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Supplementary Material: An Optimistic Acceleration of AMSGrad for
Nonconvex Optimization

Appendix A. Proof of Theorem 1

Theorem. Suppose the learner incurs a sequence of convex loss functions {{(-)}. Then, OPT-
AMSGRAD (Algorithm 2) has regret
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where M1 = 1011+ (1 — B1)mus1, gt = VE(wy), Nnin := ming 1y and D2 is the diameter of
the bounded set ©. The result holds for any benchmark w* € © and any step size sequence {1 }>o.

Proof Beforehand, we denote:

Gt = B1bi—1 + (1 — B1)ge

5 (10)
M1 = P10i—1 + (1 — B1)meyr,

where we recall that g; and my1 are respectively the gradient V/;(w;) and the predictable guess.
By regret decomposition, we have that
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Recall the notation 1;(x) and the Bregman divergence By, (u,v) defined Section 4. We ex-

ploit a useful inequality (which appears in e.g., (Tseng, 2008)). For any update of the form w =
arg mingce (w, #) + By (w, v), it holds that
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(W —u,0) < By(u,v) — By(u, W) — By(w,v) foranyu e © . (12)
For 31 = 0, we can rewrite the update on line 8 of (Algorithm 2) as
Bes1 = arg min g (w, ) + By, (w, @) . (13)
weO

By using (12) for (13) with @ = w41 (the output of the minimization problem), v = w* and
v = W, we have

~ ko~ 1 * ~ * ~ ~ ~
(W1 — w™,ge) < E[Bwt(w ,Wt) — By, (W, Wry1) — By, (@ry1,01)] - (14)
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We can also rewrite the update on line 9 of (Algorithm 2) at time ¢ as

Wit = arg Minyee M1 (W, Me41) + By, (w, Wit1) - (15)
and, by using (12) for (15) (written at iteration ¢), with & = w, (the output of the minimization

problem), © = w41 and v = wy, we have

. - 1 - - - .
(wy — Wig1,my) < p” [By,_, (i1, 1) — By, (W41, we) — By, _, (wi, )] - (16)

By (11), (14), and (16), we obtain
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which is further bounded by
L .
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Ry < 3 { gl = deaallfo, + o =il + s =0, g~ d
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1 o T ,
+ E(Bwl (@41, D1) = By, (D1, @) =5 [ee1 = willy, (18)
Ay
+ B¢t(w*7 ’lIJt) - Bwt(w*a UN}t-H) )} )
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where the inequality is due to ||w; — W1y, ||g: =17

= infg~ %Hwt—wwl H%pt_l ‘|‘§ gt —
||, by Young’s inequality and the 1-strongly convex of ¢;—1 () with respect to || - ||y,_, which

yields that Bwt71 (ﬁ)t+1, wt) > %H'Ij}t_t,_l — wt”it > 0.
To proceed, notice that

Ay := By, (Ws41,W¢) — By, (W41, 0¢)

(19)
. L 2 .1/2y, - -
= (Wyy1 — wt,dlag(vt/l ’Ut/ )11 — ) <0,
as the sequence {?;} is non-decreasing. And that
* o~ * o~ * ~ . 1/2 ~1/2 * ~
Ag 1= By, (w", @) — By, (w*, b 41) = (w* — Wy, diag(d) ) — o )(w — Wiy1))

(20)
< (max(w*[i] — W41t Z@tlfl 1/2[ ).
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Therefore, by (18) (20),(19), we have

SL/2p By, (w*,
m<ﬁ> 2 J%;—+ZAanM+WmZm
min g t=1

since [|gs — Gellps , = llge — B10:—1 — (1 — B1)gellys . = B2llge — Or—1lly;_,- This completes the
proof.
OJ

Appendix B. Proof of Corollary 1

Corollary. Suppose 1 = 0 and {v;}1~0 is a monotonically increasing sequence, then we obtain
the following regret bound for any w* € © and sequence of stepsizes {n; = 1/\/t}t>0:

d 1/2
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where By, 1= By, (w*,01), gt := Vi (w) and Ny := ming ;.

