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Abstract

The connection between Bayesian neural networks and Gaussian processes gained a lot of
attention in the last few years. Hidden units are proven to follow a Gaussian process limit
when the layer width tends to infinity. Recent work has suggested that finite Bayesian neu-
ral networks may outperform their infinite counterparts because they adapt their internal
representations flexibly. To establish solid ground for future research on finite-width neural
networks, our goal is to study the prior induced on hidden units. Our main result is an ac-
curate description of hidden units tails which shows that unit priors become heavier-tailed
going deeper, thanks to the introduced notion of generalized Weibull-tail. This finding
sheds light on the behavior of hidden units of finite Bayesian neural networks.
Keywords: generalized Weibull-tail, sub-Weibull, Bayesian neural networks

1. Introduction

Theoretical insights and the development of a comprehensive theory are often the driv-
ing force underlying the development of new and improved methods. Neural networks are
powerful models, but they still lack comprehensive theoretical support. The Bayesian ap-
proach applied to neural networks is considered one of the best-suited frameworks to obtain
theoretical explanations and improve the models.

Infinite-width Bayesian neural networks are well-studied. Induced priors in Bayesian
neural networks with Gaussian weights are Gaussian processes when the number of hid-
den units per layer tends to infinity (Neal, 1996; Matthews et al., 2018; Lee et al., 2018;
Garriga-Alonso et al., 2019). Stable distributions also lead to stable processes, which are
generalizations of Gaussian ones (Favaro et al., 2020).

Since in some cases finite models perform better (Lee et al., 2018; Garriga-Alonso et al.,
2019; Lee et al., 2020), there is a need for theoretical justifications. One of the ways
is to study induced priors. By analyzing the priors over representations, Aitchison (2020)
suggests that finite Bayesian neural networks may generalize better than their infinite coun-
terparts because of their ability to learn representations. Another idea is to find the induced
priors in the functional space (Wilson and Izmailov, 2020).

By bounding moments of distributions induced on units, Vladimirova et al. (2019) proved
that hidden units have heavier-tailed upper bounds and follow sub-Weibull distributions

© 2021 M. Vladimirova, J. Arbel & S. Girard.



VLADIMIROVA ARBEL GIRARD

with an increasing tail parameter depending on the layer depth. Those bounds are optimal
as they are achieved for shallow Bayesian neural networks; however, they are not accurate.

Recently, Zavatone-Veth and Pehlevan (2021); Noci et al. (2021) showed that there
exists a precise description of induced unit priors through Meijer G-functions. These are full
descriptions of priors at the unit level. The results are in accordance with the heavy-tailed
nature and asymptotic expansions in a wide regime, but it has restrictions. First, the setting
is simplified: linear or ReLU activation functions and Gaussian priors on weights. While
Wilson and Izmailov (2020) argue that vague Gaussian priors in the parameter space induce
useful function-space priors, in some cases, heavier-tailed priors can perform better (Fortuin
et al., 2021). Second, it is hard to work with Meijer G-functions due to their complexity.
Our goal is to obtain more general characterizations for hidden units.

We introduce a new concept for describing distributional properties of tails by extend-
ing the existing Weibull-tail characterization. A random variable X is called Weibull-
tail (Gardes et al., 2011) with tail parameter 5 > 0, which is denoted by X ~ WTg_ (3), if
its cumulative distribution function F'x satisfies

Fx(z)=1-Fx(z) = e U@ for x> 0, (1)

where [(z) is a slowly-varying function, i.e. it is a positive function such that for all ¢ > 0
limg 00 % = 1. We note that the Weibull-tail property only considers the right tail
of distributions. Here we adapt the Weibull-tail characterization to the whole space R
by taking into consideration the left tail as well. Additionally, we introduce generalized
Weibull-tail random variables with tail parameter 5 > 0 which have Weibull-tail upper and
lower bounds for both tails (Definition 1). Such a characterization is easily interpretable
and stable under basic operations, even for dependent random variables. The family of
generalized Weibull-tail distributions covers a large variety of fundamental distributions
such as Gaussian (8 = 2), gamma (8 = 1), Weibull (5 > 0), to name a few, and turns out
to be a key tool to describe distributional tails.

