Proceedings of Machine Learning Research 157, 2021 ACML 2021

Learning 3-opt heuristics for traveling salesman problem via
deep reinforcement learning

Jingyan Sui SULJINGYANQICT.AC.CN
Shizhe Ding DINGSHIZHE15@MAILS.UCAS.AC.CN
Ruizhi Liu LIURUIZHI19S@ICT.AC.CN
Liming Xu XULIMING 19@MAILS.UCAS.AC.CN

Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy
of Sciences, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China

Dongbo Bu DBU@ICT.AC.CN
Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy
of Sciences, Beijing 100190, China

University of Chinese Academy of Sciences, Beijing 100049, China

Zhongke Big Data Academy, Zhengzhou 450046, Henan, China

Editors: Vineeth N Balasubramanian and Ivor Tsang

Abstract

Traveling salesman problem (TSP) is a classical combinatorial optimization problem.
As it represents a large number of important practical problems, it has received extensive
studies and a great variety of algorithms have been proposed to solve it, including exact
and heuristic algorithms. The success of heuristic algorithms relies heavily on the design
of powerful heuristic rules, and most of the existing heuristic rules were manually designed
by experienced experts to model their insights and observations on TSP instances and so-
lutions. Recent studies have shown an alternative promising design strategy that directly
learns heuristic rules from TSP instances without any manual interference. Here, we re-
port an iterative improvement approach (called Neural-3-OPT) that solves TSP through
automatically learning effective 3-opt heuristics via deep reinforcement learning. In the
proposed approach, we adopt a pointer network to select 3 links from the current tour,
and a feature-wise linear modulation network to select an appropriate way to reconnect the
segments after removing the selected 3 links. We demonstrate that our approach achieves
state-of-the-art performance on both real TSP instances and randomly-generated instances
than, to the best of our knowledge, the existing neural network-based approaches.
Keywords: Deep reinforcement learning, Traveling salesman problem, 3-opt, FiLM-Net

1. Introduction

Traveling salesman problem (TSP) is a classical combinatorial optimization problem
that can be stated as follows: given a collection of cities with known location coordinates,
the goal is to find the shortest tour that visits every city exactly once and finally returns
to the starting city. Using graph theory language, a TSP instance can be described as an
indirected graph, where a node represents a city, and for each pair of cities, we connect
them using a link with weight to represent the distance between them. TSP is the natural

© 2021 J. Sui, S. Ding, R. Liu, L. Xu & D. Bu.

Sur DinG Liv Xu Bu

and essential formulation of a large number of important practical problems, say, shortest
airport routes, optimum power delivery and microchip design. Thus, TSP has received
extensive studies and a great variety of algorithms have been proposed to solve TSP.

The algorithms to solve TSP can be divided into two categories, namely, exact algo-
rithms and heuristic algorithms. The exact algorithms, e.g., brute-force enumeration(Gutin
and Punnen, 2006), dynamic programming(Held and Karp, 1962) and integer linear pro-
gramming (Dantzig et al., 1954), could find the exact shortest tour among the given cities;
however, these algorithms are inevitably time-consuming due to the NP-hardness essence of
TSP. Unlike the exact algorithms finding the optimal solutions, heuristic algorithms aims to
find sufficient good solution. For instance, 2-opt algorithm starts from an arbitrary tour and
iteratively improves it through selecting 2 links from current tour, removing them, and re-
connecting the remaining segments. Compared with exact algorithms, heuristic algorithms
are usually much more fast and efficient with only a little sacrifice of solution quality.

The success of heuristic algorithms relies heavily on the design of powerful heuristic
rules. Most of the existing heuristic rules were manually designed by experienced experts to
model their insights and observations on TSP instances and solutions. This manual-design
strategy has its advantage in accurately capturing the intuition and insights of algorithm
designer but sometimes suffers from the relatively low generality — an algorithm designer
could analyse only a limited number of instances to obtain insights and intuitions; thus,
the designed heuristics working well on one type of TSP instances might perform poorly on
another type of TSP instances.

Recent studies have shown an alternative promising design strategy that directly learns
heuristic rules from TSP instances without any manual interference. For example, d O Costa
et al. (2020) proposed an approach (referred to as L-2-OPT hereafter) to learn 2-opt heuris-
tic directly from abundant randomly-generated instances using deep reinforcement learning.
Compared with the manual-design strategy, this ‘heuristic learning’ design strategy gener-
ates heuristic rules through analysing much more instances, and thus achieving the potential
advantage to significantly increase the generality of the designed heuristics.

In the study, we focus on the design of effective 3-opt heuristic, which selects 3 links,
rather than 2 links as performed by 2-opt heuristics, to remove and reconnect for improve-
ment. Previous studies have shown that the power of a 3-opt operation is roughly equivalent
to that of three 2-opt operations (Helsgaun, 2000), implying that 3-opt heuristic is more
efficient and effective in finding the optimal solution than 2-opt heuristic. It should be
pointed out that 3-opt heuristic is not a trivial extension of 2-opt heuristic: for any two
links selected by a 2-opt heuristic, we have only one way to reconnect them. In contrast,
after selecting 3 links from a tentative tour, we have a total of 7 ways to reconnect them
and a 3-opt heuristic should determine the best reconnecting type, which makes the design
of effective 3-opt heuristics extremely challenging.

