
Proceedings of Machine Learning Research 157, 2021 ACML 2021

Lifelong Learning with Branching Experts (Appendix)

Appendix A. Proofs in Section 3

A.1. Proof of Theorem 1

Recall that based on the ε-cover assumption, for any expert i, his true loss `τ,i at step τ differs from
the surrogate loss ¯̀

τ,i = `τ,πτ+1(i) by at most ε. As our algorithm computes the probability of playing
expert i at a later step t based on such a loss ¯̀

τ,i instead of `τ,i, it is simpler to use ¯̀
τ,i as a surrogate

loss for expert i at step τ and bound a surrogate regret in terms of such surrogate losses, which we
will do in the following. It is straightforward to see that the true regret is only larger by at most 2εT .

Let us divide the T time steps into M consecutive intervals I1, I2, . . . , IM , such that the set
of experts grows at the start but remains the same within each interval. For an interval Im, let
Im = [am, bm], so that a1 = 1, bM = T , and am+1 = bm + 1 for 1 ≤ m ≤M − 1.

Note that the regret in each interval Im can be bounded using standard approaches for the non-
branching case. Here, we follow that in Section 2.5 of (Bubeck, 2011) for Hedge algorithm with
time-varying learning rates.

Consider any interval Im. For any t ∈ Im, let

Φt =
1

ηt+1
log

 1

Nt+1

∑
i∈[Nt+1]

e−ηt+1L̄t,i

 .

As shown in the proof of Theorem 2.4 in (Bubeck, 2011),

〈pt, ¯̀
t〉 ≤ Φt−1 − Φt + ηt (1)

when both steps t and t + 1 belong to Im so that Nt = Nt+1 and ηt+1 =
√

m
t+1 logNt+1 ≤ ηt.

For step t = bm ending interval Im, the next step t + 1 = am+1 belongs to interval Im+1 with
Nt+1 > Nt experts, and the inequality (1) may not hold. In this case, with t = bm, we define

Φ′t =
1

η′t+1

log

 1

Nt

∑
i∈[Nt]

e−η
′
t+1L̄t,i

 ,

with η′t+1 =
√

m
t+1 logNt ≤ ηt, so that we can similarly have

〈pt, ¯̀
t〉 ≤ Φt−1 − Φ′t + ηt.

For convenience later, we let Φ′T = ΦT at the last step. Then, the following lemma bounds the
expected loss of our algorithm in interval Im, which we prove in Appendix A.1.1.

© 2021 .

Lemma 1
∑

t∈Im〈pt, ¯̀
t〉 ≤ Φbm−1 − Φ′bm +

∑
t∈Im ηt,

To bound the total expected loss of our algorithm, we sum the bound above over m to get
T∑
t=1

〈pt, ¯̀
t〉 ≤

M∑
m=1

(
Φbm−1 − Φ′bm

)
+

T∑
t=1

ηt.

The second term on the righthand side above is at most
T∑
t=1

√
M logN

t
≤ 2
√
MT logN,

while the first term can be decomposed as
M∑
m=1

(
Φbm−1 − Φbm

)
+

M∑
m=1

(
Φbm − Φ′bm

)
with the first sum above becomes Φ0 − ΦT ≤ L̄T,i∗ + logN

ηT+1
. Finally, the theorem follows from the

following lemma, which we prove in Appendix A.1.2.

Lemma 2
∑M

m=1

(
Φbm − Φ′bm

)
≤ O(

√
TM logN).

A.1.1. PROOF OF LEMMA 1

Recall that Im is the interval [am, bm], and 〈pt, `t〉 is at most (Φt−1 − Φt) + ηt for t ∈ Im \ {bm}
and is at most (Φt−1 − Φ′t) + ηt for t = bm. Therefore,∑

t∈Im

〈pt, `t〉 ≤

(
bm−1∑
t=am

(Φt−1 − Φt)

)
+
(
Φbm−1 − Φ′bm

)
+
∑
t∈Im

ηt

≤ Φam−1 − Φ′bm +
∑
t∈Im

ηt

= Φbm−1 − Φ′bm +
∑
t∈Im

ηt.

A.1.2. PROOF OF LEMMA 2

First note that for m = M , we have bM = T and ΦT = Φ′T . Now consider any 1 ≤ m ≤ M − 1,

let t = bm, and recall that η′t+1 =
√

m logNt
t+1 <

√
(m+1) logNt+1

t+1 = ηt+1. Then we have

Φt =
1

ηt+1
log

 1

Nt+1

∑
i∈[Nt+1]

e−ηt+1L̄t,i


≤ 1

ηt+1
log max

i∈[Nt+1]
e−ηt+1L̄t,i

=
1

η′t+1

log max
i∈[Nt+1]

e−η
′
t+1L̄t,i

≤ 1

η′t+1

log
∑
i′∈[Nt]

e−η
′
t+1(L̄t,i′−1),

LIFELONG LEARNING WITH BRANCHING EXPERTS (APPENDIX)

where the last line follows from the fact that for any expert i ∈ [Nt+1] split from expert i′ ∈ [Nt],

L̄t,i = L̄t−1,i′ + `t,i ≥ L̄t−1,i′ + `t,i′ − 1 = L̄t,i′ − 1.

This implies that for t = bm,

Φt − Φ′t ≤
1

η′t+1

log
∑
i′∈[Nt]

e−η
′
t+1(L̄t,i′−1) − Φ′t

=
1

η′t+1

log
(
Nte

η′t+1

)
=

1

η′t+1

logNt + 1

≤ O

(√
T logNt

m

)
.

By summing over m, we have
M−1∑
m=1

(
Φbm − Φ′bm

)
≤

M−1∑
m=1

O

(√
T logN

m

)
≤ O

(√
TM logN

)
,

which completes the proof of the lemma.