Contributions. We make the following contributions:

e We introduce a new notion of tail characteristics called generalized Weibull-tail, a
version of Weibull-tail characteristics on Ry extended to variables on R (Section 2).
The additional advantage of this notion is stability under basic operations such as
multiplication by a constant and summation.

e With the results on generalized Weibull-tail characterization and dependence, we
obtain an accurate characterization of the heavy-tailed nature of hidden units in
Bayesian neural networks (Section 3). We establish these results under possibly heavy-
tailed priors and relatively mild assumptions on the non-linearity. The conclusions
of Vladimirova et al. (2019); Zavatone-Veth and Pehlevan (2021); Noci et al. (2021)
which consider only Gaussian priors, mostly follow as corollaries of the obtained char-
acterization. The comparison of different characterizations and related works are
deferred to Sections 4 and 5.

2. Generalized Weibull-tail random variables

The study of the distributional tail behavior arises in many applied probability models of
different areas, such as hydrology (Strupczewski et al., 2011), finance (Rachev, 2003) and
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insurance risk theory (McNeil et al., 2015). Since exact distributions are not available in
most cases, deriving asymptotic relationships for their tail probabilities becomes essential.
In this context, an important role is played by so-called Weibull-tail distributions satisfying
Equation (1) (Gardes et al., 2011; Gardes and Girard, 2016).

A majority of works focuses on right tails of distributions and develops a theory only
applicable to right tails, while it is essential to study both right and left tails of distributions.
We extend the notion of Weibull-tail on R} to R and introduce generalized Weibull-tail
random variables on R in the following definition. They are stable (under basic operations)
extensions of Weibull-tail random variables on R (Appendix B).

Definition 1 (Generalized Weibull-tail on R) A random variable X is generalized Weibull-
tail on R with tail parameter 5 > 0 if both its right and left tails are upper and lower bounded
by some Weibull-tail functions with tail parameter 3:

e~ (@) <Fx(z) < e*"’“nﬁlg(m)7 for x > 0 and x large enough,

e~ l=Ph ) <Fx(z) < e_|2’|ﬂllz(|zl), for x < 0 and —x large enough,
where 17, 15, I and l are slowly-varying functions. We note X ~ GWTg(f).

This family includes widely used distributions such as Gaussian (8 = 2), Laplace (8 = 1)
and generalized Gaussian distributions. These distributions are also symmetric (around 0),
so their left and right tails are equal. Thus, it naturally leads to obtain tail characteristics for
symmetric distributions by considering random variables whose absolute value is Weibull-
tail on Ry. See Appendix B for details. While Weibull-tail random variables are also
generalized Weibull-tail, the opposite is not always true. Consider slowly-varying functions
I1 =1 and I3 = 2. Then function I(-) = 1 + cos?(In(+)) satisfies [ <[ < I3 but is not slowly

—271(2) ig the survival function (it

varying. However, for any 8 > 2, function Fx(z) = e
is decreasing) of some random variable X and it satisfies e~?’l(@) < Fy () < o=@ h(@),
Therefore, X is GWT(/3) but not WT(3).

Next, we aim to obtain a tail characterization for the sum of generalized Weibull-tail
variables on R, where we allow random variables to be dependent. Further, we show that
under the following assumption of positive dependence, the sum has a tail parameter equal

to the minimum among the considered ones (Theorem 2.1).

Definition 2 (Positive dependence condition) Random variables X1,...,Xn satisfy
the positive dependence (PD) condition if the following inequalities hold for all z € R
and some constant C > 0:

P(X1>0,....Xny_1 >0 Xy >2)>C, P(X1<0,...,Xy_1 <0 Xy <2z)>C.

Remark 2.1 The choice of zeros and z in the PD condition is arbitrary: one can choose
any zi,...,2N instead such that z1 + - -+ + zy = z. The choice of the N-th variable within
X1,..., XN is also arbitrary. Besides, if random variables X1, ..., XN are independent with
non-zero right and left tails, then they satisfy the PD condition and the constant C is equal
to the minimum between P(X1 <0)...P(Xy_1 <0) and P(X; >0)...P(Xn_1 > 0).
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There is a great variety of dependent distributions that obey this dependence property
including pre-activations in Bayesian neural networks (see Lemma 3.1 for details). Note that
the positive orthant dependence condition (POD, see Nelsen, 2007) implies the PD condi-
tion.

Theorem 2.1 (Sum of GWTy variables) Let Xi,..., Xy € GWTgr with tail parame-
ters Bi,...,Bn. If X1,..., XN satisfy the PD condition of Definition 2, then, X1 + --- +
Xn € GWTR(ﬁ) with B = min{ﬁl, .. .,5]\[}.

