has also been employed for survival analysis (Kvamme et al., 2019).

KKbox

Algorithms Ctd (95% CI)

DAGSurv 0.8635 ± 0.0002
DeepHit 0.9003 ± 0.0002
DeepSurv 0.8124 ± 0.0002
CoxTime 0.8229 ± 0.0002

Table 1: Ctd for KKbox

We see that Deephit performs marginally better as compared to DAGSurv. In particular,
Deephit performs very well if there is abundant data to learn from, especially because
it does not consider any model assumptions. KKBox dataset consists of more than 105

observations, and is well-suited for DeepHit. However, we see that performance of DAGSurv



DAGSurv

Figure 1: Box-plot: Ctd for KKbox

Figure 2: DAG: METABRIC (NOTEARS)

is is better compared to other baselines. Hence, we were able to confirm that DAGSurv

performs well even for high-dimensional datasets. From the box-plot in Fig. 2, we see that
DAGSurv, like all other methods, has little variability around its mean value.

2.2. Experiment with DAG-NOTEARS

Another popular tool for DAG structure learning is DAG-NOTEARS (Zheng et al., 2018). We
experimented with this tool for obtaining an alternate graph for the Metabric dataset. The
results are as given in Table 2. We see that the DAG structure obtained using DAG-GNN
performs marginally better compared to the one using DAG-NOTEARS. This helps us infer
that the graph obtained using DAG-GNN suits better in the context of survival analysis.
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METABRIC

Algorithms Ctd (95% CI)

DAGSurv (DAG-GNN) 0.7323 ± 0.0056
DAGSurv (NOTEARS) 0.7233 ± 0.0034

DeepHit 0.7309 ± 0.0047
DeepSurv 0.6575 ± 0.0021
CoxTime 0.6679 ± 0.0020

Table 2: Ctd for METABRIC
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