A.2. Proof of Theorem 2

Let us first focus on the case where ε ≤ ∆/8. The following lemma shows that a suboptimal expert
is unlikely to have small accumulated loss, which we prove in Appendix A.2.1.

Lemma 3 For any expert i with gap ∆i and any time t,

Pr

[
L̄t,i − L̄t,i∗ ≤

1

4
∆it

]
≤ e−Ω(∆2

i t).

This implies that a suboptimal expert i with gap ∆i is unlikely to be played by our Hedge-based
algorithm after some time step t̃i, and here we choose

t̃i =
c

∆2
i

logN, for a large enough constant c.

Recall that in the non-branching case, (Mourtada and Gaïffas, 2019) relied on the regret bound in
adversarial setting to bound the regret before the last of these steps t̃i’s. In our case with branching
experts, we cannot afford to do so as the adversarial bound has an extra

√
M factor which we would

like to avoid. Instead, we will take a more careful analysis, by partitioning experts into groups and
bounding their regrets separately. More precisely, for any r ≥ 0, let

Ar = {i : Λr ≤ ∆i ≤ 2Λr} where Λr = 2r∆,

and let r̃ = maxi∈Ar t̃i. In the following, we will use the notation qt,i to denote the probability that
our algorithm plays expert i in time t, with qt,i = 0 for i 6∈ Ht.

The next lemma bounds the pseudo-regret before step r̃ for experts in each group Ar, which we
prove in Appendix A.2.2.

Lemma 4 For any r,
∑

t≤r̃
∑

i∈Ar ∆i · qt,i ≤ O(logN
Λr

).

To bound the pseudo-regret after step r̃, we rely on the following lemma, which we prove in
Appendix A.2.3.

Lemma 5 For any r,
∑

t>r̃

∑
i∈Ar ∆i · qt,i ≤ O(1

Λr
).

By summing the regret bounds in the last two lemmas, we can conclude that the total pseudo-
regret is at most ∑

r≥0

O
(

logN

Λr

)
≤
∑
r≥0

O
(

logN

2r∆

)
≤ O

(
logN

∆

)
.

Note that the bound in this case is bad when the gap ∆ is small. However, by a standard
approach, one can show that the regret is still at most O(

√
T logN), by considering some threshold

∆′ =
√

(logN)/T for gaps. This is because those experts with gaps at most ∆′ contribute a
total regret of at most ∆′T ≤ O(

√
T logN), while those remaining, if any, contribute at most

O(logN
∆′) ≤ O(

√
T logN).

For the second case, we rely on the following, which we prove in Appendix A.2.4. The theorem
then follows by combining the bounds in these two cases.

Lemma 6 If ε > ∆/8, then the regret of our algorithm is at most O(
√
T logN + εT).

A.2.1. PROOF OF LEMMA 3

Recall that for any expert j, L̄t,j =
∑t

τ=1
¯̀
τ,j where ¯̀

τ,j = `τ,πτ+1(j) with πτ (j) being the expert
representing expert j at step τ , and we have |Lt,j − L̄t,j | ≤ εt by the ε-cover assumption. Now
consider any expert i with gap ∆i so that E[Lt,i − Lt,i∗] = ∆it, where

i∗ = arg min
i∈H

E[`t,i]

denotes the optimal expert in H . By Hoeffding bound, we have

Pr

[
Lt,i − Lt,i∗ ≤

1

2
∆it

]
≤ e−Ω(∆2

i t).

Then the lemma follows as L̄t,i − L̄t,i∗ and Lt,i − Lt,i∗ differ by at most 2εt ≤ 1
4∆it, under the

assumption that ε ≤ ∆i/8.

A.2.2. PROOF OF LEMMA 4

For any r, we have ∑
t≤r̃

∑
i∈Ar

∆i · qt,i ≤
∑
t≤r̃

2Λr ≤
2c

Λr
logN,

as r̃ ≤ c
Λ2
r

logN .

LIFELONG LEARNING WITH BRANCHING EXPERTS (APPENDIX)

A.2.3. PROOF OF LEMMA 5

Recall the definition that i∗ = arg mini∈H E[`t,i], ∆i = E[`t,i− `t,i∗], and ∆ = mini 6=i∗ ∆i, as well
as

Ar = {i ∈ H : Λr ≤ ∆i ≤ 2Λr} where Λr = 2r∆.

Consider any r and note that any expert i ∈ Ar has Λr ≤ ∆i ≤ 2Λr. Thus for any t, we have∑
i∈Ar

∆i · qt,i ≤ 2Λr
∑
i∈Ar

qt,i,

and we can focus on bounding the sum
∑

i∈Ar qt,i, which is the probability that our algorithm plays
an expert in Ar at step t.

Consider any step t > r̃, and let Bt denote the event that

∃i ∈ Ar such that L̄t−1,i − L̄t−1,i∗ ≤
1

4
∆i(t− 1),

which by Lemma 3 and a union bound is at most∑
i∈Ar

e−Ω(∆2
i t) ≤ N · e−Ω(Λ2

r r̃) · e−Ω(Λ2
r(t−r̃)).

Then using the fact that r̃ ≥ c
(2Λr)2

logN for a large enough constant c, we obtain

Pr [Bt] ≤ e−Ω(Λ2
r(t−r̃)).

Now assume that the event Bt does not happen. Recall that our algorithm plays any active expert
i in Ar with probability

e−ηtL̄t−1,i∑
j e
−ηtL̄t−1,j

≤ e−ηt(L̄t−1,i−L̄t−1,i∗) ≤ e−ηt
1
4

∆i(t−1).