All proofs are deferred in Appendix. The intuition of the PD condition is to prevent the
tail of a sum from becoming lighter due to a negative connection. The simplest example
of such negative dependence comes with counter-monotonicity where (X,Y") is such that
Y = —X. Another less trivial example is Y = XI(|X| < m)— XI(|X]| > m) for some m > 0:
the sum X +Y = 2XI(|X| < m) is a version of X truncated to the compact set [—m, m]. In
both cases, it is easy to see that the PD condition does not hold. We conclude this section
with a result on the product of independent generalized Weibull-tail random variables.

Theorem 2.2 (Product of GWTy variables) Let Xi,..., Xy € GWTg be indepen-
dent symmetric with tail parameters By, ..., Bn. Then, the product Xi ... Xy € GWTgr(S)
with B such that%z %—i—-‘ﬁ-ﬁ%\,.

Now the obtained results can be applied to Bayesian neural networks, showing that
hidden units are generalized Weibull-tail on R.

3. Bayesian neural networks induced priors

Neural networks are hierarchical models made of layers: an input, several hidden layers,
and an output. Each layer following the input layer consists of units which are linear
combinations of previous layer units transformed by a nonlinear function, often referred
to as the nonlinearity or activation function denoted by ¢. Given an input x € R0 the
£-th hidden layer consists of a vector whose size is called the width of the layer, denoted
by Hy. The coefficients of linear combinations are called weights, denoted by wg) for
i =1,....,Hp_1,5 = 1,..., H;. In Bayesian neural networks, weights are assigned some
prior distribution (Neal, 1996). The pre-activations and post-activations of layer ¢ are

respectively defined as

Hy
VA VA /— VA YA
g =3 WY R = (g 2)
=1

where hgo) are elements of input vector x, so hz(-o) are deterministic numerical object features.

The main ingredient for Theorem 2.1 is the positive dependence condition of Definition 2.
The product of hidden units and weights satisfies the positive dependence condition:

Lemma 3.1 Let X1,..., Xy be some possibly dependent random variables and W1, ..., Wy
be symmetric, mutually independent and independent from X, ..., Xn, then random vari-
ables XyWy, ..., XNWn satisfy the PD condition.
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Along with Theorem 2.1, the previous lemma implies that neural network hidden units
are generalized Weibull-tail with tail parameter depending on those of the weights.

Theorem 3.1 (Hidden units are GWT) Consider a Bayesian neural network as de-
scribed in Equation (2) with ReLU activation function. Let {-th layer weights be inde-
pendent symmetric generalized Weibull-tail on R with tail parameter ﬁg). Then, (-th
layer pre-activations are generalized Weibull-tail on R with tail parameter BY such that

1 _ 1 4 ., 1
I O

Note that the most popular case of weight prior, iid Gaussian (Neal, 1996), corresponds to
GWTR(2) weights. This leads to units of layer ¢ which are GWTg(3).

To illustrate this theorem, we have built neural networks of 4 hidden layers, with 4
hidden units on each layer. We used a fixed input x of size 10%, which can be thought of
as an image of dimension 100 x 100. This input was sampled once for all with standard
Gaussian entries. In order to obtain samples from the prior distribution of the neural
network units, we have sampled the weights from independent centered Gaussians from
which units were obtained by forward evaluation with the ReLLU non-linearity. This process
was iterated n = 10° times. Note that for a GWTg random variable, P(X > z) = O
so the tail parameter can be expressed as:

_ log(—logP(X >z)) logl(z)
N log = logz

B 3)
In Figure 1, we plot log(—logP(X > xz)) as a function of logz. We see that the obtained
tail parameters approximations are increasing for the increasing layer number and visually
correspond to the theoretical tail parameter

Figure 1: Solid lines: approximations —
of tail parameters ) based on Equa- 2501 jiz:lﬁ
tion (3) where X are hidden units of lay- 75551 77!
ers { = 1,2,3,4 corresponding theoreti- Al

cally to generalized Weibull-tail with tail
parameters () = 2, 1,2/3,1/2, under the 0501_757
independent Gaussian weights assump- 0

|
tion. Dashed lines: linear regressions ELSO’
with coefficients equal to the theoretical 1.251
tail parameters (9 = 2/t and manually 100 . . .
selected biases to approach the solid lines 10 10! 107 10? 10*

for visual comparison.

