Supplementary Material: An Optimistic Acceleration of AMSGrad for Nonconvex Optimization ### Appendix A. Proof of Theorem 1 **Theorem.** Suppose the learner incurs a sequence of convex loss functions $\{\ell_t(\cdot)\}$. Then, OPT-AMSGRAD (Algorithm 2) has regret $$\mathcal{R}_{T} \leq \frac{B_{\psi_{1}}(w^{*}, \tilde{w}_{1})}{\eta_{1}} + \sum_{t=1}^{T} \frac{\eta_{t}}{2} \|g_{t} - \tilde{m}_{t}\|_{\psi_{t-1}^{*}}^{2} + \frac{D_{\infty}^{2}}{\eta_{\min}} \sum_{i=1}^{d} \hat{v}_{T}^{1/2}[i] + D_{\infty}^{2} \beta_{1}^{2} \sum_{t=1}^{T} \|g_{t} - \theta_{t-1}\|_{\psi_{t-1}^{*}},$$ where $\tilde{m}_{t+1} = \beta_1 \theta_{t-1} + (1-\beta_1) m_{t+1}$, $g_t := \nabla \ell_t(w_t)$, $\eta_{\min} := \min_t \eta_t$ and D_{∞}^2 is the diameter of the bounded set Θ . The result holds for any benchmark $w^* \in \Theta$ and any step size sequence $\{\eta_t\}_{t>0}$. **Proof** Beforehand, we denote: $$\tilde{g}_t = \beta_1 \theta_{t-1} + (1 - \beta_1) g_t, \tilde{m}_{t+1} = \beta_1 \theta_{t-1} + (1 - \beta_1) m_{t+1},$$ (10) where we recall that g_t and m_{t+1} are respectively the gradient $\nabla \ell_t(w_t)$ and the predictable guess. By regret decomposition, we have that $$\mathcal{R}_{T} := \sum_{t=1}^{T} \ell_{t}(w_{t}) - \min_{w \in \Theta} \sum_{t=1}^{T} \ell_{t}(w)$$ $$\leq \sum_{t=1}^{T} \langle w_{t} - w^{*}, \nabla \ell_{t}(w_{t}) \rangle$$ $$= \sum_{t=1}^{T} \langle w_{t} - \tilde{w}_{t+1}, g_{t} - \tilde{m}_{t} \rangle + \langle w_{t} - \tilde{w}_{t+1}, \tilde{m}_{t} \rangle + \langle \tilde{w}_{t+1} - w^{*}, \tilde{g}_{t} \rangle + \langle \tilde{w}_{t+1} - w^{*}, g_{t} - \tilde{g}_{t} \rangle .$$ (11) Recall the notation $\psi_t(x)$ and the Bregman divergence $B_{\psi_t}(u,v)$ defined Section 4. We exploit a useful inequality (which appears in e.g., (Tseng, 2008)). For any update of the form $\hat{w} = \arg\min_{w \in \Theta} \langle w, \theta \rangle + B_{\psi}(w,v)$, it holds that $$\langle \hat{w} - u, \theta \rangle < B_{\psi}(u, v) - B_{\psi}(u, \hat{w}) - B_{\psi}(\hat{w}, v) \quad \text{for any } u \in \Theta .$$ (12) For $\beta_1 = 0$, we can rewrite the update on line 8 of (Algorithm 2) as $$\tilde{w}_{t+1} = \arg\min_{w \in \Theta} \eta_t \langle w, \tilde{g}_t \rangle + B_{\psi_t}(w, \tilde{w}_t) . \tag{13}$$ By using (12) for (13) with $\hat{w} = \tilde{w}_{t+1}$ (the output of the minimization problem), $u = w^*$ and $v = \tilde{w}_t$, we have $$\langle \tilde{w}_{t+1} - w^*, \tilde{g}_t \rangle \le \frac{1}{\eta_t} \left[B_{\psi_t}(w^*, \tilde{w}_t) - B_{\psi_t}(w^*, \tilde{w}_{t+1}) - B_{\psi_t}(\tilde{w}_{t+1}, \tilde{w}_t) \right]. \tag{14}$$ We can also rewrite the update on line 9 of (Algorithm 2) at time t as $$w_{t+1} = \arg\min_{w \in \Theta} \eta_{t+1} \langle w, \tilde{m}_{t+1} \rangle + B_{\psi_t}(w, \tilde{w}_{t+1}) . \tag{15}$$ and, by using (12) for (15) (written at iteration t), with $\hat{w} = w_t$ (the output of the minimization problem), $u = \tilde{w}_{t+1}$ and $v = \tilde{w}_t$, we have $$\langle w_t - \tilde{w}_{t+1}, \tilde{m}_t \rangle \le \frac{1}{\eta_t} \left[B_{\psi_{t-1}}(\tilde{w}_{t+1}, \tilde{w}_t) - B_{\psi_{t-1}}(\tilde{w}_{t+1}, w_t) - B_{\psi_{t-1}}(w_t, \tilde{w}_t) \right]. \tag{16}$$ By (11), (14), and (16), we obtain $$\mathcal{R}_{T} \stackrel{(11)}{\leq} \sum_{t=1}^{T} \langle