When there are Nt active experts, this is at most

e
−Ω

(√
Λ2
rt logNt

)
≤ e

−Ω
(√

Λ2
r r̃ logNt

)
· e−Ω

(√
Λ2
rt
)

≤ 1

Nt
· e−Ω

(√
Λ2
rt
)
,

which implies that the contribution from all the active experts in Ar is at most

Nt ·
1

Nt
· e−Ω

(√
Λ2
rt
)
≤ e−Ω

(√
Λ2
rt
)
.

Note that this holds for any possible values of Nt, conditioned on the event Bt not happening.
Therefore, we can conclude that for any step t > r̃,∑

i∈Ar

qt,i ≤ Pr [Bt] + (1− Pr [Bt]) e
−Ω

(√
Λ2
rt
)

≤ e−Ω(Λ2
r(t−r̃)) + e

−Ω
(√

Λ2
rt
)
.

Finally, by summing the bound over t > r̃ and using the same analysis from the proof of Theorem
2 in (Mourtada and Gaïffas, 2019), which is based on the inequalities that

∑
t≥1 2−αt ≤ O(1/α)

and
∑

t≥1 2−α
√
t ≤ O(1/α2), for any α > 0, we obtain∑

t>r̃

∑
i∈Ar

∆i · qt,i ≤ 2Λr · O
(

1

Λ2
r

)
≤ O

(
1

Λr

)
.

This proves the lemma.

A.2.4. PROOF OF LEMMA 6

Recall that in the proof of Theorem 2, we have shown that in the first case when the smallest gap ∆
satisfies the condition ε ≤ ∆/8, then the regret is at mostO(logN

∆). Now we bound the regret for the
other case, with ε > ∆/8. Note that those experts with gaps at most 8ε only contribute a total regret
of at most 8εT . For those remaining experts with larger gaps, we can apply the bound in the first
case to bound their regret by O(logN

ε). Thus, the total regret in this case is at most O(logN
ε + εT).

Then let us consider two subcases, depending on whether or not ε > ∆′/8.
In the first subcase, when ε > ∆′/8, the regret upper bound above becomes O(

√
T logN + εT).

In the second subcase, with ε ≤ ∆′/8, we can apply the upper bound in the first case to bound the
regret of those experts, if any, with gaps at least ∆′ by O(logN

∆′) ≤ O(
√
T logN). Those experts

with gaps at most ∆′ only contribute a total regret of at most T ·∆′ =
√
T logN . Thus, in both

subcases, the regret is at most O(
√
T logN + εT). This proves the lemma.

A.3. Proof of Theorem 3

The key lemma to prove the theorem is the following, which we prove in Appendix A.3.1. As we will
also use it later in different settings, we describe it in a slightly more general form, by considering
any loss vectors ft’s, instead of just the surrogate loss vectors ¯̀

t ’s used by Algorithm 2, as well as
bounding the regret starting from any step against any expert.

Lemma 7 Suppose we run Algorithm 2 using the loss vectors ft’s and consider the regret with
respect to them against an expert i starting from some time step s. Let pt be the distribution it plays
at step t, let rt,i = Ej∼pt [ft,j] − ft,i be the regret at step t, and let V =

∑T
t=s r

2
t,i. Let Mi be the

number of branching steps of i’s representatives starting from step s. Then

T∑
t=s

rt,i ≤ O
(√

V (Mi logN + log(NT))
)
.

Applying this lemma with the surrogate loss vectors ¯̀
t’s and noting that V ≤ T , we obtain a

regret bound of O(
√
T (Mi logN + log(NT)) with respect to such losses. By incorporating the

approximation errors based on the ε-cover assumption, we can conclude that the regret with respect
to the true losses is larger by at most O(εT), which proves the theorem.

A.3.1. PROOF OF LEMMA 7

For any t, let Wt =
∑

i,ηW
η
t,i. Recall that

Ŵ η
t+1,i = W η

t,i(1 + ηrt,i) and W̃ η
t+1,i = αt+1 ·

1

N̂t+1

+ (1− αt+1) · Ŵ η
t+1,i.

LIFELONG LEARNING WITH BRANCHING EXPERTS (APPENDIX)

Then by definition, we have

Wt+1 =
∑
i,η

W η
t+1,i =

∑
i,η

W̃ η
t+1,i ≤ αt+1 +

∑
i,η

W η
t,i +

∑
i,η

ηW η
t,irt,i,

with the last sum above being

∑
i,η

ηW η
t,irt,i =

∑
i′,η′

η′W η′

t,i′

∑
i

pt,i

(
E
j∼pt

[ft,j]− ft,i
)

= 0,

since Ej∼pt [ft,j] =
∑

j pt,jft,j . Consequently, we have

Wt+1 ≤ αt+1 +Wt ≤ · · · ≤
t+1∑
τ=1

ατ +W0 ≤ O(1). (2)

On the other hand, for each new (i, η) branching out from some (i′, η′), we have

W η
t+1,i = W̃ η′

t+1,i′/|Ci′,η′ | ≥ N
−12−1W̃ η′

t+1,i′ ,

which implies that

W η
t+1,i ≥ N

−Mi2− log2 t

(
t∏

τ=s

(1− ατ+1)(1 + ηrτ,i)

)
W η
s,i,

and hence

lnW η
t+1,i ≥ −O(Mi logN + log t)−

t∑
τ=s

(ατ+1 + α2
τ+1) +

t∑
τ=s

(ηrτ,i − η2r2
τ,i) + lnW η

s,i

≥ −O(Mi logN + log(Nt)) + η

t∑
τ=s

(rτ,i − ηr2
τ,i),

as lnW η
s,i ≥ ln(1

2N ·
αs
N̂s

) ≥ −O(log(Nt)). Combining this with the bound

lnW η
t+1,i ≤ lnWt+1 ≤ O(1)

from Eq. (2), we have
t∑

τ=s

rτ,i ≤ η
t∑

τ=s

r2
τ,i +

O(Mi logN + log(Nt))

η
,

for any t, i and η. For t = T , this implies the existence of some η ∈ QT with

η = Θ

(√
Mi logN + log(NT)

V

)
such that the regret starting from step s against expert i can be bounded as

T∑
τ=s

rτ,i ≤ O
(√

V (Mi logN + log(NT))
)
,

which proves the lemma.