4. Comparison of different characterizations
4.1. Generalized Weibull-tail vs sub-Weibull

Some of the commonly used techniques to study the tail behavior is to consider probability
tail bounds such as sub-Gaussian, sub-exponential, or their generalization to sub-Weibull
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distributions (Vladimirova et al., 2020; Kuchibhotla and Chakrabortty, 2018). A non-
negative random variable X is called sub-Weibull with tail parameter 8 > 0 if its survival
function is upper-bounded by that of a Weibull distribution:

Fx(z) < ae_bxl/o, for z > 0 and some a,b > 0. (4)

This property ensures the existence of the moment generating function as well as bounds
on moments. In contrast, the Weibull-tail property characterizes the survival or density
functions without a hand on moments. While tail parameters in Equation (1) and (4)
of generalized Weibull-tail and sub-Weibull properties respectively are different, there exist
connections. Notice that for any constants a, b, 5 > 0, function {(x) = b— l(;% > 0 is slowly-

zf —aPl(x)

varying for x large enough and ae " =e . It means that if a random variable X is
sub-Weibull with parameter § = 1/8 > 0, satisfying Equation (4), then the survival function
of X is upper-bounded by a Weibull-tail function with tail parameter 5 and slowly-varying
function I(z) = 1, satisfying Equation (1). If random variable X is generalized Weibull-tail
with tail parameter 3, then from the last item of Proposition A.1, for ai,as > 0 we have

P T B e
are™™ < Fx(z)=e 2PUz) < goe zn

or GWTg, () C SubW(1/p2) and GWTg, (8) ¢ SubW(1/31) for z large enough and
V(B1, f2) such that 0 < B2 < B < 1, as illustrated on Figure 2.

SubW (ﬁi)
GWT (8)

Subw (ﬁi)

Figure 2: Relation between sub-Weibull and generalized Weibull-tail characteristics.

It was recently shown in Vladimirova et al. (2019) that hidden units of Bayesian neural
networks with iid Gaussian priors are sub-Weibull with tail parameter proportional to the
L

hidden layer number, that is = 5. It means that the unit distributions of hidden layer

¢ can be upper-bounded by some Weibull distributions ae™ ** for all ¢. For larger tail
parameter 6, Weibull distribution ae—""" is heavier-tailed but being sub-Weibull does not
guarantee the heaviness of the tails. However, this upper bound is optimal in the sense that
it is achieved for neural networks with one hidden unit per layer.

From Theorem 3.1, for neural networks with independent Gaussian weights, hidden
units of /-th layer are generalized Weibull-tail with tail parameter § = 1/6 = 2/¢ so they

T

have upper and lower bounds of the form e—2/"1(x) up to a constant where [ is some slowly-
varying function. Therefore, it proves that hidden units are heavier-tailed as going deeper
for any finite numbers of hidden units per layer.
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4.2. Meijer G-functions description

In Springer and Thompson (1970) it was shown that the probability density function of the
product of independent normal variables could be expressed through a Meijer G-function.
It resulted in an accurate description of induced unit priors given Gaussian priors on weights
and linear or ReLU activation function (Zavatone-Veth and Pehlevan, 2021; Noci et al.,
2021). It is a full description of function-space priors but under strong assumptions, requir-
ing Gaussian priors on weights and linear or ReLLU activation functions, and with convoluted
expressions. In contrast, we provide results for many distributions, including heavy-tailed
ones, and our results can be extended to smooth activation functions, such as PReLLU, ELU,
Softplus.

5. Future applications

Cold posterior effect and priors. It was recently empirically found that Gaussian
priors led to the cold posterior effect in which a tempered “cold” posterior, obtained by
exponentiating the posterior to some power largely greater than one, performs better than
an untempered one (Wenzel et al., 2020). The performed Bayesian inference is considered
sub-optimal due to the need for cold posteriors, and the model is deemed misspecified.
From that angle, Wenzel et al. (2020) suggested that Gaussian priors might not be a good
choice for Bayesian neural networks. In some works, data augmentation is argued to be
the main reason for this effect (Izmailov et al., 2021; Nabarro et al., 2021) as the increased
amount of observed data naturally leads to higher posterior contraction (Izmailov et al.,
2021). At the same time, even considering the data augmentation for some models, the
cold posterior effect is still present. In addition, Aitchison (2021) demonstrates that the
problem might originate in the wrong likelihood of the models and that modifying only the
likelihood based on data curation mitigates the cold posterior effect. Nabarro et al. (2021)
hypothesize that using an appropriate prior incorporating knowledge of data augmentation
might provide a solution. Moreover, heavy-tailed priors have been shown to mitigate the
cold posterior effect (Fortuin et al., 2021). According to Theorem 3.1, heavier-tailed priors
lead to even heavier-tailed induced priors in function-space. Thus, the heavy-tail property
of distributions in function-space might be a highly beneficial feature. Fortuin et al. (2021)
also proposed correlated priors for convolutional neural networks since trained weights are
empirically strongly correlated. Correlated priors improve overall performance but do not
alleviate the cold posterior effect. Our theory can be extended to correlated weight priors.
This direction is promising for further uncovering the effect of weight prior on function-space
prior.