Proof Recall the bound in Theorem 1:
d

By, (w*, w1 - 1/2
Rr <%T+Z lge — el | + Z "?[i) + D2 512”% Or1lly;_, -
The second term reads:
T
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To interpret the bound, let us make a rough approximation such that ZS 1 B8 (ggli] —misli])?
(g¢]i] — my[i])?. Then, we can further get an upper-bound as

T

t 1 logT
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where the last inequality is due to Cauchy-Schwarz.
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Appendix C. Proofs of Auxiliary Lemmas

Following (Yan et al., 2018) and their study of the SGD with Momentum we denote for any ¢ > 0:

B . 1 B

— W) = — 1. 21
1—51(wt 1) =5 T 1o g 2
Lemma 3. Assume a strictly positive and non increasing sequence of stepsizes {n; }1>0, 1 < B2 €
[0, 1), then the following holds:

wy = wg +

_ _ B1 ~—1/2 ~—1 —1/2 .
Wiy — Wy < 1- 3 011 Ut—lvt,{ — MYy /2 — Mty / gt

where 0; = 0; + 10,1 and G = g: — Bimy + Brge—1 + mey1.
Proof By definition (21) and using the Algorithm updates, we have:

1
Wiy — Wy = (W1 — W) — L(wt — W—_1)
1-75 1-75
1

A_I/Q(et + hig1) + 1_%7# 10, 1/ (0s—1 + hy)

== Nty
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=15 ety (O + Brbe-1) — 17— 3 ned, (1= Br)mesa
+ 1flﬁ 10,17 (1 + Brb—2) + 1 515 19,1 (1 — Br)m

Denote 0; = 60; + 510:—1 and g = g — B1mys + B1gi—1 + myr1. Notice that 0, = ﬁlét_l +(1-
B1) (gt + B19t-1)-

_ _ ~ —1/2 1 —1/2-
Wil — Wy < 1 fl Or—1 T]t—l’Ut_l/ — My 2| - My Y gt - (23)
O

Lemma 4. Assume H4, a strictly positive and a sequence of constant stepsizes {n; }¢+~o0, (f1, B2) €
[0, 1], then the following holds:
ndT;
) 1/29tH ] m(1— 1) 24)

2
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Proof We denote by index p € [1,d] the dimension of each component of vectors of interest.
Noting that for any ¢ > 0 and dimension p we have 0 ;, > vy p, then:
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where the last inequality is due to initializations. Denote v = % Then,

2 t 9
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where (a) is due to >\ BT < ﬁ Summing from ¢t = 1 to ¢ = Tjy on both sides yields:
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t=1r=1

PdT(1 = B1) - [x= e 27)
i

n*dT'(1 — B1)
T (1=-B)(1 =)’

where the last inequality is due to Zi:l Ay < ﬁ by definition of ~. O

znzxa{

C.1. Proof of Lemma 1

Lemma. Assume assumption H4, then the quantities defined in Algorithm 2 satisfy for any w € ©
andt > 0:
IV fw)] <M, (8]l <M, o] < M?

Proof Assume assumption H4 we have:

IVF(w)ll = [E[Vf(w, O <E[IVf(w, &[] <M

By induction reasoning, since ||6p|| = 0 < M and suppose that for ||6;|| < M then we have

10c1ll = 1810: + (1 = Br) gesall < Bu[|6e]] + (L = B1) [[geqr]l <M. (28)

Using the same induction reasoning we prove that

D1l = [|Bote + (1 — Ba) g7ea || < B l|0el| + (1 = Br) || g7 ]| < M? . (29)
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Appendix D. Proof of Theorem 2

Theorem. Assume HI-H4, 51 < (2 € [0, 1) and a sequence of decreasing stepsizes {n}t>o, then

the following result holds:
E [IVf(wr)[Z] < Cuy [+ Corr .
2= Tw Tw

where T' is a random termination number distributed according (4). The constants are defined as:

5 = M am (1~ 1) 1 ALAY(1 + 1)

= T amBD) + (Br + am) [ T AL e oy gy
5 (amBi — 2amB1 + f1)M? 5-1/2

©2= (1-=71)((1—ampBr) + (b1 +am))E[ 0 m ’

where Af = f(w1) — f(Wry+1) and ay, = . min_ay.