A.4. Proof of Theorem 4

Let us start from the case that

ε ≤ ∆

8
and ∆ ≥

√
logN

T
. (3)

We will rely on the following nice property in stochastic setting that the optimal expert i∗ appears
early and it soon makes no more branching. More precisely, consider the following event Ct, for any
step t.

• Ct: step t is the first time step such that the best expert i∗ branches out before it and none
branches out from i∗ since then.

Then we have the following lemma which we prove in Appendix B.2.1.

Lemma 8 There is some step s0 ≤ O(log(N/∆)
∆) such that for any t ≥ s0, Pr[Ct] ≤ 1

t3
.

Let us first consider the regret with respect to the surrogate losses ¯̀
t’s starting from step s0, based

on Lemma 7. The key observation is that when the event Ct happens, there is no branching from the
optimal expert i∗ after step t, and we can bound the expected regret afterward by by Lemma 7 with
Mi∗ = 0 and

V =
∑
t≥s0

(
E
i∼pt

[¯̀t,i]− ¯̀
t,i∗

)2

,

while we can simply bound the regret before by t. As the event Ct is only determined by the losses
before step t and the losses afterwards are independent, we have∑

t≥s0

(
E
i∼pt

[¯̀t,i]− ¯̀
t,i∗

)
≤

∑
t≥s0

Pr[Ct] ·
(
t+O

(
E
[√

V log(NT)
]))

≤
∑
t≥s0

t

t3
+
∑
t≥s0

Pr[Ct] · O
(√

E[V] log(NT)
)

≤ O(1) +O
(√

E[V] log(NT)
)

≤ O
(√

E[V] log(NT)
)
,

since the events Ct’s are disjoint from each other. It remains to bound E[V], for which we follow
the approach in the proof of Theorem 11 in (Gaillard et al., 2014). Let the random variable S be
the number of steps after s0 such that suboptimal experts are played, and we have E[V] ≤ E[S]. To
bound E[S], note that with ε ≤ ∆

8 , we have

E
[
¯̀
t,i − ¯̀

t,i∗
]
≥ ∆− 2ε ≥ 6∆

8
,

for any t and i 6= i∗, which implies that the regret above is at least E[S] · Ω(∆). As a result, we have

E[S] · Ω(∆) ≤ O
(√

E[S] log(NT)
)
,

which implies that

E[S] ≤ O
(

log(NT)

∆2

)
.

LIFELONG LEARNING WITH BRANCHING EXPERTS (APPENDIX)

Thus, we can conclude that∑
t≥s0

(
E
i∼pt

[¯̀t,i]− ¯̀
t,i∗

)
≤ O

(√
E [S] log(NT)

)
≤ O

(
log(NT)

∆

)
.

Recall that our goal is to bound the regret with respect to the true losses, instead of the surrogate
losses above, and a simple analysis would introduce an additional O(εT) term which we would
like to avoid. Note that |¯̀t,i − `t,i| = 0 if i = i∗ and |¯̀t,i − `t,i| ≤ ε otherwise (by the ε-cover
assumption). Therefore, the additional regret for going from the surrogate losses to the true ones
after step s0 has an expected value of at most

E [S] · ε ≤ O
(
ε(log(NT))

∆2

)
≤ O

(
log(NT)

∆

)
.

As a result, the total expected pseudo regret is at most

s0 +O
(

log(NT)

∆

)
+ E [S] · ε ≤ O

(
log(N/∆)

∆

)
+O

(
log(NT)

∆

)
≤ O

(
log(NT)

∆

)
,

since ∆ ≥ 1/T according to the condition in (7).
The case when the condition does not hold in (7) can be handled using the same approach as in

the proof of Theorem 2. This completes the proof of Theorem 4.

A.4.1. PROOF OF LEMMA 8

For any step t, consider the following event

• Bt: there exists some i 6= i∗ such that for any τ ≤ t− 2, |`τ,i − `τ,i∗ | ≤ ε.

Then clearly Pr [Ct] ≤ Pr [Bt]. To bound each Pr [Bt], note that for any i 6= i∗ and any step τ ,

E [`τ,i − `τ,i∗] ≥ ∆,

so that with the condition ε ≤ ∆
8 , we have

Pr [|`τ,i − `τ,i∗ | ≤ ε] ≤ Pr [`τ,i − `τ,i∗ ≤ ε] ≤
1−∆

1− ε
≤ 1− (∆− ε) ≤ 1− 7

8
∆.

As the loss functions are independent from each other, we have

Pr [Bt] ≤
∑
i 6=i∗

Pr [∀τ ≤ t− 2 : |`τ,i − `τ,i∗ | ≤ ε]

≤ N

(
1− 7

8
∆

)t−2

≤ 1

t3

when t ≥ s0 for some s0 ≤ O(log(N/∆)
∆). This proves the lemma.

Appendix B. Proofs in Section 4

B.1. Proof of Theorem 5

Note that the expected loss of the algorithm equals
∑

k,s Eg∼Gk,s [ˆ̀k,s(g)], where Gk,s denotes the
distribution played by algG at that time, and the regret can be decomposed into two parts:

∑
k

∑
s

(
E

g∼Gk,s

[
ˆ̀
k,s(g)

]
− ˆ̀

k,s(g
∗)

)
(4)

+
∑
k

∑
s

(
ˆ̀
k,s(g

∗)− `k,s(g∗, h∗k)
)
. (5)

Then the theorem follows from the following two lemmas which bound these two parts, respectively.
We will prove them in Appendix B.1.1 and B.1.2, respectively.