Edge of Chaos. An active line of research studies the propagation of deterministic inputs
in neural networks (Poole et al., 2016; Schoenholz et al., 2017; Hayou et al., 2019). The main
idea is to explore the covariance between pre-activations for two given different data points.
Poole et al. (2016) and Schoenholz et al. (2017) obtained recurrence relations under the as-
sumption of Gaussian initialization and Gaussian pre-activations. They conclude that there
is a critical line, so-called Edge of Chaos, separating signal propagation into two regions.
The first one is an ordered phase in which all inputs end up asymptotically correlated. The
second is a chaotic phase in which all inputs end up asymptotically independent. To propa-
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gate the information deeper in a neural network, one should choose Gaussian prior variances
corresponding to the separating line. Hayou et al. (2019) show that the smoothness of the
activation function also plays an important role. Since this line of works considers Gaussian
priors not only on the weights but also on the pre-activations, it is closely related to a wide
regime where the number of hidden units per layer tends to infinity. Given that hidden
units are heavier-tailed with depth, we speculate that future research will focus on finding
better approximations of the pre-activation functions in recurrence relations obtained for
finite-width neural networks.

6. Conclusion

We extend the theory on induced distributions in Bayesian neural networks and establish
an accurate and easily interpretable characterization of hidden units tails. The obtained
results confirm the heavy-tailed nature of hidden units for different weight priors.
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Appendix A. Slowly and regularly-varying functions theory

The set of regular-varying functions with index p € R is denoted by RV,. Note that for
p = 0, the set RV boils down to the set of slowly-varying functions. In particular, any
function r € RV, can be written r(x) = 2”l(x), where [ is slowly-varying.

Definition 3 (Regularly-varying function) Letr be a positive function. Thenr € RV,

if for all t > 0 limg,_, % =tP.

Proposition A.1 (Bingham et al., 1989, Proposition 1.53.6) Let 1,1y, ... i be slowly-varying
functions. Then:

1. (logl(x))/logxz — 0 as z — oo.
¢ varies slowly for every a € R.

lila, 1 + 12, and (if la(x) — o0 as x — o) 1y o ly vary slowly.

e e

If f(z1,...,2%) is a rational function with positive coefficients, f(l1,...,lx) varies
slowly.

5. For any a > 0, z%l(z) = 0o, z7%(x) = 0 (x — o).

Lemma A.1 If [i(z) is slowly-varying, then la(x) = l1(x%) is slowly-varying for a > 0.

10
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Lemma A.2 Ifly,ly vary slowly, so does max{ly,la} and min{ly,l2}.

Lemma A.3 Let r1 and 19 be regularly-varying functions with parameters p1 > 0 and
B2 > 0. Then, the function r such thate™ = e~ +e7"2, is reqularly-varying with parameter

f = min{f1, B2}.

Proof Let us express function r from the statement: r(z) = — log p(x) = — log (e_”(“) +e7m2(@),
If 51 # B, without loss of generality, let us assume that 81 < (B2, then

QD(CC) _ efrl(r) (1 + efrg(z)%»m(z)) _ 6*7'1(2) <1 + e?"2($) (—1+:;Eg)) '

Notice that % € RVg,—p,. For B1 < o, :;8 — 0 when £ — oco. The expression in the

ro(z)(—14+Z (z)
exponent 72(z) <—1 + :;Ei;) ~ 1 —ry(z) — —o0, so the exponent e 2( )( HT;(I)) — 0.
Then ¢(z) ~ e "®) and r(z) = —logp(z) ~ r1(x). It means that for the case 8 < Bo,
r € RVg,.