w_{t} - \tilde{w}_{t+1}, g_{t} - \tilde{m}_{t} \rangle + \langle w_{t} - \tilde{w}_{t+1}, \tilde{m}_{t} \rangle + \langle \tilde{w}_{t+1} - w^{*}, \tilde{g}_{t} \rangle + \langle \tilde{w}_{t+1} - w^{*}, g_{t} - \tilde{g}_{t} \rangle \\ \stackrel{(14),(16)}{\leq} \sum_{t=1}^{T} \|w_{t} - \tilde{w}_{t+1}\|_{\psi_{t-1}} \|g_{t} - \tilde{m}_{t}\|_{\psi_{t-1}^{*}} + \|\tilde{w}_{t+1} - w^{*}\|_{\psi_{t-1}} \|g_{t} - \tilde{g}_{t}\|_{\psi_{t-1}^{*}} \\ + \frac{1}{\eta_{t}} \left[B_{\psi_{t-1}}(\tilde{w}_{t+1}, \tilde{w}_{t}) - B_{\psi_{t-1}}(\tilde{w}_{t+1}, w_{t}) - B_{\psi_{t-1}}(w_{t}, \tilde{w}_{t}) \\ + B_{\psi_{t}}(w^{*}, \tilde{w}_{t}) - B_{\psi_{t}}(w^{*}, \tilde{w}_{t+1}) - B_{\psi_{t}}(\tilde{w}_{t+1}, \tilde{w}_{t}) \right], \tag{17}$$ which is further bounded by $$\mathcal{R}_{T} \leq \sum_{t=1}^{T} \left\{ \frac{1}{2\eta_{t}} \| w_{t} - \tilde{w}_{t+1} \|_{\psi_{t-1}}^{2} + \frac{\eta_{t}}{2} \| g_{t} - \tilde{m}_{t} \|_{\psi_{t-1}^{*}}^{2} + \| \tilde{w}_{t+1} - w^{*} \|_{\psi_{t-1}} \| g_{t} - \tilde{g}_{t} \|_{\psi_{t-1}^{*}} \right. \\ + \frac{1}{\eta_{t}} \left(\underbrace{B_{\psi_{t-1}}(\tilde{w}_{t+1}, \tilde{w}_{t}) - B_{\psi_{t}}(\tilde{w}_{t+1}, \tilde{w}_{t})}_{A_{1}} - \frac{1}{2} \| \tilde{w}_{t+1} - w_{t} \|_{\psi_{t-1}}^{2} \right. \\ \left. + \underbrace{B_{\psi_{t}}(w^{*}, \tilde{w}_{t}) - B_{\psi_{t}}(w^{*}, \tilde{w}_{t+1})}_{A_{2}} \right) \right\}, \tag{18}$$ where the inequality is due to $\|w_t - \tilde{w}_{t+1}\|_{\psi_{t-1}} \|g_t - \tilde{m}_t\|_{\psi_{t-1}^*}^* = \inf_{\beta>0} \frac{1}{2\beta} \|w_t - \tilde{w}_{t+1}\|_{\psi_{t-1}}^2 + \frac{\beta}{2} \|g_t - \tilde{m}_t\|_{\psi_{t-1}^*}^2$ by Young's inequality and the 1-strongly convex of $\psi_{t-1}(\cdot)$ with respect to $\|\cdot\|_{\psi_{t-1}}$ which yields that $B_{\psi_{t-1}}(\tilde{w}_{t+1}, w_t) \geq \frac{1}{2} \|\tilde{w}_{t+1} - w_t\|_{\psi_t}^2 \geq 0$. To proceed, notice that $$A_{1} := B_{\psi_{t-1}}(\tilde{w}_{t+1}, \tilde{w}_{t}) - B_{\psi_{t}}(\tilde{w}_{t+1}, \tilde{w}_{t})$$ $$= \langle \tilde{w}_{t+1} - \tilde{w}_{t}, \operatorname{diag}(\hat{v}_{t-1}^{1/2} - \hat{v}_{t}^{1/2})(\tilde{w}_{t+1} - \tilde{w}_{t}) \rangle \leq 0,$$ (19) as the sequence $\{\hat{v}_t\}$ is non-decreasing. And that $$A_{2} := B_{\psi_{t}}(w^{*}, \tilde{w}_{t}) - B_{\psi_{t}}(w^{*}, \tilde{w}_{t+1}) = \langle w^{*} - \tilde{w}_{t+1}, \operatorname{diag}(\hat{v}_{t+1}^{1/2} - \hat{v}_{t}^{1/2})(w^{*} - \tilde{w}_{t+1}) \rangle$$ $$\leq (\max_{i}(w^{*}[i] - \tilde{w}_{t+1}[i])^{2}) \cdot (\sum_{i=1}^{d} \hat{v}_{t+1}^{1/2}[i] - \hat{v}_{t}^{1/2}[i]) . \tag{20}$$ Therefore, by (18),(20),(19), we have $$\mathcal{R}_T \leq \frac{D_{\infty}^2}{\eta_{\min}} \sum_{i=1}^d \hat{v}_T^{1/2}[i] + \frac{B_{\psi_1}(w^*, \tilde{w}_1)}{\eta_1} + \sum_{t=1}^T \frac{\eta_t}{2} \|g_t - \tilde{m}_t\|_{\psi_{t-1}^*}^2 + D_{\infty}^2 \beta_1^2 \sum_{t=1}^T \|g_t - \theta_{t-1}\|_{\psi_{t-1}^*},$$ since $\|g_t - \tilde{g}_t\|_{\psi_{t-1}^*} = \|g_t - \beta_1 \theta_{t-1} - (1 - \beta_1) g_t\|_{\psi_{t-1}^*} = \beta^2 \|g_t - \theta_{t-1}\|_{\psi_{t-1}^*}$. This completes the proof. # **Appendix B. Proof of Corollary 1** **Corollary.