=1,...,

Proof Using H2 and the iterate w; we have:

F@e1) <f@) + V(@) (@i — ) + g”@tﬂ — w2

<f(@y) + V f(wy) " Wiy — W)

> (30)
L
+ (Vf(ws) — Vf(wt))T (W1 — W) +§Hwt+1 — Wy -
B
Term A. Using Lemma 3, we have that:
Vf(we) " (We1 — ;) < Vf(we) " [1 flﬁl Br-1 [ﬂt—lf};ll/ — iy } - nt®t1/2§t}

&IWﬂwWW1%¥—mt/W@HPVﬂW)W%ﬂ@,

-1
where the inequality is due to trivial inequality for positive diagonal matrix. Using Lemma 1 and
assumption H3 we obtain:

_ _ B1(1+ pr 1 1 —1/2.
V) e -0 < PP 2 o2 - 9 T
(31)
—1/2 . . . L—1/2 .—1/2
where we have used the fact that 70, is a diagonal matrix such that n;_10,_{"~ = n:?, =0
(decreasing stepsize and max operator). Also note that:
—Vf(wt)Tnt@t_l/Qf]t = —Vf(wt)Tﬁtqﬁt__llﬂgt — Vf(wy)" m@t_l/Q - 77tU_1/ ]
- Vf(wt) Me—10;_ 1 (5191& 1+ mit1)

< =V f(we) 18,7 + (1 = aeBOM[|[me—rd, 21| — e, 2]

— Vf(wt)Tm@;lﬂ(ﬁlgtq + myt1)
(32)
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where we have used Lemma 1 on ||g¢|| and where that §; = g + 519t—1 + Mut1 = g¢ — S +
B1gt—1 + my11. Plugging (32) into (31) yields:

V f(wi) " (Wey1 —w1)

< =V f(wy) 19,1 Y25, + (atB} — 2a181 + BLM?[||m—19,_{ e | = [l ;12 1l (33)

1
1—5
— V£ (we) Tty P (Brgior + minr) |
Term B. By Cauchy-Schwarz (CS) inequality we have:
(VI@:) = VI (we)" @er =) < |V F (@) = Vf (we)||[@e1 — ]| (34)
Using smoothness assumption H2:

IV f(@w:) =V f(we)|| < Llfws — wel

N (35
ngﬁ1 e — @]
By Lemma 3 we also have:
Wiyl — Wt = b 011 {nt 10, 11/2 — Nty 12 ] — N0y 1/
1—0
= g et [T )oY 2>‘1] —miy g G6)

- [I - (Ut@t_lﬂ)(ﬂt— 10,1 N } (W1 — wy) — nt@t_l/Qgt )
1—-05

where the last equality is due to ét_lnt_lﬁ; 11/ 2 W¢—1 — w¢ by construction of ét. Taking the

norms on both sides, observing ||I — (10, 1/2 ) (Me—10,_1 1/2 )71l < 1 due to the decreasing stepsize
and the construction of 9, and using CS inequality yield:

. _ ~ ~—1/2~
@41 — ]| < -1 — wil| + [Imed; G| - (37)

b1
1-53

We recall Young’s inequality with a constant § € (0, 1) as follows:
1
(X[Y) < SIXI*+ oIV

Plugging (35) and (37) into (34) returns:

(Vf(wy) — Vf(wt))T (W41 — W) SLl

2
+L< B )H@A—wm?