Here, we report an approach (called Neural-3-OPT) that solves TSP through automat-
ically learning effective 3-opt heuristics. Our approach consists of the following three main
components: i) a graph convolution network and a bidirectional long short-term memory
network to encode nodes of the input TSP instance. To reduce computation cost, the
encoder uses a k-nearest neighbor module to limit the encoding range within k& nearest
neighbors of each node only. i) a pointer network to select 3 links from the current tour,
and iii) a feature-wise linear modulation network to select an appropriate type to reconnect

LEARNING 3-OPT HEURISTICS FOR TSP via DRL

the segments after removing the selected 3 links. Using both real and randomly-generated
TSP instances, we demonstrate that our approach achieves state-of-the-art performance
than, to the best of our knowledge, the existing neural network-based approaches.

2. Related work

The algorithms to solve TSP include exact algorithms and heuristic algorithms. The
exact algorithms guarantee to obtain the optimal solutions for the given instances by using
integer linear programming (Dantzig et al., 1954), branch-and-bound (Little et al., 1963)
or other techniques (Laporte, 1992). Due to the NP-hardness of TSP, the exact algorithms
are time-consuming and thus cannot solve large instances within reasonable time. In the
study, we use Concorde (Applegate et al., 2006), an exact algorithm, to calculate optimal
solutions to benchmark the heuristic algorithms.

Unlike the exact algorithms attempting to generate the optimal solutions, the heuristic
algorithms aim to generate sufficiently good solutions within reasonable time. For a given
TSP instance, some heuristic algorithms construct tour from the very scratch. For example,
the nearest-neighbor algorithm starts from an arbitrarily-selected node and keeps moving to
the nearest neighbor until visiting all nodes, thus acquiring a reasonably short tour (Flood,
1956; Robacker, 1955). Alternatively, some heuristic algorithms adopt the “step-by-step
improvement” strategy, i.e., starting from an initial complete tour that covers all nodes, and
iteratively shorten the tour through replacing some links with others (Lin, 1965; Johnson and
McGeoch, 2002; Helsgaun, 2017). The representative algorithms using this strategy include
k-opt (Lin, 1965), local search(Johnson and McGeoch, 2002), Lin-Kernighan-Helsgaun-3
(LKH-3) (Helsgaun, 2017) and Google OR-Tools.

The success of heuristic algorithms relies heavily on the design of appropriate heuristic
rule, i.e., how to select adding nodes in the “construction from the very scratch” strategy,
and how to select removing and adding links in the “step-by-step improvement” strategy.
Previous studies usually use the hand-crafted heuristics designed by experienced experts to
describe their insights into TSP instances and optimal solutions. Recent studies have shown
a promising design strategy that directly learns heuristics from data using deep learning
(DL) or deep reinforcement learning (DRL) (Vinyals et al., 2015; Bello et al., 2016; Dai
et al., 2017; Kool et al., 2018; Joshi et al., 2019; Applegate et al., 2006; Lu et al., 2019; Wu
et al., 2019; Zheng et al., 2020; d O Costa et al., 2020), which are summarized as follows.

e For the algorithms to solve TSP using the “construction from very scratch” strategy,
the heuristics to select appropriate nodes can be learned from TSP instances using
supervised learning(Vinyals et al., 2015; Joshi et al., 2019) or reinforcement learning
(RL) (Bello et al., 2016; Dai et al., 2017; Kool et al., 2018; Deudon et al., 2018).
For example, pointer network(Vinyals et al., 2015) uses an encoder-decoder model
together with attention mechanism to predict the selection probability distribution
over nodes. The pointer network can be trained using both supervised learning and
reinforcement learning techniques (Bello et al., 2016). By using stacked attention
layers, this framework achieves significant performance improvement especially when
enhanced with rollout baseline(Kool et al., 2018). In accordance with the graph
essence of TSP instances, graph neural network was also used to encode the features
of nodes’ neighbors(Dai et al., 2017; Joshi et al., 2019).

Sur DinG Liv Xu Bu

”

e For the algorithms using the “step-by-step improvement” strategy, heuristic rules
to select removing/adding links can be learned using DRL (Lu et al., 2019; Wu et al.,
2019; Zheng et al., 2020; d O Costa et al., 2020). In these algorithms, the selected
links are represented as adjacent matrix (Wu et al., 2019) or node pairs (d O Costa
et al., 2020). This DRL can also be combined with the classical hand-crafted heuristic
rule like LKH (Zheng et al., 2020).

Previous studies has shown that the learned 2-opt heuristic rules have considerable perfor-
mance and generality to larger TSP instances. The possibility of extending to k-opt has also
been claimed; however, a systematic implementation of this idea has not been proposed. In
this study, we present an investigation of learning 3-opt heuristics using neural networks.

3. Background

The k-opt heuristics are widely used in the “step-by-step improvement” strategy to
solve TSP, which remove k links from the current tour and reconnect the thus-acquired
segments to yield an improved tour. As shown in Figure 1, when applying 2-opt on a tour,
we have only one reconnecting type. In contrast, when applying 3-opt, we have a total of 7
reconnecting types. It should be pointed out that the 7 reconnecting types can be clustered
into 3 categories according to permutation equivalence.

The key points of a k-opt heuristic are selecting appropriate k links from the current
tour and selecting an appropriate reconnecting type after removing the selected links. A
straightforward idea is selecting the links and reconnecting type that lead to the greatest
decrease of tour length. However, this greedy strategy often generates solutions with sig-
nificantly poor performance. In the study, we present a model to learn a strategy to select
links and determine the appropriate reconnecting type for the selected links.