Lemma 9 The sum in (4) is O(
√
T (Mg∗ logNG + log T) + εT).

Lemma 10 The sum in (5) is O(
√
TMH logNH + εT).

B.1.1. PROOF OF LEMMA 9

We can see the sum as the regret of algG for learning representations with respect to the loss vectors
ˆ̀
k,s’s, since we use them to update algG based on our Algorithm 2. Then the lemma follows from

Theorem 3 once we show that for any step t, Gt forms a good cover with respect to these loss
vectors. For this, we claim that any g is covered by ḡ = πt(g) ∈ Gt. This is because for any τ < t,
πτ+1(g) = πτ+1(ḡ) (recall the tree-shape branching structure), and

ˆ̀
τ (g)− ˆ̀

τ (ḡ) = E [`τ (πτ+1(g), h)− `τ (πτ+1(ḡ), h)] = 0,

where the expectation is taken over h sampled fromHḡττ . As a result, we can apply Theorem 3 with
ε = 0 and obtain a regret bound of O(

√
T (Mg∗ logNG + log T) with respect to such loss vectors,

which proves the lemma.

B.1.2. PROOF OF LEMMA 10

Fix any task k, and let us bound the inner sum of (5) in our main text, which is∑
s

(ˆ̀
k,s(g

∗)− `k,s(g∗, h∗k)). (6)

To ease the notation, let us drop the index k. We also use the notation ḡs = πs+1(g∗), H∗s = H ḡs
s

andH∗s = Hḡss .
Then let us express the sum in (6) as∑

s

(αs + βs + γs) ,

LIFELONG LEARNING WITH BRANCHING EXPERTS (APPENDIX)

where

αs = E
h∼H∗s

[`s(ḡs, h)]− ¯̀g∗
s (h∗k),

βs = ¯̀g∗
s (h∗k)− `s(ḡs, h∗k)

= `s(ḡs, π
ḡs
s+1(h∗k))− `s(ḡs, h∗k),

γs = `s(ḡs, h
∗
k)− `s(g∗, h∗k)

= `s(πs+1(g∗), h∗k)− `s(g∗, h∗k).

Note that βs ≤ ε and γs ≤ ε based on Assumptions 2.3 & 2.2 respectively. On the other hand, as
`s(ḡs, h) = `s(ḡs, π

ḡs
s+1(h)) = ¯̀g∗

s (h) for any h ∈ H∗s , we have

∑
s

αs =
∑
s

(
E

h∼H∗s

[
¯̀g∗
s (h)

]
− ¯̀g∗

s (h∗k)

)
.

Then we can see the sum above as the regret of algg
∗

H in task k with respect to such surrogate loss
functions ¯̀g∗

s ’s. This is because the distributionH∗s = Hḡss is updated according to the loss functions

¯̀̄gs
τ (h) = `τ (ḡτ , h̄τ) = ¯̀g∗

τ (h)

for τ < s, by noting that πτ+1(ḡs) = πτ+1(g∗) = ḡτ due to the tree-shape branching structure. Of
course it is possible that g∗ is never split out and our algorithm never actually runs it in the task. In
this case, we can still imagine actually running it, and calculate what its regret would be with respect
to such surrogate loss functions. To apply Theorem 1, it remains to show that for any s, the active set
H∗s forms a 5ε-cover with respect to such loss functions.

We claim that any h is 5ε-covered by its representative in H∗s = H ḡs
s , denoted as hs. To

see this, consider any τ < s, and let us use the notation x ≈ε y for |x − y| ≤ ε. Then by
Assumptions 2.2 & 2.3, we have

¯̀g∗
τ (h) = `τ (ḡτ , h̄τ) ≈ε `τ (ḡτ , h) ≈ε `τ (ḡs, h),

since πτ+1(ḡs) = ḡτ as discussed before. Similarly, we also have

¯̀g∗
τ (hs) ≈ε `τ (ḡτ , hs) ≈ε `τ (ḡs, hs) ≈ε `τ (ḡs, h),

as hs = πḡss (h). Consequently, we can conclude that ¯̀g∗
τ (h) ≈5ε

¯̀g∗
τ (hs) for any τ < s.

Therefore, we can apply Theorem 1 to upper bound
∑

s αs and hence the sum in (6) by
O(
√
MH,kTk logNH + εTk), where Tk is the length of task k and MH,k is the number of steps at

which g∗’s representatives branch out new predictors. Finally, by summing over k and applying the
Cauchy-Schwarz inequality, we obtain an upper bound of

O

√∑
k

MH,k

√∑
k

Tk logNH + εT

 ,

where
∑

kMH,k = MH and
∑

k Tk = T . The lemma then follows.

B.2. Proof of Theorem 6

Before the proof, let us make some remarks. Recall that in the one-task stochastic setting, our
Theorem 2 relies heavily on the nice property that the loss distribution of each expert is fixed
during the whole time, which is needed for Lemmas 4 & 5. However, in lifelong learning, the
loss distribution of a representation can actually change in different tasks as different predictors are
allowed. This means that a representation which looks good previously may turn out very bad later,
which makes the learning of representations hard. Although we can still apply Algorithm 1 and
show that after some time step t̃, each suboptimal representation is unlikely to be chosen, the loss
functions ˆ̀

t(·)’s before step t̃ looks rather like adversarial ones. Therefore, we rely on a different
algorithm, our Algorithm 2, for learning representations, which has a better form of the adversarial
regret bound, given in Lemma 7. In particular, it can utilize the nice property in the stochastic setting
that the optimal g∗ appears early and soon makes no more branching.