** Suppose $\beta_1 = 0$ and $\{v_t\}_{t>0}$ is a monotonically increasing sequence, then we obtain the following regret bound for any $w^* \in \Theta$ and sequence of stepsizes $\{\eta_t = \eta/\sqrt{t}\}_{t>0}$: $$\mathcal{R}_T \leq \frac{B_{\psi_1}}{\eta_1} + \frac{\eta\sqrt{1+\log T}}{\sqrt{1-\beta_2}} \sum_{i=1}^d \|(g-m)_{1:T}[i]\|_2 + \frac{D_{\infty}^2}{\eta_{\min}} \sum_{i=1}^d \left[(1-\beta_2) \sum_{s=1}^T \beta_2^{T-s} g_s^2[i] \right]^{1/2} ,$$ where $B_{\psi_1} := B_{\psi_1}(w^*, \tilde{w}_1)$, $g_t := \nabla \ell_t(w_t)$ and $\eta_{\min} := \min_t \eta_t$. **Proof** Recall the bound in Theorem 1: $$\mathcal{R}_T \leq \frac{B_{\psi_1}(w^*, \tilde{w}_1)}{\eta_1} + \sum_{t=1}^T \frac{\eta_t}{2} \|g_t - \tilde{m}_t\|_{\psi_{t-1}^*}^2 + \frac{D_{\infty}^2}{\eta_{\min}} \sum_{i=1}^d \hat{v}_T^{1/2}[i] + D_{\infty}^2 \beta_1^2 \sum_{t=1}^T \|g_t - \theta_{t-1}\|_{\psi_{t-1}^*}.$$ The second term reads: $$\sum_{t=1}^{T} \frac{\eta_{t}}{2} \|g_{t} - m_{t}\|_{\psi_{t-1}^{*}}^{2}$$ $$= \sum_{t=1}^{T-1} \frac{\eta_{t}}{2} \|g_{t} - m_{t}\|_{\psi_{t-1}^{*}}^{2} + \eta_{T} \sum_{i=1}^{d} \frac{(g_{T}[i] - m_{T}[i])^{2}}{\sqrt{v_{T-1}[i]}}$$ $$= \sum_{t=1}^{T-1} \frac{\eta_{t}}{2} \|g_{t} - m_{t}\|_{\psi_{t-1}^{*}}^{2} + \eta \sum_{i=1}^{d} \frac{(g_{T}[i] - m_{T}[i])^{2}}{\sqrt{T((1 - \beta_{2}) \sum_{s=1}^{T-1} \beta_{2}^{T-1-s}(g_{s}[i] - m_{s}[i])^{2})}}$$ $$\leq \eta \sum_{i=1}^{d} \sum_{t=1}^{T} \frac{(g_{t}[i] - m_{t}[i])^{2}}{\sqrt{t((1 - \beta_{2}) \sum_{s=1}^{t-1} \beta_{2}^{t-1-s}(g_{s}[i] - m_{s}[i])^{2})}}.$$ To interpret the bound, let us make a rough approximation such that $\sum_{s=1}^{t-1} \beta_2^{t-1-s} (g_s[i] - m_s[i])^2 \simeq (g_t[i] - m_t[i])^2$. Then, we can further get an upper-bound as $$\sum_{t=1}^{T} \frac{\eta_t}{2} \|g_t - m_t\|_{\psi_{t-1}^*}^2 \le \frac{\eta}{\sqrt{1-\beta_2}} \sum_{i=1}^{d} \sum_{t=1}^{T} \frac{|g_t[i] - m_t[i]|}{\sqrt{t}} \le \frac{\eta\sqrt{1+\log T}}{\sqrt{1-\beta_2}} \sum_{i=1}^{d} \|(g-m)_{1:T}[i]\|_2,$$ where the last inequality is due to Cauchy-Schwarz. # Appendix C. Proofs of Auxiliary Lemmas Following (Yan et al., 2018) and their study of the SGD with Momentum we denote for any t > 0: $$\overline{w}_t = w_t + \frac{\beta_1}{1 - \beta_1} (w_t - \tilde{w}_{t-1}) = \frac{1}{1 - \beta_1} w_t - \frac{\beta_1}{1 - \beta_1} \tilde{w}_{t-1}. \tag{21}$$ **Lemma 3.** Assume a strictly positive and non increasing sequence of stepsizes $\{\eta_t\}_{t>0}$, $\beta_1 < \beta_2 \in [0,1)$, then the following holds: $$\overline{w}_{t+1} - \overline{w}_t \le \frac{\beta_1}{1 - \beta_1} \tilde{\theta}_{t-1} \left[\eta_{t-1} \hat{v}_{t-1}^{-1/2} - \eta_t \hat{v}_t^{-1/2} \right] - \eta_t \hat{v}_t^{-1/2} \tilde{g}_t ,$$ where $\tilde{\theta}_t = \theta_t + \beta_1 \theta_{t-1}$ and $\tilde{g}_t = g_t - \beta_1 m_t + \beta_1 g_{t-1} + m_{t+1}$. **Proof** By definition (21) and using the Algorithm updates, we have: $$\overline{w}_{t+1} - \overline{w}_t = \frac{1}{1 - \beta_1} (w_{t+1} - \tilde{w}_t) - \frac{\beta_1}{1 - \beta_1} (w_t - \tilde{w}_{t-1}) = -\frac{1}{1 - \beta_1} \eta_t \hat{v}_t^{-1/2} (\theta_t + h_{t+1}) + \frac{\beta_1}{1 - \beta_1} \eta_{t-1} \hat{v}_{t-1}^{-1/2} (\theta_{t-1} + h_t) = -\frac{1}{1 - \beta_1} \eta_t \hat{v}_t^{-1/2} (\theta_t + \beta_1 \theta_{t-1}) - \frac{1}{1 - \beta_1} \eta_t \hat{v}_t^{-1/2} (1 - \beta_1) m_{t+1} + \frac{\beta_1}{1 - \beta_1} \eta_{t-1} \hat{v}_{t-1}^{-1/2} (\theta_{t-1} + \beta_1 \theta_{t-2}) + \frac{\beta_1}{1 - \beta_1} \eta_{t-1} \hat{v}_{t-1}^{-1/2} (1 - \beta_1) m_t .