2-OPT 3-OPT
8 Category 1
Original Tour Original Tour ting Type 1 ling Type 2 ting Type 3
) Category 2 Category 3

Type 6 Type 7

S

Figure 1: Ilustration of 2-opt and 3-opt heuristics used in the “step-by-step improvement”
strategy to solve TSP. The links in blue represent the links selected to be removed
from the current tour. The removement of k links will always lead to k segments
(shown as edges in black). After adding new links (shown in red), we acquire a
new tour. For 2-opt move, we have only one reconnecting type. In contrast, for
the 3-opt move, we have a total of 7 reconnecting types, which can be clustered
into 3 categories according to permutation equivalence of them.

LEARNING 3-OPT HEURISTICS FOR TSP via DRL

4. Method

4.1. Overview of our approach

Improvement Loop

TSP Instance Initial Solution lmproved Solution Best Solution

Rl s

Step Selected links
to be removed
Link —> Perform 3-opt Move
Selector ‘E’ .
o
Y. (e} '
s{ep'_fl, _,| Solution | |o S || Stepis
Encoder (¢] .\O O/.
o
[} .
Reconnection
Solution Selector
Embedding Selected

reconnecting type

Figure 2: Overview of our Neural-3-OPT approach to TSP. Starting from a randomly-
generated initial tour of a given TSP instance, Neural-3-OPT keeps improving
it by applying 3-opt heuristic. At each improvement step, an encoder calculate
embedding for the current solution, which is then fed into two decoders, including
a link-selector and a reconnection-selector, to select 3 links to be removed and
the appropriate reconnecting type.

Figure 2 shows the basic idea of our Neural-3-OPT approach to TSP. For a given TSP
instance, Neural-3-OPT starts from an initial tour that is constructed randomly, and keeps
improving it by applying 3-opt heuristic. At each improvement step, Neural-3-OPT uses
an encoder to calculate embedding for the current solution. The embedding is then fed into
two decoders, including a link-selector to report 3 links to be removed from the current
solution, and a reconnection-selector to determine the appropriate reconnecting type.

In the following subsections, we first describe the Markov decision process (MDP) for-
mulation of the improvement strategy to solve TSP. Next, we provide details of the neural
network model used by Neural-3-OPT, including its architecture and training process to
optimize its parameters.

4.2. Markov decision process formulation of the improvement strategy

Here, we adopt the MDP formulation similar to that used in Wu et al. (2019) and
d O Costa et al. (2020) with a slight change of the action definition. The formulation are
described in details as follows.

State The state at the t-th improvement step, denoted as S; = (Sy, S}), is a tuple that
contains two tours, the current solution Sy, and the best solution so far Sj.

Action At the t-th improvement step, an action to change the current state S; is
represented as a tuple A; = (ao, a1, a2, T5.0pt), Where ag,a1,az € Sy denotes the selected

Sur DinG Liv Xu Bu

links to be removed from the current tour, and 73_,,; denotes the selected reconnecting
type to reconnect the segments after removing the selected 3 links.
Transaction The transaction T'(S;, A;) — Si11 yields a new state after applying the
action A; onto the current state S;, which describes a 3-opt move on the current tour.
Reward Reward is defined as Ry = L(S]) — min(L(S}), L(S¢+1)), i.e., the improvement
of the best tour so far at the ¢-th improvement step, where L(.) represents length of a tour.
Returns We define cumulative reward from time step ¢ to the pre-defined episode length
T with discount factor v € (0,1] as Gy = S p—; 7" ' Ry.

4.3. Neural network architecture used by Neural-3-OPT

Similar to d O Costa et al. (2020), our Neural-3-OPT approach also uses the gen-
eral encoder-decoder architecture together with actor-critic training process. It should be
pointed out the two main differences between our approach and L-2-OPT:

e Considering that there is only one reconnecting type in 2-opt heuristic, L-2-OPT
uses only one decoder in policy network to select links, without selecting reconnecting
type. In contrast, to handle the issue of seven reconnecting types in 3-opt heuristic, we
use two neural networks as two decoders, including a link selector and a reconnection
selector to select the links to be removed and the appropriate reconnecting type at
the same improvement step.

e In order to reduce the computation cost in the encoding stage, we use a sparse K-
nearest-neighbor graph (G) in encoder to limit the encoding range within k nearest
neighbors of each node only, rather than using the complete graph, which has proven
to provide more effective encoding and encourage convergence in training process.

The details of the neural network architecture are described as follows.

4.3.1. ENCODER

The encoder consists of two neural modules: a sparse graph convolution network (K-
GCN) and a bidirectional long short-term memory network (bi-LSTM), which takes a tour
as input and returns the embedding of each node and the entire tour. Given a tour with n
nodes {z;}n, a sparse G is generated to record K nearest neighbors for each node. Then

G is fed into N K-GCN layers and the graph node embedding hgl) is calculated as :

WY = h 4 ReLU(S ey (WORY +00)), (1)
FEN(9)

where hg is the initial d-dimensional node embedding calculated by a linear projection
from x; to d-dimensional space, ¢;; is the normalized edge weight of G'x defined as reciprocal
of edge length, and W® e R4 p() ¢ R? are the I-th K-GCN layer’s parameters.