The proof for the theorem is very similar to that for Theorem 4. Let us consider the following
analogous event Ct, for any step t.

• Ct: step t is the first time step such that the best representation g∗ branches out before it and
none branches out from g∗ since then.

Then we have the following analogous lemma which we prove in Appendix B.2.1.

Lemma 11 There is some step s̃ ≤ O(log(NG/∆)
∆) such that for any t ≥ s̃, Pr[Ct] ≤ 1

t3
.

Let us start from the case that

ε ≤ ∆

8
and ∆ ≥

√
logNG +K logNH

T
. (7)

Recall from the proof of Theorem 5 that the regret can be decomposed into two parts:∑
t

(
E

g∼Gt

[
ˆ̀
t(g)

]
− ˆ̀

t(g
∗)

)
+
∑
t

(
ˆ̀
t(g
∗)− `∗t (g∗)

)
, (8)

with `∗t (g) = `τ (g, h∗k) when step t belongs to task k.
Note that the second sum in Eq. (8) corresponds to the learning of predictors for g∗. We bound

its expected value using the following lemma, which we prove in Appendix B.2.2.

Lemma 12 For any steps a and b, with a ≤ b,

E

[
b∑

s=a

(
ˆ̀
s(g
∗)− `∗s(g∗)

)]
≤ O

(
logNG +K logNH

∆

)
.

On the other hand, the first sum in Eq. (8) corresponds to the learning of representations. Based
on Lemma 11 given above as well as Lemma 7 in Appendix A.3, we have the following, which we
prove in Appendix B.2.3.

Lemma 13 The first sum in Eq. (8) assuming ∆ ≥ 1/T is at most

O
(

log(NGT) +K logNH

∆

)
.

LIFELONG LEARNING WITH BRANCHING EXPERTS (APPENDIX)

By combining these two lemmas together, we obtain the regret bound of O
(

log(NGT)+K logNH
∆

)
when the condition in Eq. (7) holds.

Next, let us consider the case that

∆ <

√
logNG +K logNH

T
.

In this case with a small gap, the situation becomes different in the lifelong learning setting with
multiple tasks. More precisely, a representation can have different gaps in different tasks, as different
predictors can be used, and the gap of a representation is defined as the smallest among them. This
means that even if its smallest gap is small, it can have large gaps in other tasks. Therefore, we
can not use the same argument in the proof of Theorems 2 and 4 for the case of small gaps, and in
fact our lower bound in Theorem 9 shows that it is impossible to do much better than that in the
adversarial setting. Therefore, in this case, we simply apply our adversarial regret bound for learning
representations. On the other hand, the argument in the proof of Theorems 2 and 4 still works for
learning predictors for g∗, and consequently we obtain a regret bound of

O
(√

T (Mg∗ logNG + log T) +
√
TK logNH + εT

)
.

Note that when ε ≤ O(∆), the term εT in the regret bound above is dominated by other terms. This
completes the proof of the theorem.

B.2.1. PROOF OF LEMMA 11

For any step t, consider the following event

• Bt: there is some g 6= g∗ such that for any τ ≤ t− 2 and h ∈ H , |`τ (g, h)− `τ (g∗, h)| ≤ ε.

Then clearly we have Pr[Ct] ≤ Pr[Bt]. To bound each Pr [Bt], note that for any g 6= g∗ and any
step τ in task k,

E [`τ (g, h∗k)− `τ (g∗, h∗k)] ≥ ∆,

which implies that

Pr [∀h : |`τ (g, h)− `τ (g∗, h)| ≤ ε] ≤ Pr [|`τ (g, h∗k)− `τ (g∗, h∗k)| ≤ ε]
≤ Pr [`τ (g, h∗k)− `τ (g∗, h∗k) ≤ ε]
≤ 1− (∆− ε)

≤ 1− 7

8
∆.

As the loss functions are independent from each other, we have

Pr [Bt] ≤
∑
g 6=g∗

Pr [∀τ ≤ t− 2,∀h : |`τ (g, h)− `τ (g∗, h)| ≤ ε]

≤ NG

(
1− 7

8
∆

)t−2

≤ 1

t3

when t ≥ s̃ for some s̃ ≤ O(log(NG/∆)
∆), which proves the lemma.

B.2.2. PROOF OF LEMMA 12

As discussed in the proof of Lemma 10 in Appendix B.1.2, the sum

b∑
s=a

(
ˆ̀
s(g
∗)− `∗s(g∗)

)
(9)

corresponds to the regret of learning the predictors of g∗ with respect to the surrogate loss functions
¯̀g∗
s (·)’s. While we could apply the adversarial regret bound derived there, here we aim for a better

bound, in terms of pseudo regret, in the stochastic setting. We would like to apply our results in the
one-task stochastic setting, but there are some issues which we need to handle. The first issue is that
during a task, the distribution of the surrogate loss ¯̀g∗

s (h) may change, because it depends on the
representative πs+1(g∗) which may change. The second issue is that each surrogate loss ¯̀g∗

s (h) is
only an approximation of the true loss `s(g∗, h), and even though each approximation error can be
bounded by 2ε, their accumulation may contribute Ω(εT) to the total regret, which we would like to
avoid.

Consider any steps a ≤ b, and recall the definition that `∗s(g) = `s(g, h
∗
k) when step s belongs to

task k. Following the proof of Lemma 10 in Appendix B.1.2, let us express the sum in (9) as

b∑
s=a

(
ˆ̀
s(g
∗)− `∗s(g∗)

)
=

b∑
s=a

(αs + βs + γs) ,

where for step s belonging to task k,

αs = ˆ̀
s(g
∗)− ¯̀g∗

s (h∗k)

= E
h∼H∗s

[
¯̀g∗
s (h)

]
− ¯̀g∗

s (h∗k),

βs = ¯̀g∗
s (h∗k)− `s(ḡs, h∗k)

= `s(ḡs, π
ḡs
s+1(h∗k))− `s(ḡs, h∗k),

γs = `s(ḡs, h
∗
k)− `s(g∗, h∗k)

= `s(πs+1(g∗), h∗k)− `s(g∗, h∗k).