$$ (22) Denote $\tilde{\theta}_t = \theta_t + \beta_1 \theta_{t-1}$ and $\tilde{g}_t = g_t - \beta_1 m_t + \beta_1 g_{t-1} + m_{t+1}$. Notice that $\tilde{\theta}_t = \beta_1 \tilde{\theta}_{t-1} + (1 - \beta_1)(g_t + \beta_1 g_{t-1})$. $$\overline{w}_{t+1} - \overline{w}_t \le \frac{\beta_1}{1 - \beta_1} \tilde{\theta}_{t-1} \left[\eta_{t-1} \hat{v}_{t-1}^{-1/2} - \eta_t \hat{v}_t^{-1/2} \right] - \eta_t \hat{v}_t^{-1/2} \tilde{g}_t . \tag{23}$$ **Lemma 4.** Assume H4, a strictly positive and a sequence of constant stepsizes $\{\eta_t\}_{t>0}$, $(\beta_1, \beta_2) \in [0, 1]$, then the following holds: $$\sum_{t=1}^{T_{\mathsf{M}}} \eta_t^2 \mathbb{E}\left[\left\| \hat{v}_t^{-1/2} \theta_t \right\|_2^2 \right] \le \frac{\eta^2 dT_{\mathsf{M}} (1 - \beta_1)}{(1 - \beta_2)(1 - \gamma)} \,. \tag{24}$$ **Proof** We denote by index $p \in [1, d]$ the dimension of each component of vectors of interest. Noting that for any t > 0 and dimension p we have $\hat{v}_{t,p} \ge v_{t,p}$, then: $$\eta_{t}^{2} \mathbb{E} \left[\left\| \hat{v}_{t}^{-1/2} \theta_{t} \right\|_{2}^{2} \right] = \eta_{t}^{2} \mathbb{E} \left[\sum_{p=1}^{d} \frac{\theta_{t,p}^{2}}{\hat{v}_{t,p}} \right] \\ \leq \eta_{t}^{2} \mathbb{E} \left[\sum_{i=1}^{d} \frac{\theta_{t,p}^{2}}{v_{t,p}} \right] \\ \leq \eta_{t}^{2} \mathbb{E} \left[\sum_{i=1}^{d} \frac{(\sum_{r=1}^{t} (1 - \beta_{1}) \beta_{1}^{t-r} g_{r,p})^{2}}{\sum_{r=1}^{t} (1 - \beta_{2}) \beta_{2}^{t-r} g_{r,p}^{2}} \right] ,$$ (25) where the last inequality is due to initializations. Denote $\gamma = \frac{\beta_1}{\beta_2}$. Then, $$\eta_{t}^{2} \mathbb{E} \left[\left\| \hat{v}_{t}^{-1/2} \theta_{t} \right\|_{2}^{2} \right] \leq \frac{\eta_{t}^{2} (1 - \beta_{1})^{2}}{1 - \beta_{2}} \mathbb{E} \left[\sum_{i=1}^{d} \frac{\left(\sum_{r=1}^{t} \beta_{1}^{t-r} g_{r,p} \right)^{2}}{\sum_{r=1}^{t} \beta_{2}^{t-r} g_{r,p}^{2}} \right] \\ \stackrel{(a)}{\leq} \frac{\eta_{t}^{2} (1 - \beta_{1})}{1 - \beta_{2}} \mathbb{E} \left[\sum_{i=1}^{d} \frac{\sum_{r=1}^{t} \beta_{1}^{t-r} g_{r,p}^{2}}{\sum_{r=1}^{t} \beta_{2}^{t-r} g_{r,p}^{2}} \right] \\ \leq \frac{\eta_{t}^{2} (1 - \beta_{1})}{1 - \beta_{2}} \mathbb{E} \left[\sum_{i=1}^{d} \sum_{r=1}^{t} \gamma^{t-r} \right] \\ = \frac{\eta_{t}^{2} d (1 - \beta_{1})}{1 - \beta_{2}} \mathbb{E} \left[\sum_{r=1}^{t} \gamma^{t-r} \right] , \tag{26}$$ where (a) is due to $\sum_{r=1}^{t} \beta_1^{t-r} \leq \frac{1}{1-\beta_1}$. Summing from t=1 to $t=T_{\mathsf{M}}$ on both sides yields: $$\sum_{t=1}^{T_{\mathsf{M}}} \eta_{t}^{2} \mathbb{E} \left[\left\| \hat{v}_{t}^{-1/2} \theta_{t} \right\|_{2}^{2} \right] \leq \frac{\eta_{t}^{2} d (1 - \beta_{1})}{1 - \beta_{2}} \mathbb{E} \left[\sum_{t=1}^{T_{\mathsf{M}}} \sum_{r=1}^{t} \gamma^{t-r} \right] \\ \leq \frac{\eta^{2} d T (1 - \beta_{1})}{1 - \beta_{2}} \mathbb{E} \left[\sum_{t=t}^{t} \gamma^{t-r} \right] \\ \leq \frac{\eta^{2} d T (1 - \beta_{1})}{(1 - \beta_{2})(1 - \gamma)}, \tag{27}$$ where the last inequality is due to $\sum_{r=1}^{t} \gamma^{t-r} \leq \frac{1}{1-\gamma}$ by definition of γ . #### C.1. Proof of Lemma 1 **Lemma.** Assume assumption H4, then the quantities defined in Algorithm 2 satisfy for any $w \in \Theta$ and t > 0: $$\|\nabla f(w_t)\| < \mathsf{M}, \quad \|\theta_t\| < \mathsf{M}, \quad \|\hat{v}_t\| < \mathsf{M}^2.