Similar to d O Costa et al. (2020), a bi-LSTM module is used to encode features of tour
sequence with the resulting node embedding from K-GCN. We represent the sequential node
embedding o; and the sequential tour embedding h,, as

0; = tanh (Wrh;” + by) + (Wyhi~ + by)) (2)
hy = h? +hE 3)

LEARNING 3-OPT HEURISTICS FOR TSP via DRL

where h;?, h{~ € R? are the hidden vectors of bi-LSTM, and W Wy € Rxd, by, by € R4
are parameters.

As formulated before, state S; = (S, S}) consists of two tours: current tour Sy and the
best tour so far S;, therefore we use two independent encoder to calculate their embedding.
Similarly to h,,, we can represent h/, € R? as the the sequential tour embedding of tour .

4.3.2. PoLicy DECODERS

Policy decoders mg 4 consist of two neural modules: a link selector my and a reconnection
selector 74, shown in Figure 3. Taken tour embedding h, and hj, from encoders as input,
the link selector outputs three links sequentially, and the reconnection selector outputs an
appropriate reconnecting type.

We use chain rule to factorize the probability of a 3-opt move as

7[‘97(25(14 | 5') = T (a<3 | 5’) * T (Tg_opt | CL<3,S) (4)

3
= Hpe (ai | a<i, S) - po (Ts-opt | a<3, S), (5)
=1

where a; is the i-th selected link, a~; represents the collection of previously selected
links and T3.,p¢ is the selected reconnecting type.

In link selector 7y, a pointing mechanism, similar to d O Costa et al. (2020), is used to
output links (ag, a1, a2) sequentially based on three predicted distributions over links given
the node embedding {o;},, and state representations i.e. query vectors (qo, q1,g2), which are
calculated as

qo = (Wshn—i_bSHWS’h;‘i‘bsl) _i_max(hz(N)) (6)
¢; = tanh (Wyqi—1 + bg) + (Wo0i—1 + b)) . 7)

d d
where W, Wy € R2%9, Wy, W, € R%>? and by, by € R2,b4,b, € R? are parameters. The
pointing mechanism is parameterized as

po (a; | a<i, S) = softmax (C'tanh (u')), (8)

where

9)

i { vl tanh (Koj + Qq;) if j > a;—y
j

—00, otherwise ,

with K,Q € R and v € R? as learned attention parameters, and C is a super
parameter.

In reconnection selector 7y, we treat selecting reconnecting type as a classification prob-
lem, and we adpot three alternative types, which come form each category of 3-opt respec-
tively. We adopt Feature-wise Linear Modulation Network (FiLM-Net) (Perez et al., 2018;
Gupta et al., 2020) to modulate the current solution features with selected links features as
conditioning information to output the appropriate reconnecting type based on predicted
distributions over three alternative types. FiLM-Net is a strong conditioning method that

Sur DinG Liv Xu Bu

combines additive and multiplicative interactions into a conditional affine transformation,
which is more efficient than single addition or multiplication for integrating multiple sources
of information.

We adopt L FiLM-Net layers, and each layer learns two functions fél) and gg) (I €

{1,...,L}) based on neural network, which maps the sum embedding h(®) of three selected
links to FiLM parameters v, 300 € R4:
l C l C
70 = 10, pY =g (h), (10)

then ’y(l) and 8 are used to modulate input h,, as:

R+ — i v (hgg B 5(0) = 70 &Y 4 g0, (11)

m

where input of the first layer h,(g) refers to tour embedding h,,. Then the distribution

Do (T3_Opt | acs, 5’) on reconnecting types is generated by a softmax layer applying on the
result embedding h%) of FiLM-Net:

Dé (Tg_opt | acs, 5) = softmax (Wmh%) + bm> , (12)
where W,,, € R3*? and b,, € R? are parameters.

Policy Decoders 719, ¢

Link selector

s v v
—> O0—>0—>»O0
v v v
8 L | [. Selected links
° - to be removed
o Reconnection selector
o
o
Solution
Embedding
Selected

reconnecting type

Figure 3: Architecture of policy decoders. Policy decoders consist of a Pointer-Net as link
selector and a FiLM-Net as reconnection selector. With tour embedding from en-
coders as input, the link selector selects three links to be removed. With embed-
ding from encoders as input and three selected links as conditioning information,
the reconnection selector selects an appropriate reconnecting type.

4.3.3. VALUE DECODER

Similar to d O Costa et al. (2020), a value decoder takes graph representation from S
and tour representation from S and S’, then outputs a real value to estimate current state
value for Actor-Critic policy optimization, formulated as:

LEARNING 3-OPT HEURISTICS FOR TSP via DRL

Vip(S) = WReLU((Zh (Wl + by || W, h’+b)>+bz>+br, (13)

where W, W, € R2X% W, € R¥4 W, € R1%4, b, b, € R%,b, € RY, and b, € R.

4.4. Actor-Critic policy optimization

We resort to the similar policy gradient optimization with d O Costa et al. (2020),
except adding an extra entropy bonus corresponding to the reconnection selector.

We define objective function of policy network as the expected returns given a state S:
J(0,¢|5S) =Enr,, [G¢|S], and our objective is to maximize it.