Note that αs corresponds to the regret at step s, while βs and γs correspond to the approximation
errors. The lemma follows from the following three propositions for bounding their expected sums
respectively.

Proposition B.1
∑b

s=a E[αs] ≤ O(K∆ logNH).

Proof As discussed previously in the proof of Lemma 10,
∑

s αs corresponds to the regret of learning
predictors for g∗ with respect to the loss functions ¯̀g∗

s (·)’s. Instead of applying the adversarial regret
bound there, we would like to apply our results in the one-task stochastic setting. For this, we need
to show that these loss functions have desirable gaps during each task k. Consider any h 6= h∗k with a
gap for `s (instead of for ¯̀g∗

s) defined as

∆h = E [`s(g
∗, h)− `s(g∗, h∗k)]

LIFELONG LEARNING WITH BRANCHING EXPERTS (APPENDIX)

which is at least ∆ ≥ 8ε. Then on one hand, we have

E
[
¯̀g∗
s (h)− ¯̀g∗

s (h∗k)
]
≥ E [`s(πs+1(g∗), h)− `s(πs+1(g∗), h∗k)]− 2ε

≥ E [`s(g
∗, h)− `s(g∗, h∗k)]− 4ε

= ∆h − 4ε

≥ 1

2
∆h.

On the other hand, one can similarly show that

E
[
¯̀g∗
s (h)− ¯̀g∗

s (h∗k)
]
≤ ∆h + 4ε ≤ 3

2
∆h.

Thus, although the expected loss E[¯̀g
∗
s (h)] may have a changing gap as s varies during each task,

it always falls in the small range between 1
2∆h and 3

2∆h. Then it is straightforward to check that
for each task, similar bounds as in Lemmas 3 & 4 & 5 still hold by almost identical proofs, and the
pseudo regret of each task is at most O(1

∆ logNH). By summing the bounds over at most K tasks,
one can then obtain the bound ∑

s

E[αs] ≤ O
(
K

∆
logNH

)
.

Proposition B.2
∑b

s=a E[γs] ≤ O(log(NG/∆)).

Proof Note that for any step s,

E[γs] ≤ ε · Pr[g∗ 6= πs+1(g∗)] = ε · Pr[g∗ 6∈ Gs+1].

From Lemma 11, we know that Pr[g∗ 6∈ Gs+1] ≤ 1
s3

when s ≥ s̃. As s̃ ≤ O(log(NG/∆)
∆), we have

b∑
s=a

E[γs] ≤
∑
s≤s̃

εPr[g∗ 6∈ Gs+1] +
∑
s>s̃

εPr[g∗ 6∈ Gs+1] ≤ εs̃+
∑
s>s̃

ε

s3
≤ O(log(NG/∆)).

Proposition B.3
∑b

s=a E[βs] ≤ O(K log(NH/∆)).

Proof Let us partition the time steps according to tasks and consider the sum corresponding to each
task separately. For each task k, the corresponding sum can be bounded byO(log(NH/∆)) using the
same analysis as in the proof of Proposition B.2, as the optimal predictor h∗k is also likely to appear
in s0 ≤ O(log(NH/∆)

∆) steps according to Lemma 8. The proposition then follows by summing the
bounds over tasks.

B.2.3. PROOF OF LEMMA 13

We would like to apply Lemma 7 with starting step s̃ given in Lemma 11 using the loss functions
ˆ̀
t’s, which have the corresponding

rt,g∗ = E
g∼Gt

[
ˆ̀
t(g)

]
− ˆ̀

t(g
∗) and V =

∑
t≥s̃

r2
t,g∗ .

We know from Lemma 11 that for some s̃ ≤ O(log(NG/∆)
∆), the event Ct happens with probability at

most 1/t3. Following the proof of Theorem 4, we decompose the regret in two parts. For that before
step s̃, we use the trivial upper bound of s̃. For the remaining steps, we do the following, depending
on when the event Ct happens.

As in the proof of Theorem 4, the key observation is that when the event Ct happens, there is
no branching from the optimal representation g∗ after step t, and we can bound the expected regret
afterward by O(

√
E[V] log(NGT)) according to Lemma 7, while we can simply bound the regret

before by t. As the event Ct is only determined by the losses before step t and the losses afterwards
are independent, we have

E

∑
t≥s̃

rt,g∗

 ≤
∑
t≥s̃

Pr[Ct] ·
(
t+O

(√
E[V] log(NGT)

))
≤

∑
t≥s̃

t

t3
+
∑
t≥s̃

Pr[Ct] · O
(√

E[V] log(NGT)
)

≤ O(1) +O
(√

E[V] log(NGT)
)

≤ O
(√

E[V] log(NGT)
)
,

as the events Ct’s are disjoint from each other.
It remains to bound E[V]. As in the proof of Theorem 4, let S denote the number of steps after s̃

such that suboptimal representations are played, and we know that E[V] ≤ E[S]. Next, we would
like to bound E[S]. However, the situation now becomes more difficult as the loss functions ˆ̀

t’s may
not always have a large gap for a suboptimal representation g. To handle this issue, let us decompose
the regret as ∑

t≥s̃
rt,g∗ =

∑
t≥s̃

(
E

g∼Gt

[
ˆ̀
t(g)

]
− `∗t (g∗)

)
+
∑
t≥s̃

(
`∗t (g

∗)− ˆ̀
t(g
∗)
)
,

where `∗t (g
∗) = `t(g

∗, h∗k) when step t belongs to task k. Then we can again have that the expectation
of the first sum above is at least E[S] · Ω(∆). On the other hand, the expectation of the second sum
corresponds to the negation of the expected regret for learning predictors for g∗, which according to
Lemma 12 is at least −O

(
logNG+K logNH

∆

)
. As a result, we have

E[S] · Ω(∆)−O
(

logNG +K logNH

∆

)
≤
∑
t≥s̃

rt,g∗ ≤ O
(√

E[S] log(NGT)
)
,

which implies that

E[S] ≤ O
(

log(NGT) +K logNH

∆2

)
.