Let us consider the case with equal parameters f; = 2 = (3, then ri(x) = xﬁll(:c),
ro(z) = 28l3(2) with slowly-varying I; and l. With [ = min{ly,ls}, we can write

olz) = e @ 1@ (1 n e—x%(x)—h(x)l) .
Consider the logarithm of the latter expression

—logp(z) = 2 (l(:n) + 2 P log (1 + e_”CB‘l?(””)_ll(x)')) .

Since the function [ is slowly-varying by Lemma A.2 and 0 < o2’ lz@)-L@)| < 1, then
r(z) = —log p(z) ~ 2°1(z) € RV5. [ |

Appendix B. Weibull-tail properties on R

Let us firstly introduce a notion of generalized Weibull-tail random variable which has an
additional property of stability:

Definition 4 (Generalized Weibull-tail on R;) A random variable X is called gener-
alized Weibull-tail with tail parameter 3 > 0 if its survival function Fx is bounded by
Weibull-tail functions of tail parameter 8 with possibly different slowly-varying functions ly
and ly:

eo’li(@) < Fx(z) < e la(@), for z > 0. (5)

We note X ~ GWTg, (53).

Now we define a random variable whose both right and left tails are Weibull-tail on R .

1. We say functions f ~ g if and only if f/g — 1.

11
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Definition 5 (Weibull-tail on R) A random variable X on R is Weibull-tail on R with
tail parameter B > 0 if both its right and left tails are Weibull-tail with tail parameter 3:

Fx(z)=1-Fx(z)=e @) 250
Fy(z) = e ol 5 <0,
where 1y and la are slowly-varying functions. We note X ~ WTgr(p).
Lemma B.1 (i) If random variable X on R is WTr(f), then | X| is WTg, (5).

(ii) If X is asymmetric but both tails are Weibull-tail and |X| is WIr, (f3), then one of
the tails (right or left) is WTr, (8) and the other one is WTg, (') where 8’ > .

(iii) For symmetric distributions, X is WIr(83) if and only if | X| is WTr, (B).
Proof

(i) For 2 > 0, the cumulative distribution function of |X| is the following
Fix|(z) = Fx(2) — Fx(—a).
Then, E x|(w) can be expressed as a sum of the right and left tails:
Fx|(z) = Fx(z) + Fx(—x).
If X is WTR(f3), then | X|is WTg, () as a consequence of Definition 5 and Lemma A.3.

(ii) Let |X| be WTg, (5) and X has Weibull left and right tails with different tail pa-
rameters. Without loss of generality, assume that Fx(—z) is Weibull-tail with tail
parameter 3’ < 3. According to Lemma A.3, the sum survival function E x| () will
be Weibull-tail with tail parameter 8/ = min{3’, 3}. We obtained a contradiction
and Fx(—x) must have tail parameter greater or equal 8. If both tail parameters are
greater than 5, then the tails sum have the tail parameter equal to the minimum tail
parameter among them which is greater than . It means that at least one tail must
have tail parameter .

(iii) For symmetric distributions Fx(z) = Fx(—z) for any z, then %E)q(a:) = Fx(z) =
Fx(—z) and we have the equality.

Lemma B.2 (i) If a random variable X is GWTwr(B), then | X| is GWTr (f).
(ii) For symmetric distributions, X is GWTr(B) if and only if | X| is GWTr_(B).

Proof Similarly as in Lemma B.1, we obtain F|x|(z) = Fx(z) + Fx(—x) for > 0.

(i) If X is GWTg(B), then right and left tails are upper and lower-bounded by some
Weibull-tail functions. Then, the sum of the right and left tails is upper and lower-
bounded by these Weibull-tail functions and |X| ~ GWTg, (8).

12
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(ii) For symmetric distributions we have Fy(x) = Fx(—=x) for all z, then %FLX‘(I') =
Fx(z) = Fx(—x) and we have the equality.

Lemma B.3 (Power and multiplication by a constant) If X ~ GWTgr(S) and the
distribution of X is symmetric, then a|X|? ~ GWTg, (%) for a,b > 0.

Proof According to Lemma B.1, | X| ~ GWTg, (8). For a,b > 0, the tail of Y = a|X| is

Plar=0) = (1 > £ ¥(ix1> (2)").