We optimize J(0, ¢ | S) by gradient descent, using Actor-Critic:

B T-1
Z Z VQ¢IOgW9¢ (Ab | St) Ab] (14)

b=1 t=0

VJ(0,9) ~

ET
with A2 = G? — V,, (5?) as advantage. We add an entropy bonus
H(0,9) = 1ZB:ZH(7T9¢<' 157)) (15)
B :

with H (mg.4 (- | 7)) = —Ex,, [logms (- | S)].
We define objective of value network as:

ZB:TZI IG? = Vi (&i’)) ||§] (16)

=1 t=0

We use ADAM (Kingma et al., 2015) optimizer. The complete algorithm is shown in
Algorithm 1.

Algorithm 1 Training process of Neural-3-OPT
1: Input: number of epochs E; number of mini-batches Ng; batch size B; neighbor size K; step limit T; length of
episodes Te; learning rate \;
2: Initialize parameters 0, ¢ and ¢ of policy network mg 4 and critic network V;;

3: for epoch = 1,..., do

4: T+ T,

5 for batch = 1,..., Np do

6: t<0

7 Initialize random S§, Vb € {1,..., B}

8 while ¢t < T do

0 906 — % |# 20 D15 Vo logma (a<s | 2) 7 (Taopt | acs, S) AL + Bu Vo o H (mo,) |
10 gv — 57 [Bv TEL ST Tl - Vi (59)) 18]
11: 6,9,9 < ADAM (X, —gp,0, 9y)

12: end while

13: end for

14: end for

Sur DinG Liv Xu Bu

Table 1: Quality of the tours reported by our approach and the existing approaches. Type:
SL: Supervised Learning, RL: Reinforcement Learning, S: Sampling, G: Greedy,
B: Beam Search, BS: B and Shortest Tour and T: 2-opt Local Search. Length:
length of the output tour. Gap: optimality gap. Time: the total time to solve all
10,000 instances in dataset reported in d O Costa et al. (2020) and ours.

Method Type TSP20 TSP50 TSP100
: Length Gap Time | Length Gap Time | Length ~ Gap Time
Concorde (Applegate et al., 2006) Solver 3.84 0.00% 2m 5.70 0.00% 13m 7.76 0.00% 59m
] OR-Tools S 3.85 0.37% 5.80 1.83% 7.99 2.90%
g Nearest Insertion G 4.33 12.91% 1s 6.78 19.03% 2s 9.46 21.82% 6s
z Random Insertion G 4.00 4.36% 0Os 6.13 7.65% 1s 8.52 9.69% 3s
T Farthest Insertion G 3.93 2.36% 1s 6.01 5.53% 2s 8.35 7.59% 7s
=z PreNet(Vinyals et al., 2015) SL 3.88 1.15% 7.66 34.48% -
§ GOCN (Joshi et al., 2019) SL 3.86 0.60% 6s 5.87 3.1% 558 8.41 8.38% 6m
Ei PtrNet (Bello et al., 2016) RL 3.89 1.42% 5.95 4.46% 8.30 6.90%
17; S2V (Dai et al., 2017) RL 3.89 1.42% 5.99 5.16% 8.31 7.03%
g GAT (Deudon et al., 2018) RL,T 3.85 0.42% 4m 5.85 2.77% 26m 8.17 5.21% 3h
© GAT Kool et al. (2018) RL 3.85 0.34% 0Os 5.80 1.76% 2s 8.12 4.53% 6s
= GOCN (Joshi et al., 2019) SL,B 3.84 0.10% 20s 5.71 0.26% 2m 7.92 211% 10m
§ GCN (Joshi et al., 2019) SL,BS 3.84 0.01% 12m 5.70 0.01% 18m 7.87 1.39% 40m
2 PtrNet (Bello et al., 2016) RL,S - 5.75 0.95% 8.00 3.03%
3 GAT (Deudon et al., 2018) RL,S 3.84 0.11% 5m 5.77 1.28% 17m 8.75 12.70% 56m
g GAT (Deudon et al., 2018) RL,S, T | 3.84 0.09% 6m 5.75 1.00% 32m 8.12 4.64% 5h
o GAT (1280) (Kool et al., 2018) RLS | 384 008% 5m | 573 052% 24m | 7.94 2.26% 1h
GAT-T (1000) (Wu et al., 2019) RL 3.84 0.03% 12m 5.75 0.83% 16m 8.01 3.24% 25m
" GAT-T (3000) (Wu et al., 2019) RL | 384 000% 39m | 572 034% 45m | 7.91 185% 1h
% GAT-T (5000) (Wu et al., 2019) RL 3.84 0.00% 1h 5.71 0.20% 1h 7.87 1.42% 2h
£ L-2-OPT (500) (d O Costa et al., 2020) RL 3.84 0.01% 8m 5.72 0.36% 1lm 7.91 1.84% 15m
& L-2-OPT (1000) (d O Costa et al., 2020) RL 3.84 0.00% 16m 5.71 0.21% 21m 7.86 1.26% 29m
t L-2-OPT (2000) (d O Costa et al., 2020) RL 3.84 0.00% 3lm | 5.70 0.12% 4lm 7.83 0.87% 59m
g Ours (500) RL 381 004% Sm | 571 024% 12m | 7.80 1.65% 20m
- Ours (1000) RL 3.84 0.01% 16m 5.70 0.12% 25m 7.85 1.06% 39m
Ours (2000) RL 3.84 0.00% 32m 5.70 0.08% 48m 7.82 0.74% 80m

5. Experiments and results
5.1. Experiment setting

We evaluated Neural-3-OPT and compared it with the existing approaches on four
benchmark datasets, including TSP20, TSP50, TSP100 and TSP200, which contain 10000
instances with 20, 50, 100 and 200 nodes respectively. The nodes in these datasets are
randomly drawn from the unit square [0,1]?. For the sake of comparison, we used the
identical datasets TSP20, TSP50 and TSP100 to those used by Kool et al. (2018) and
d O Costa et al. (2020). In addition, we also used hyperparameters identical to d O Costa
et al. (2020). Specifically, we set batch size B = 512, vector dimension d = 128, layer
number N, L = 3, loss weights 3, = 0.5, Sy = 0.005, and neighbor size K = 8 for Gx.