$$ **Proof** Assume assumption H4 we have: $$\|\nabla f(w)\| = \|\mathbb{E}[\nabla f(w,\xi)]\| < \mathbb{E}[\|\nabla f(w,\xi)\|] < M$$. By induction reasoning, since $\|\theta_0\| = 0 \le M$ and suppose that for $\|\theta_t\| \le M$ then we have $$\|\theta_{t+1}\| = \|\beta_1 \theta_t + (1 - \beta_1) g_{t+1}\| \le \beta_1 \|\theta_t\| + (1 - \beta_1) \|g_{t+1}\| \le M.$$ (28) Using the same induction reasoning we prove that $$\|\hat{v}_{t+1}\| = \|\beta_2 \hat{v}_t + (1 - \beta_2) g_{t+1}^2\| \le \beta_2 \|\hat{v}_t\| + (1 - \beta_1) \|g_{t+1}^2\| \le \mathsf{M}^2. \tag{29}$$ ## **Appendix D. Proof of Theorem 2** **Theorem.** Assume H1-H4, $\beta_1 < \beta_2 \in [0,1)$ and a sequence of decreasing stepsizes $\{\eta_t\}_{t>0}$, then the following result holds: $$\mathbb{E}\left[\|\nabla f(w_T)\|_2^2\right] \leq \tilde{C}_1 \sqrt{\frac{d}{T_{\mathsf{M}}}} + \tilde{C}_2 \frac{1}{T_{\mathsf{M}}} ,$$ where T is a random termination number distributed according (4). The constants are defined as: $$\tilde{C}_{1} = \frac{\mathsf{M}}{(1 - a_{m}\beta_{1}) + (\beta_{1} + a_{m})} \left[\frac{a_{m}(1 - \beta_{1})^{2}}{1 - \beta_{2}} + 2L \frac{1}{1 - \beta_{2}} + \Delta f + \frac{4L\beta_{1}^{2}(1 + \beta_{1}^{2})}{(1 - \beta_{1})(1 - \beta_{2})(1 - \gamma)} \right],$$ $$\tilde{C}_{2} = \frac{(a_{m}\beta_{1}^{2} - 2a_{m}\beta_{1} + \beta_{1})\mathsf{M}^{2}}{(1 - \beta_{1})\left((1 - a_{m}\beta_{1}) + (\beta_{1} + a_{m})\right)} \mathbb{E}\left[\left\| \hat{v}_{0}^{-1/2} \right\| \right],$$ where $$\Delta f = f(\overline{w}_1) - f(\overline{w}_{T_M+1})$$ and $a_m = \min_{t=1,...,T} a_t$. **Proof** Using H2 and the iterate \overline{w}_t we have: $$f(\overline{w}_{t+1}) \leq f(\overline{w}_t) + \nabla f(\overline{w}_t)^{\top} (\overline{w}_{t+1} - \overline{w}_t) + \frac{L}{2} \| \overline{w}_{t+1} - \overline{w}_t \|^2$$ $$\leq f(\overline{w}_t) + \underbrace{\nabla f(w_t)^{\top} (\overline{w}_{t+1} - \overline{w}_t)}_{A}$$ $$+ \underbrace{(\nabla f(\overline{w}_t) - \nabla f(w_t))^{\top} (\overline{w}_{t+1} - \overline{w}_t)}_{B} + \frac{L}{2} \| \overline{w}_{t+1} - \overline{w}_t \| .$$ (30) **Term A.** Using Lemma 3, we have that: $$\nabla f(w_t)^{\top}(\overline{w}_{t+1} - \overline{w}_t) \leq \nabla f(w_t)^{\top} \left[\frac{\beta_1}{1 - \beta_1} \tilde{\theta}_{t-1} \left[\eta_{t-1} \hat{v}_{t-1}^{-1/2} - \eta_t \hat{v}_t^{-1/2} \right] - \eta_t \hat{v}_t^{-1/2} \tilde{g}_t \right]$$ $$\leq \frac{\beta_1}{1 - \beta_1} \|\nabla f(w_t)\| \|\eta_{t-1} \hat{v}_{t-1}^{-1/2} - \eta_t \hat{v}_t^{-1/2} \|\|\tilde{\theta}_{t-1}\| - \nabla f(w_t)^{\top} \eta_t \hat{v}_t^{-1/2} \tilde{g}_t ,$$ where the inequality is due to trivial inequality for positive diagonal matrix. Using Lemma 1 and assumption H3 we obtain: $$\nabla f(w_t)^{\top}(\overline{w}_{t+1} - \overline{w}_t) \le \frac{\beta_1(1 + \beta_1)}{1 - \beta_1} \mathsf{M}^2[\|\eta_{t-1}\hat{v}_{t-1}^{-1/2}\| - \|\eta_t\hat{v}_t^{-1/2}\|] - \nabla f(w_t)^{\top}\eta_t\hat{v}_t^{-1/2}\tilde{g}_t ,$$ (31) where we have used the fact that $\eta_t \hat{v}_t^{-1/2}$ is a diagonal matrix such that $\eta_{t-1} \hat{v}_{t-1}^{-1/2} \succcurlyeq \eta_t \hat{v}_t^{-1/2} \succcurlyeq 0$ (decreasing stepsize and max operator). Also note that: $$-\nabla f(w_{t})^{\top} \eta_{t} \hat{v}_{t}^{-1/2} \tilde{g}_{t} = -\nabla