B —1/2- N
— 5 70, " Gellllwe — W]

1—-p

Applying Young’s inequality with 6 — 1 8 5; on the product [|n:d; 1/2 Jt||||we — wi—1|| yields:

A1
— A

2
(V5 @) — Vi (we) (@es — W) < Lneoy 1/2gtH2+2L( )Hwt—l—wtlz- (38)
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The last term %H@Hl — w;|| can be upper bounded using (37):

L L[

Bi - —1/2
Pl R el TS B U

(39)

2
<Lumv”2~\2+2L( ﬁlﬁl) -1 — wr]?

Plugging (33), (38) and (39) into (30) and taking the expectations on both sides give:
— _1 2 . 1 -1
B | (@) + g Wi = (10 + 5 Wi )

E[—Vf(wt) mert {250 = V £ w) ooy P Bugies +mi)]

2
B 2Ly ~||2+4L< o) ||wt1—wtu2] ,

where |\~/I? = (ay B% + ﬁl)MZ. Note that the expectation of g; conditioned on the filtration F; reads
as follows

E[V(w)Ta] =B [Vw) (g - frm)| = (1 = ap) VSl @0)

Summing from ¢ = 1to ¢ = T leads to

Tw
S (1~ aBrme + (B + ) |V Fwo)]? <
t=1

1 - _ 1
E[ﬂwm = w2l (£@nn) + = Wl 1) |
2 Tm
+2LZE[HW 2] + 4 (2 ) > & -1~ wil] m

1 _ —1/2.
<E a7+ g Welmi; ] + 0 3 E [l 5]
t=1

+4L( b )2%1@[\\@ L w?]
1_ﬁ1 t— t )

t=1

where we denote Af := f(w1) — f(Wr,+1). We note that by definition of 7, and a constant
learning rate 7;, we have
o1 = wel* = -1, (B2 + o)
= llmat, {201+ Brbs2 + (1 = Brymy)|?
< a0 {00 + 2,23 Bubea|* + (1 = 81 a0, ]
Using Lemma 4 we have

Tw

i nPdT(1 - fy) S -y
;E (01 —wilP] < (0 + ) g + (1 Bl)ng[!\mwtllthH] .
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Assume a,,, = min; 7, a; and denote M2, = (a,,3? + $1)M?. Setting a constant learning
rate 7 = 7 and plugging in (41) yields:

S M IV (we) |2
Vf Vf 2 1
B[V f(wr) EIJEMI oI = £
M 2 —1/2
: Tun((1 — ampBr) + (B1 + am)) [Af - ﬁ M2, oty ||
Tarn((1 = amfPr) + (B1 + am)) VA= By)(1—)
M 3.2 & L —1/2
" Tyun((1 = amfBr) + (B1 + am)) (1—=51) ;Ewm—lvt—l my|]

2LM v e
t D@~ anB) 7 Bt ) 2 et aill

where 7' is a random termination number distributed according (4) and 7' is the maximum number
. . . . 1 . .
of iteration. Setting the stepsize to n = N yields :

d 1 Ui . 1/2 Ui /2~
2 < R N _— -
B[V (wr)I*) < Cuuny| 7 + Cam + 7Dl mul]) + 7ol 511)

where
2
Crm = M Af s L(Z5) M aaso-s)
b (1 - CLmﬁl) + (/61 + am) (1 - amﬁl) + (/81 + am) (1 - 52)(1 - ’7) ’
Com M (am B2 + BME[ 25 ] -

T (1= B1) (1= amBr) + (Br + am))
Simple case as in Zhou et al. (2018): if 5; = 0 then g = g+ + my41 and g; = ;. Also using
Lemma 4 we have that:
>ota

7%, H ] fing“g) .

which leads to the final bound:
BV f(wr) 2] < 4| - Crm + -2 C
T > TM 1,m TM 2,m »
am (1 — B1)? 1

M
(1 = amp1) + (b1 + am) [ 1_52 +2L1—52

S _ _ M ~—1/2
Com = Com = T3 10 = amB) + Br - am)) mEU%0 -

where

CN’l,m = C11,m +