We run 200 epochs for TSP20 dataset, 300 epochs for TSP50 and TSP100 dataset, and
500 epochs for TSP200 dataset. The episode length are 77 = 8, Ti90 = 10, T150 = 20 for
TSP20, and T1 = 8, T100 = 10, T200 = 20 for TSP50, TSP100 and TSP200.

To make the comparison fair, we implement evaluation experiments by running our
approach and L-2-OPT in the same platform (CPU: Intel Xeon; GPU: RTX 3090).

LEARNING 3-OPT HEURISTICS FOR TSP via DRL

Table 2: Solving the real-world instances recorded in TSPlib using OR-Tools, L-2-OPT
and Neural-3-OPT. Here, Neural-3-OPT is trained using randomly-generated in-
stances.

Instance Opt. OR-Tools | L-2-OPT Ours
eilbl 426 439 427 436
berlin52 7,542 7,944 7,974 7,572

pr76 108,159 | 110,948 111,085 | 108,277
rd100 7,910 8,221 7,944 8,077
€il101 629 650 635 640
lin105 14,379 | 15,363 16,156 | 15,229
ch130 6,110 6,329 6,175 6,213
prld4 58,537 59,286 61,207 60,851
8225 126,643 | 127,763 127,731 | 129,381
280 2,579 2,742 2,808 2,808

Avg. Opt. Gap | 0.00% | 3.79% 156% | 2.93%

5.2. Solving randomly-generated TSP instances using the learned heuristics

For each TSP instance in the test datasets TSP20, TSP50 and TSP100, we run our
Neural-3-OPT approach, L-2-OPT and Concorde to yield tours and running times. To
evaluate the output tours, we calculate their lengths and compare with the optimal tour
reported by Concorde. The difference between the length of an output tour and that of the
optimal tour is denoted as “optimality gap”.

As shown in Table 1, our approach Neural-3-OPT finds the optimal tour for all the
10,000 instances in TSP20. For the instances in TSP50 and T'SP100, our approach achieves
optimal gap as low as of 0.08% and 0.74%, respectively. In contrast, the L-2-OPT approach
achieves large optimality gap (0.12% on TSP50, and 0.87% on TSP100), although it finds the
optimal tours for the instances in TSP20. These results clearly suggest that our approach
outperforms the existing heuristics and neural network based approaches.

On the TSP20 dataset, our approach uses roughly the same running time as [-2-OPT.
On the TSP50 and TSP100 datasets, our approach uses about 15% and 34% more time than
L-2-OPT. Although our approach is slower than L-2-OPT, the running time is acceptable.

5.3. Solving the real-world TSP instances using the learned heuristics

It is an interesting question that whether the learned heuristics from randomly-generated
TSP instances can be used to solve real-world instances. To answer this question, we
use the learned policy trained on TSP100 to solve the real-world instances recorded in
TSPlib(Reinelt, 1991).

As shown in Table 2, our approach achieves an average optimality gap of 2.93%, lower
than L-2-OPT (4.56%) and OR-Tools (3.79%). More specifically, on half of total 10 in-
stances, our approach outperforms L-2-OPT, and on 7 instances, our approach outperforms
OR-Tools. In the case of berlin52, OR-Tools and L-2-OPT report tours with length of 7944
and 7974, respectively. In contrast, our approach Neural-3-OPT reports a tour with length
as low as of 7572.

In summary, these results suggest that the heuristics learned from randomly-generated
instances could also facilitate solving the real-world instances.

Sur DinG Liv Xu Bu

Table 3: Running time of Neural-3-OPT with and without K-GCN. When K-GCN is turned
off, we use the original GCN instead.

K-GCN TSP20 | TSP50 | TSP100
ON (K =8) | 13m 18m 27Tm
OFF 13m 20m 37m

5.4. Comparing the learned 2-opt and 3-opt heuristics

We further perform a deep examination on the training process of L-2-OPT and Neural-
3-OPT approaches. As shown in Figure 4, these two approaches exhibit roughly the same
behaviours on TSP20. However, for TSP50 and TSP100 with larger instances, Neural-3-
OPT converges much faster than L-2-OPT. This result demonstrates that compared with
2-opt, 3-opt is superior in finding better solution.

Figure 4: Comparing the heuristics learned by Neural-3-OPT and L-2-OPT.

43 6.1 10.0
—— TSP20_L-2-OPT —— TSP50_L-2-OPT —— TSP100_L-2-OPT

TSP20_Ours TSP50_Ours TSP100_Ours
4.2 - 6.0 - 95 -

g1 £59 £ 90

ARG IR

56 7.5
0 25 50 75 100 125 150 175 200 4 50 100 150 200 250 300 0 50 100 150 200 250 300
Epochs Epochs

5.5. Ablation study of Neural-3-OPT

The main modules of our approach Neural-3-OPT include K-GCN for encoding and
FiLM for merging features. To examine the contributions of these modules, we perform
ablation study through turning off these modules and comparing with the full version of
Neural-3-OPT. When turning off FiLM and K-GCN, we use multiple-layer perception and
GCN instead, respectively.