f(w_{t})^{\top} \eta_{t-1} \hat{v}_{t-1}^{-1/2} \bar{g}_{t} - \nabla f(w_{t})^{\top} \left[\eta_{t} \hat{v}_{t}^{-1/2} - \eta_{t} \hat{v}_{t}^{-1/2} \right] \bar{g}_{t}$$ $$- \nabla f(w_{t})^{\top} \eta_{t-1} \hat{v}_{t-1}^{-1/2} (\beta_{1} g_{t-1} + m_{t+1})$$ $$\leq -\nabla f(w_{t})^{\top} \eta_{t-1} \hat{v}_{t-1}^{-1/2} \bar{g}_{t} + (1 - a_{t} \beta_{1}) \mathsf{M}^{2} [\| \eta_{t-1} \hat{v}_{t-1}^{-1/2} \| - \| \eta_{t} \hat{v}_{t}^{-1/2} \|]$$ $$- \nabla f(w_{t})^{\top} \eta_{t} \hat{v}_{t}^{-1/2} (\beta_{1} g_{t-1} + m_{t+1}) ,$$ (32) where we have used Lemma 1 on $||g_t||$ and where that $\tilde{g}_t = \bar{g}_t + \beta_1 g_{t-1} + m_{t+1} = g_t - \beta_1 m_t + \beta_1 g_{t-1} + m_{t+1}$. Plugging (32) into (31) yields: $$\nabla f(w_{t})^{\top}(\overline{w}_{t+1} - \overline{w}_{t})$$ $$\leq -\nabla f(w_{t})^{\top} \eta_{t-1} \hat{v}_{t-1}^{-1/2} \overline{g}_{t} + \frac{1}{1 - \beta_{1}} (a_{t} \beta_{1}^{2} - 2a_{t} \beta_{1} + \beta_{1}) \mathsf{M}^{2} [\|\eta_{t-1} \hat{v}_{t-1}^{-1/2}\| - \|\eta_{t} \hat{v}_{t}^{-1/2}\|]$$ $$- \nabla f(w_{t})^{\top} \eta_{t} \hat{v}_{t}^{-1/2} (\beta_{1} g_{t-1} + m_{t+1}) .$$ (33) **Term B.** By Cauchy-Schwarz (CS) inequality we have: $$\left(\nabla f(\overline{w}_t) - \nabla f(w_t)\right)^{\top} \left(\overline{w}_{t+1} - \overline{w}_t\right) \le \|\nabla f(\overline{w}_t) - \nabla f(w_t)\| \|\overline{w}_{t+1} - \overline{w}_t\| . \tag{34}$$ Using smoothness assumption H2: $$\|\nabla f(\overline{w}_t) - \nabla f(w_t)\| \le L\|\overline{w}_t - w_t\|$$ $$\le L \frac{\beta_1}{1 - \beta_1} \|w_t - \tilde{w}_{t-1}\|.$$ (35) By Lemma 3 we also have: $$\overline{w}_{t+1} - \overline{w}_{t} = \frac{\beta_{1}}{1 - \beta_{1}} \tilde{\theta}_{t-1} \left[\eta_{t-1} \hat{v}_{t-1}^{-1/2} - \eta_{t} \hat{v}_{t}^{-1/2} \right] - \eta_{t} \hat{v}_{t}^{-1/2} \tilde{g}_{t} = \frac{\beta_{1}}{1 - \beta_{1}} \tilde{\theta}_{t-1} \eta_{t-1} \hat{v}_{t-1}^{-1/2} \left[I - (\eta_{t} \hat{v}_{t}^{-1/2}) (\eta_{t-1} \hat{v}_{t-1}^{-1/2})^{-1} \right] - \eta_{t} \hat{v}_{t}^{-1/2} \tilde{g}_{t} = \frac{\beta_{1}}{1 - \beta_{1}} \left[I - (\eta_{t} \hat{v}_{t}^{-1/2}) (\eta_{t-1} \hat{v}_{t-1}^{-1/2})^{-1} \right] (\tilde{w}_{t-1} - w_{t}) - \eta_{t} \hat{v}_{t}^{-1/2} \tilde{g}_{t} ,$$ (36) where the last equality is due to $\tilde{\theta}_{t-1}\eta_{t-1}\hat{v}_{t-1}^{-1/2} = \tilde{w}_{t-1} - w_t$ by construction of $\tilde{\theta}_t$. Taking the norms on both sides, observing $\|I - (\eta_t\hat{v}_t^{-1/2})(\eta_{t-1}\hat{v}_{t-1}^{-1/2})^{-1}\| \le 1$ due to the decreasing stepsize and the construction of \hat{v}_t and using CS inequality yield: $$\|\overline{w}_{t+1} - \overline{w}_t\| \le \frac{\beta_1}{1 - \beta_1} \|\tilde{w}_{t-1} - w_t\| + \|\eta_t \hat{v}_t^{-1/2} \tilde{g}_t\|. \tag{37}$$ We recall Young's inequality with a constant $\delta \in (0,1)$ as follows: $$\langle X \mid Y \rangle \le \frac{1}{\delta} ||X||^2 + \delta ||Y||^2 .$$ Plugging (35) and (37) into (34) returns: $$(\nabla f(\overline{w}_{t}) - \nabla f(w_{t}))^{\top} (\overline{w}_{t+1} - \overline{w}_{t}) \leq L \frac{\beta_{1}}{1 - \beta_{1}} \|\eta_{t} \hat{v}_{t}^{-1/2} \tilde{g}_{t} \| \|w_{t} - \tilde{w}_{t-1} \| + L \left(\frac{\beta_{1}}{1 - \beta_{1}}\right)^{2} \|\tilde{w}_{t-1} - w_{t}\|^{2}.