Since | X | is generalized Weibull-tail on Ry with tail parameter 3, e =1 < P (|X| > z) <
e‘xﬂl?(m), where [; and [y are slowly-varying functions, it implies

o v"Mhy) < p(a| X[’ > y) < e V"),

where [;(y) = %, 1 = 1,2 are slowly-varying functions by Lemma A.1. It leads to

the statement of the lemma. [ |

Theorem 2.1 (Sum of GWTy variables) Let Xi,..., Xy € GWTgr with tail parame-
ters B1,...,B8n. If X1,..., XN satisfy the PD condition of Definition 2, then, X1 + --- +

Xy € GWTR(B) with B = min{ﬁl, .. .,ﬁN}.

Proof Let us start with N = 2. For any random variables X and Y, the following upper
bound holds:

PX+Y >2) <P(X >22)+P(Y > z2/2) < 2max{P(X > z/2),P(Y > z/2)}.
The PD condition leads to a lower bound for the sum:
PX4+Y>2)>2P(X>0,Y>2)=P(X >0Y >2)P(Y > 2) > CPY > z2),

where constant C' > 0. Thus, the sum survival function Fz(z) = P(X +Y > 2) has the
following bounds for the right tail:

CFy(z) < Fz(z) < 2max{F x(#/2), Fy(#/2)},

where Fy and Fy are the survival functions of X and Y.
Let X and Y be generalized Weibull-tail on R of parameters 3, and 3,, then for z > 0

large enough
Ce () < Fy(z) < 2077 GE)

where If = [{ is the slowly-varying function appearing in the right tail lower bound of

generalized Weibull-tail Y and [5(z) = min{ﬁl%(#@, 2%@}[3(2/2)} is the minimum among

13
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slowly-varying functions, where I3 and [§ are slowly-varying functions in the right tails upper
bounds of X and Y. According to Lemma A.2, I5(2) is also slowly-varying. Similarly, we
can get bounds for the left tail. Therefore, X +Y is generalized Weibull-tail on R with tail
parameter 5 = min{f,, By}

Similarly as above when N = 2, bounds for the right tail of the sum Z = X7 +---+ Xy
with survival function Fz = P(Z > 2) are:

CFN(Z) < Fz(z) < NmaX{Fl(Z/N), . ,FN(Z/N)},
where F; is the survival functions of X; and constant C' > 0. The rest of the proof is

identical to the one of the case N = 2. [ |

The case when distributions have only right tails (or only left tails), can be considered as a
particular case of the last theorem: a sum of non-negative generalized Weibull-tail random
variables is non-negative generalized Weibull-tail with tail parameter equal to the minimum
among those of the terms.

Theorem 2.2 (Product of independent GWTy variables) Let Xi,..., Xy € GWTg

be independent symmetric with tail parameters B1,...,Bn. Then, the product X1 ... XN €
GWTR(B) with 5 such that % = ﬁ +-+ ,BLN

Proof Consider two independent symmetric generalized Weibull-tail random variables
with tail parameters B, = é and 8, = é, X ~ GWTg (é) and ¥ ~ GWTy (é)
From Lemma B.1 and since random variables X and Y are symmetric, it is equivalent to
1 X| ~ GWTg, (ai) and Y| ~ GWTg, (ei)

The product of independent symmetric distributions is symmetric since Z = XY =4
(-X)Y =% —Z. From Lemma B.1, Z ~ GWTg(f) if and only if | Z| ~ GWTg, (B).

Our goal is to show that for some slowly-varying functions /; and o, there exist upper
and lower bounds for the survival function of |Z| and z large enough as follows:

1 1
e—z91+9yl1(2) < F|Z|(z) =P(|XY]|>2z) < e—z9l+"y la(z) (6)

(i) Upper bound. First, notice that from the concavity of the logarithm, we have In(pu +
(1 -p)v) >plnu+ (1 —p)lno for any u,v >0 and p € (0,1). Then pu+ (1 —p)v >
uPv'~P. The change of variables 2 = u?, y = v' P implies pz'/? + (1 — p)y/*—» > zy.
From the latter equation, an upper bound of the product tail is

P(XY| 2 2) <P (pIX[" + (1= )Y/ = 2). (7)

Lemma B.3 implies that p| X |7 ~ GWTg, (%) and (1—p)|Y[/177 ~ GWTg, (%)'

0z
0210y

generalized Weibull-tail random variables with tail parameter ﬁ on the right-hand
side of Equation (7). By Theorem 2.1, this sum is generalized Weibull-tail with the
same tail parameter ﬁ‘ It means that there exists a slowly-varying function [s

Taking p = and 1 —p = Qnyey, yields a sum of two independent non-negative

such that the tail of product absolute value | XY| is upper-bounded by
1
]P)(‘XY’ > Z) < e,ZGx+9y ZQ(Z)_ (8)
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(ii) Lower bound. By independence of |X| and |Y| we have
[ 9y
P(|XY|>2)>P (‘X‘ > zez+ey) P (\Y\ > ZGE+6y) .