As shown in Table 4, when using FiLM module, Neural-3-OPT achieves an average tour
length of 7.82 on TSP100, which is much shorter than that when FiLM is turned off (8.31
and 8.36). The optimality gap is significantly reduced when using FiLM module.

We also observed that when using K-GCN, the optimal gap of Neural-3-OPT is only
slightly worse than that when GCN is used (0.74% vs. 0.73%). However, the running time
is considerably reduced from 37m to 27m for TSP100 when using K-GCN (Table 3). In
Table 3, we run our policy on 2000 instances because of memory limitation.

As shown in Table 3, encoding each node with its K neighbors takes less time than
encoding with all neighbors in graph, no matter on TSP20, TSP50 and TSP100, which
illustrates that it can reduce calculations with using K-GCN.

We further examine the performance of Neural-3-OPT when using K-GCN with different
setting of k. As shown in Table 5, Neural-3-OPT becomes much faster when using smaller

LEARNING 3-OPT HEURISTICS FOR TSP via DRL

Table 4: Ablation study of Neural-3-OPT. When FiLM and K-GCN are turned off, we
instead use multiple-layer perception and GCN, respectively.

g TSP50 TSP100
FILM - K-GCN Length Gap | Length Gap
OFF OFF 570 0.14% | 831 7.05%
OFF ON 571 0.20% | 836 7.61%

ON OFF 570 0.08% | 7.82 0.73%

ON ON 570 0.08% | 7.82 0.74%

Table 5: Performance of Neural-3-OPT when using K-GCN with different K.

K TSP50 TSP100

Length Gap Time | Length Gap Time
4 570 0.14% 47m 837 T7T% Tim
8 570 0.08% 48m | 7.82 0.74% 80m
16| 570 0.15% 52m 7.87 1.13% 83m

K. In addition, when setting K = 4, the optimality gap is 0.14% and 7.77% for TSP50
and TSP100, respectively. The performance improves when setting K = 8 (optimality gap:
0.08% and 0.74% for TSP50 and TSP100, respectively) but drops when setting K = 16.

Together, these results demonstrate that the FiLM module can significantly increases
tour quality whereas the K-GCN module greatly reduces the running time of Neural-3-OPT
with only a slight sacrifice of its performance.

5.6. Comparing Neural-3-OPT with handcrafted strategies for selecting
reconnecting types

As shown in Figure 1, after removing 3 links, we have a total of 7 reconnecting types
to reconnect the thus-generated segments. Neural-3-OPT uses deep learning to select an
appropriate reconnecting type from them. Thus, it is interesting to compare with hand-
crafted strategies to select reconnecting type, including random selection, fixed selection of
the first reconnecting type, and greedy selection.

As shown in Table 6, Neural-3-OPT achieves an optimality gap of 0.74%, which is
much smaller than random selection (4.26%), fixed selection (2.04%), and greedy selection
(9.97%). In addition, when compressing the 7 reconnecting types into 3 categories according
to permutation equivalence, Neural-3-OPT improve further.

These results clearly demonstrates the power of neural network in selecting appropriate
reconnecting types for 3-opt heuristics.

5.7. Generalization ability analysis

Both Neural-3-OPT and L-2-OPT learn heuristics from TSP instances; thus, it is inter-
esting to investigate the generability of the learned heuristics, i.e., whether the heuristics
learned from small size TSP instances can be used to solve large instances.

As shown in Table 7, our method outperforms L-2-OPT on TSP200. As for solving
larger scale problems with model trained on smaller scale instances, our method significantly

Sur DinG Liv Xu Bu

Table 6: The performance of different strategies to select a reconnecting type.

Strategy to select a reconnecting type TSP50 TSP100
Length Gap Time | Length Gap Time
Random selection 5.72 0.33% 48m 8.04 4.26% 78m
Fixed selection of type 1 571 0.18% 49m 7.92 2.04% 79m
Greedy selection 587 299% 167Tm | 854 9.97% 296m
Neural-3-OPT (select from 7 types) 5.70 0.08% 50m 7.83 0.90% 8lm
Neural-3-OPT (select from 3 categories) | 5.70 0.08% 48m 7.82 0.74% 80m

Figure 5: Convergence speed of Neural-3-OPT and L-2-OPT on TSP200.

Neural-3-OPT and L-2-OPT were trained on TSP200.

Tour Length

—— TSP200_L-2-OPT
TSP200_Ours

300
Epochs

Here, both

outperforms L-2-OPT when using TSP50-model on TSP200. When using TSP100-model
on TSP200, our method is worse than L-2-OPT. For TSP200, as shown in Figure 5, our

method converges faster and achieves a better result than L-2-OPT.

6. Conclusion

In the study, we present an approach to solve TSP using 3-opt heuristics learned from
TSP instances. Our approach learns how to select the removing links and how to connect the
thus-generated segments as well. Experimental results suggest that the learned heuristics
outperform the hand-crafted heuristics. The basic idea shown in the study can be extended
to design 4-opt, 5-opt and more complicated k-opt moves without significant changes of the

framework.