$$ Applying Young's inequality with $\delta \to \frac{\beta_1}{1-\beta_1}$ on the product $\|\eta_t \hat{v}_t^{-1/2} \tilde{g}_t \| \|w_t - \tilde{w}_{t-1} \|$ yields: $$(\nabla f(\overline{w}_t) - \nabla f(w_t))^{\top} (\overline{w}_{t+1} - \overline{w}_t) \le L \|\eta_t \hat{v}_t^{-1/2} \tilde{g}_t\|^2 + 2L \left(\frac{\beta_1}{1 - \beta_1}\right)^2 \|\tilde{w}_{t-1} - w_t\|^2.$$ (38) The last term $\frac{L}{2} \| \overline{w}_{t+1} - \overline{w}_t \|$ can be upper bounded using (37): $$\frac{L}{2} \|\overline{w}_{t+1} - \overline{w}_{t}\|^{2} \leq \frac{L}{2} \left[\frac{\beta_{1}}{1 - \beta_{1}} \|\tilde{w}_{t-1} - w_{t}\| + \|\eta_{t}\hat{v}_{t}^{-1/2}\tilde{g}_{t}\| \right] \leq L \|\eta_{t}\hat{v}_{t}^{-1/2}\tilde{g}_{t}\|^{2} + 2L \left(\frac{\beta_{1}}{1 - \beta_{1}} \right)^{2} \|\tilde{w}_{t-1} - w_{t}\|^{2}.$$ (39) Plugging (33), (38) and (39) into (30) and taking the expectations on both sides give: $$\mathbb{E}\left[f(\overline{w}_{t+1}) + \frac{1}{1-\beta_{1}}\widetilde{\mathsf{M}}_{t}^{2}\|\eta_{t}\hat{v}_{t}^{-1/2}\| - \left(f(\overline{w}_{t}) + \frac{1}{1-\beta_{1}}\widetilde{\mathsf{M}}_{t}^{2}\|\eta_{t-1}\hat{v}_{t-1}^{-1/2}\|\right)\right] \\ \leq \mathbb{E}\left[-\nabla f(w_{t})^{\top}\eta_{t-1}\hat{v}_{t-1}^{-1/2}\bar{g}_{t} - \nabla f(w_{t})^{\top}\eta_{t}\hat{v}_{t}^{-1/2}(\beta_{1}g_{t-1} + m_{t+1})\right] \\ + \mathbb{E}\left[2L\|\eta_{t}\hat{v}_{t}^{-1/2}\tilde{g}_{t}\|^{2} + 4L\left(\frac{\beta_{1}}{1-\beta_{1}}\right)^{2}\|\tilde{w}_{t-1} - w_{t}\|^{2}\right],$$ where $\tilde{\mathsf{M}}_t^2 = (a_t \beta_1^2 + \beta_1) \mathsf{M}^2$. Note that the expectation of \tilde{g}_t conditioned on the filtration \mathcal{F}_t reads as follows $$\mathbb{E}\left[\nabla f(w_t)^{\top} \bar{g}_t\right] = \mathbb{E}\left[\nabla f(w_t)^{\top} (g_t - \beta_1 m_t)\right] = (1 - a_t \beta_1) \|\nabla f(w_t)\|^2. \tag{40}$$ Summing from t = 1 to t = T leads to $$\frac{1}{\mathsf{M}} \sum_{t=1}^{T_{\mathsf{M}}} \left((1 - a_{t}\beta_{1})\eta_{t-1} + (\beta_{1} + a_{t})\eta_{t} \right) \|\nabla f(w_{t})\|^{2} \leq \\ \mathbb{E} \left[f(\overline{w}_{1}) + \frac{1}{1 - \beta_{1}} \tilde{\mathsf{M}}_{t}^{2} \|\eta_{0} \hat{v}_{0}^{-1/2} \| - \left(f(\overline{w}_{T_{\mathsf{M}}+1}) + \frac{1}{1 - \beta_{1}} \tilde{\mathsf{M}}_{t}^{2} \|\eta_{T_{\mathsf{M}}} \hat{v}_{T_{\mathsf{M}}}^{-1/2} \| \right) \right] \\ + 2L \sum_{t=1}^{T_{\mathsf{M}}} \mathbb{E} \left[\|\eta_{t} \hat{v}_{t}^{-1/2} \tilde{g}_{t}\|^{2} \right] + 4L \left(\frac{\beta_{1}}{1 - \beta_{1}} \right)^{2} \sum_{t=1}^{T_{\mathsf{M}}} \mathbb{E} \left[\|\tilde{w}_{t-1} - w_{t}\|^{2} \right] \\ \leq \mathbb{E} \left[\Delta f + \frac{1}{1 - \beta_{1}} \tilde{\mathsf{M}}_{t}^{2} \|\eta_{0} \hat{v}_{0}^{-1/2} \| \right] + 2L \sum_{t=1}^{T_{\mathsf{M}}} \mathbb{E} \left[\|\eta_{t} \hat{v}_{t}^{-1/2} \tilde{g}_{t}\|^{2} \right] \\ + 4L \left(\frac{\beta_{1}}{1 - \beta_{1}} \right)^{2} \sum_{t=1}^{T_{\mathsf{M}}} \mathbb{E} \left[\|\tilde{w}_{t-1} - w_{t}\|^{2} \right] , \tag{41}$$ where we denote $\Delta f := f(\overline{w}_1) - f(\overline{w}_{T_M+1})$. We note that by definition of \hat{v}_t , and a constant learning rate η_t , we have $$\begin{split} \|\tilde{w}_{t-1} - w_t\|^2 &= \|\eta_{t-1}\hat{v}_{t-1}^{-1/2}(\theta_{t-1} + h_t)\|^2 \\ &= \|\eta_{t-1}\hat{v}_{t-1}^{-1/2}(\theta_{t-1} + \beta_1\theta_{t-2} + (1 - \beta_1)m_t)\|^2 \\ &\leq \|\eta_{t-1}\hat{v}_{t-1}^{-1/2}\theta_{t-1}\|^2 + \|\eta_{t-2}\hat{v}_{t-2}^{-1/2}\beta_1\theta_{t-2}\|^2 + (1 - \beta_1)^2 \|\eta_{t-1}\hat{v}_{t-1}^{-1/2}m_t\|^2 \;. \end{split}$$ Using Lemma 4 we have $$\sum_{t=1}^{T_{\mathsf{M}}} \mathbb{E}\left[\|\tilde{w}_{t-1} - w_t\|^2\right] \leq (1 + \beta_1^2) \frac{\eta^2 dT_{\mathsf{M}} (1 - \beta_1)}{(1 - \beta_2)(1 - \gamma)} + (1 - \beta_1)^2 \sum_{t=1}^{T_{\mathsf{M}}} \mathbb{E}[\|\eta_{t-1} \hat{v}_{t-1}^{-1/2} m_t\|] \ .