Since | X| and |Y| are generalized Weibull-tail on Ry, we can define function /;(z) =
17 (202/0H0y) ) 4 19200/ 02%04)) with ¥ and 1Y being slowly-varying functions in the
lower bounds of generalized Weibull-tail |X| and |Y|. Then, [; is slowly-varying by
Lemma A.1 and we have

1
]P)(‘XY’ > Z) > e,ZGx-FGy l1(Z). (9)

Combining together Equations (8) and (9) and Definition 4 with Lemma B.1 implies
the statement of the theorem. [ |

Appendix C. Bayesian neural network properties

Proofs of Section 3.

Lemma 3.1 Let X1,...,Xx be some possibly dependent random variables and W1, ..., Wy
be symmetric, mutually independent and independent from X1, ..., Xn, then random vari-
ables XyW1, ..., XNWn satisfy the PD condition.

Proof The joint probability for the right tail P (ﬂf\i Wi X > zi) can be expressed as

/ / mWJZzZZZ

Independence between W; and X yields

ﬂ X;=z; | f(z1,...,2n)dzy ... d2N. (10)

ﬂszZzz

=1

N
ﬂX =z _P<ﬂW:clzz,> :HP(WixiZZi)y

i=1 i=1

where the last equality is due to the mutual independence of weights W1y,..., Wx. Let
z1 =+ =2zy-1 =0 and zy = z. If ; = 0, the probability P (W;z; > 0) = 1. If z; # 0,
then, due to the symmetry of W;, the probability P (W;z; > 0) = % Thus, the following
lower bound holds:

P (Wiz; > 0) > forallie{l,...,N —1}.

N =

Notice that

/ / (Wnzy > 2) f(x1,...,zn)day .. .dey =P (WyXy > 2).
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Substituting the latter equations into Equation (10) leads to the lower bound:
N-1 1
P<r]WM32QWWXsz>22N4PMWXszy
i=1
By the conditional probability definition, we have

N P(OY, WiXi20) 4
P QWiXizO\WNXNZz - U= 2T

The proof for the left tail is identical. |

Theorem 3.1 Consider a Bayesian neural network as described in Equation (2) with ReLU
activation function. Let £-th layer weights be independent symmetric generalized Weibull-tail

on R with tail parameter Bq(f . Then, (- th layer pre-activations are generalized Weibull-tail

on R with tail parameter 8 such that ,B(@ = ﬁflul) +---+ @
Proof The goal is to show that hy) ~ GWTg, (ﬁ(e)) where ﬁ = ﬁ + e+ ? We

proceed by induction on the layer depth /.

(i) First hidden layer
For ¢/ = 1, by Lemma 3.1, products w( )h(o) for 1=1,. H1 satisfy the positive depen-
dence condition of Definition 2, thus the sum g Z wz j h( ) is generalized Weibull-
tail on R with tail parameter (1) = Bq(u). Since ReLU function does not change the
right tail and post-activations lie completely on R, we have hg.l) ~ GWTg, (BW).

(ii) Step of induction

-1 . {-1) .
Let h; )~ GWTg, (ﬁ(é 1)) where (L, Dy = ﬁ + 4+ ﬁ Since hg- ) s
non-negative and wg) are symmetric, their product is symmetric by symmetry of the
weights: hggil)wg) has the same distribution as hg-gfl) (—wz(f) h(é b Z(j). By

(e-1)

Theorem 2.2 and independence of random variables hj

(0

and (CHERC obtain that

/—1
h( ) () GWTR(ﬁ(@) where B“) = B(z T 6(@ - é—i_'”—i_ﬁ—i_?'

ORI i1,

According to Lemma 3.1, w , Hy satisfy the dependence condition of

Definition 2. Thus, the sum gj(. ) = EZH ¢ (g)h(g D s symmetric generalized Weibull-
tail with the same tail parameter. The ReLU activation does not impact the right

tail, therefore, hy) ~ GWTg, ( 5(5))‘
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