Table 7: Solving instances in TSP200 using models trained on TSP50,/100/200.

Using model trained on TSP200

Using model trained on TSP100

Using model trained on TSP50

Method Length Gap Length Gap Length Gap
L-2-OPT | 11.63 8.76 % 11.00 2.80 % 11.53 7.82%
Ours 11.45 7.04 % 11.06 3.40 % 11.45 7.02%

LEARNING 3-OPT HEURISTICS FOR TSP via DRL

Acknowledgments

We would like to thank the National Key Research and Development Program of China
(2020YFA0907000), and the National Natural Science Foundation of China (31671369,
31770775, 62072435) for providing financial supports for this study and publication charges.

References

David Applegate, Ribert Bixby, Vasek Chvatal, and William Cook. Concorde TSP solver,
2006.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural com-
binatorial optimization with reinforcement learning. arXiv preprint arXiv:1611.09940,
2016.

Paulo R d O Costa, Jason Rhuggenaath, Yingqgian Zhang, and Alp Akcay. Learning 2-
opt Heuristics for the Traveling Salesman Problem via Deep Reinforcement Learning. In
Asian Conference on Machine Learning, pages 465-480. PMLR, 2020.

Hanjun Dai, Elias B Khalil, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combina-
torial optimization algorithms over graphs. arXiv preprint arXiv:1704.01665, 2017.

George Dantzig, Ray Fulkerson, and Selmer Johnson. Solution of a large-scale traveling-
salesman problem. Journal of the operations research society of America, 2(4):393-410,
1954.

Michel Deudon, Pierre Cournut, Alexandre Lacoste, Yossiri Adulyasak, and Louis-Martin
Rousseau. Learning heuristics for the tsp by policy gradient. In International confer-
ence on the integration of constraint programming, artificial intelligence, and operations
research, pages 170-181. Springer, 2018.

Merrill M Flood. The traveling-salesman problem. Operations research, 4(1):61-75, 1956.

Prateek Gupta, Maxime Gasse, Elias B Khalil, M Pawan Kumar, Andrea Lodi, and Yoshua
Bengio. Hybrid models for learning to branch. arXiv preprint arXiv:2006.15212, 2020.

Gregory Gutin and Abraham P Punnen. The traveling salesman problem and its variations,
volume 12. Springer Science & Business Media, 2006.

Michael Held and Richard M Karp. A dynamic programming approach to sequencing
problems. Journal of the Society for Industrial and Applied mathematics, 10(1):196-210,
1962.

Keld Helsgaun. An effective implementation of the Lin—Kernighan traveling salesman heuris-
tic. European Journal of Operational Research, 126(1):106—-130, 2000.

Keld Helsgaun. An extension of the Lin-Kernighan-Helsgaun TSP solver for constrained
traveling salesman and vehicle routing problems. 2017.

Sur DinG Liv Xu Bu

DS Johnson and LA McGeoch. The traveling salesman problem and Its Variations, Com-
binatorial Optimization, vol. 12, chap. experimental analysis of heuristics for the STSP,
2002.

Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional
network technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227,
2019.

DP Kingma, L.J Ba, et al. Adam: A Method for Stochastic Optimization. 2015.

Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems!
arXiv preprint arXiw:1803.08475, 2018.

Gilbert Laporte. The traveling salesman problem: An overview of exact and approximate
algorithms. European Journal of Operational Research, 59(2):231-247, 1992.

Shen Lin. Computer solutions of the traveling salesman problem. Bell System Technical
Journal, 44(10):2245-2269, 1965.

John DC Little, Katta G Murty, Dura W Sweeney, and Caroline Karel. An algorithm for
the traveling salesman problem. Operations research, 11(6):972-989, 1963.

Hao Lu, Xingwen Zhang, and Shuang Yang. A learning-based iterative method for solving
vehicle routing problems. In International Conference on Learning Representations, 2019.

Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron C. Courville.
FiLM: Visual Reasoning with a General Conditioning Layer. In AAAI 2018.

Gerhard Reinelt. TSPLIB—A traveling salesman problem library. ORSA journal on com-
puting, 3(4):376-384, 1991.

John T Robacker. Some experiments on the traveling-salesman problem. Technical report,
RAND CORP SANTA MONICA CA, 1955.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. arXiv preprint
arXi:1506.03134, 2015.

Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning Improvement
Heuristics for Solving Routing Problems. arXiv e-prints, pages arXiv—-1912, 2019.

Jiongzhi Zheng, Kun He, Jianrong Zhou, Yan Jin, and Chu-min Li. Combining reinforce-
ment learning with lin-kernighan-helsgaun algorithm for the traveling salesman problem.
arXw preprint arXiw:2012.04461, 2020.

	Introduction
	Related work
	Background
	Method
	Overview of our approach
	Markov decision process formulation of the improvement strategy
	Neural network architecture used by Neural-3-OPT
	Encoder
	Policy Decoders
	Value decoder

	Actor-Critic policy optimization

	Experiments and results
	Experiment setting
	Solving randomly-generated TSP instances using the learned heuristics
	Solving the real-world TSP instances using the learned heuristics
	Comparing the learned 2-opt and 3-opt heuristics
	Ablation study of Neural-3-OPT
	Comparing Neural-3-OPT with handcrafted strategies for selecting reconnecting types
	Generalization ability analysis

	Conclusion