$$ Assume $a_m = \min_{1,\dots,T_M} a_t$ and denote $\tilde{\mathsf{M}}_m^2 = (a_m \beta_1^2 + \beta_1) \mathsf{M}^2$. Setting a constant learning rate $\eta_t = \eta$ and plugging in (41) yields: $$\mathbb{E}[\|\nabla f(w_T)\|^2] = \frac{1}{\sum_{j=1}^{T_{\mathsf{M}}} \eta_j} \sum_{t=1}^{T_{\mathsf{M}}} \eta_t \|\nabla f(w_t)\|^2 = \frac{\sum_{1}^{T_{\mathsf{M}}} \|\nabla f(w_t)\|^2}{T_{\mathsf{M}}}$$ $$\leq \frac{\mathsf{M}}{T_{\mathsf{M}} \eta((1 - a_m \beta_1) + (\beta_1 + a_m))} \mathbb{E}\left[\Delta f + \frac{1}{1 - \beta_1} \tilde{\mathsf{M}}_m^2 \|\eta_0 \hat{v}_0^{-1/2}\|\right]$$ $$+ \frac{4L \left(\frac{\beta_1}{1 - \beta_1}\right)^2 \mathsf{M}}{T_{\mathsf{M}} \eta((1 - a_m \beta_1) + (\beta_1 + a_m))} (1 + \beta_1^2) \frac{\eta^2 dT_{\mathsf{M}} (1 - \beta_1)}{(1 - \beta_2)(1 - \gamma)}$$ $$+ \frac{\mathsf{M}}{T_{\mathsf{M}} \eta((1 - a_m \beta_1) + (\beta_1 + a_m))} (1 - \beta_1)^2 \sum_{t=1}^{T_{\mathsf{M}}} \mathbb{E}[\|\eta_{t-1} \hat{v}_{t-1}^{-1/2} m_t\|]$$ $$+ \frac{2L\mathsf{M}}{T_{\mathsf{M}} \eta((1 - a_m \beta_1) + (\beta_1 + a_m))} \sum_{t=1}^{T_{\mathsf{M}}} \mathbb{E}[\|\eta_t \hat{v}_t^{-1/2} \tilde{g}_t\|^2],$$ where T is a random termination number distributed according (4) and T_M is the maximum number of iteration. Setting the stepsize to $\eta = \frac{1}{\sqrt{dT_{\rm M}}}$ yields: $$\mathbb{E}[\|\nabla f(w_T)\|^2] \leq C_{1,m} \sqrt{\frac{d}{T_{\mathsf{M}}}} + C_{2,m} \frac{1}{T_{\mathsf{M}}} + \frac{\eta}{T_{\mathsf{M}}} D_{1,m} \mathbb{E}[\|\hat{v}_{t-1}^{-1/2} m_t\|] + \frac{\eta}{T_{\mathsf{M}}} D_{2,m} \mathbb{E}[\|\hat{v}_{t-1}^{-1/2} \tilde{g}_t\|] ,$$ where $$C_{1,m} = \frac{\mathsf{M}}{(1 - a_m \beta_1) + (\beta_1 + a_m)} \Delta f + \frac{4L \left(\frac{\beta_1}{1 - \beta_1}\right)^2 \mathsf{M}}{(1 - a_m \beta_1) + (\beta_1 + a_m)} \frac{(1 + \beta_1^2)(1 - \beta_1)}{(1 - \beta_2)(1 - \gamma)},$$ $$C_{2,m} = \frac{\mathsf{M}}{(1 - \beta_1) \left((1 - a_m \beta_1) + (\beta_1 + a_m)\right)} (a_m \beta_1^2 + \beta_1) \mathsf{M}^2 \mathbb{E}[\|\hat{v}_0^{-1/2}\|].$$ Simple case as in Zhou et al. (2018): if $\beta_1 = 0$ then $\tilde{g}_t = g_t + m_{t+1}$ and $g_t = \theta_t$. Also using Lemma 4 we have that: $$\sum_{t=1}^{T_{\mathsf{M}}} \eta_t^2 \mathbb{E}\left[\left\| \hat{v}_t^{-1/2} g_t \right\|_2^2 \right] \le \frac{\eta^2 dT_{\mathsf{M}}}{(1 - \beta_2)} ;$$ which leads to the final bound: $$\mathbb{E}[\|\nabla f(w_T)\|^2] \le \sqrt{\frac{d}{T_M}} \tilde{C}_{1,m} + \frac{1}{T_M} \tilde{C}_{2,m} ,$$ where $$\begin{split} \tilde{C}_{1,m} &= C_{1,m} + \frac{\mathsf{M}}{(1-a_m\beta_1) + (\beta_1 + a_m)} \left[\frac{a_m(1-\beta_1)^2}{1-\beta_2} + 2L \frac{1}{1-\beta_2} \right] \;, \\ \tilde{C}_{2,m} &= C_{2,m} = \frac{\mathsf{M}}{(1-\beta_1) \left((1-a_m\beta_1) + (\beta_1 + a_m) \right)} \tilde{\mathsf{M}}_m^2 \mathbb{E}[\|\hat{v}_0^{-1/2}\|] \;. \end{split}$$