LIFELONG LEARNING WITH BRANCHING EXPERTS (APPENDIX)

Therefore, we can conclude that

E

∑
t≥s̃

rt,g∗

 ≤ O (√E [S] log(NGT)
)
≤ O

(
log(NGT) +K logNH

∆

)
.

Then the lemma follows as
∑

t≤s̃ rt,g∗ ≤ s̃ ≤ O(log(NG/∆)
∆) ≤ O(log(NGT)

∆), assuming ∆ > 1
T .

B.3. Proof of Corollary 7

Let us start from the adversarial setting. Recall that our algorithm updates each Gt and Hg
t to satisfy

Assumptions 2.2 &2.3, which allows us to apply the regret bound in Theorem 5. It remains to bound
the numbers NG and NH there.

Our goal is to bound them in terms of their covering numbers, defined as follows.

Definition 14 The ε-covering number of G is defined as the size of the smallest G′ ⊆ G such that
any g ∈ G has some g′ ∈ G′ such that for any loss function ` and any h ∈ H , |`(g, h)−`(g′, h)| ≤ ε.
Moreover, for any g ∈ G, the ε-covering number ofHg is defined as the size of the smallestH ′ ⊆ Hg

such that any h ∈ H has some h′ ∈ H ′ such for any loss function `, |`(g, h)− `(g, h′)| ≤ ε.

Following (Cohen and Mannor, 2017), we define their empirical versions with respect to a set L
of loss functions as follows.

Definition 15 The covering number NG(ε,L) is the size of the smallest Ĝ ⊆ G satisfying the
condition that any g ∈ G is ε-close to some ĝ ∈ Ĝ in the sense that

∀` ∈ L, ∀h ∈ H, |`(g, h)− `(ĝ, h)| ≤ ε.

Definition 16 For any g ∈ G, the covering number N g
H(ε,L) is the size of the smallest Ĥ ⊆ H

satisfying the condition that any h ∈ H is ε-close to some ĥ ∈ Ĥ in the sense that

∀` ∈ L, |`(g, h)− `(g, ĥ)| ≤ ε.

We also need the notions of packing numbers defined as follows.

Definition 17 The packing number PG(ε,L) is the size of the largest Ĝ ⊆ G which forms an
ε-packing in the sense that any distinct g1, g2 ∈ Ĝ are not ε-close to each other, so that

∃` ∈ L,∃h ∈ H, such that |`(g1, h)− `(g2, h)| > ε.

Definition 18 For any g ∈ G, the packing number PgH(ε,L) is the size of the largest Ĥ ⊆ H which
forms an ε-packing for g in the sense that any distinct h1, h2 ∈ Ĥ are not ε-close to each other, so
that

∃` ∈ L such that |`(g, h1)− `(g, h2)| > ε.

Now to bound NG, observe that as in (Cohen and Mannor, 2017), the way in which we construct
each Gt ensures that GT forms an εG-packing, which implies that |GT | ≤ PG(εG,LT), with LT
denoting the set containing all the loss functions in T steps. Furthermore, according to Lemma 2 in
(Cohen and Mannor, 2017), we have PG(εG,LT) ≤ NG(εG/2,LT). Therefore, we can upper bound

the size of GT by the empirical covering number NG(εG/2,LT), which is clearly upperbounded by
the covering number NG(εG/2,L), with L being the set of all possible loss functions.

To bound NH , let us consider any task k, let LkT denote the set of loss functions appearing during
task k, and suppose task k ends at step t. Then we know that ḡt = πt+1(g∗) is εG-close to g∗ with
respect to loss functions in LkT . Next, we argue that the set H ḡt

t+1 forms an ε′-packing for g∗, with
ε′ = εH − 2εG.

Consider any ha, hb ∈ H ḡt
t+1. Assuming hb is added after ha, let τb ∈ [t] denote the time step

when the loss `τb forces hb to be added to the set, with ḡτb = πτb+1(g∗). As we add hb to the set only
when it is not εH -close to any existing element, including hb, in the set, we must have

|`τb(ḡτb , ha)− `τb(ḡτb , hb)| > εH .

Furthermore, since ḡτb = πτb+1(g∗), we have

`τb(ḡτb , ha) ≈εG `τb(g
∗, ha)

as well as
`τb(ḡτb , hb) ≈εG `τb(g

∗, hb).

Therefore, we must have

|`τb(g
∗, ha)− `τb(g

∗, hb)| > εH − 2εG = ε′,

which implies that H ḡt
t+1 forms an ε′-packing for g∗ with respect to LkT .

As a result, we can conclude that

|H ḡt
t+1| ≤ P

g∗

H (ε′,LkT) ≤ N g∗

H (ε′/2,LkT),

and therefore we have NH ≤ maxkN g∗

H (ε′/2,LkT), which is clearly bounded by the covering
number N g∗

H (ε′/2,L). Assuming that εG ≤ εH/4, we have ε′/2 ≥ εH/4, which implies that NH is
upperbounded by the εH/4-covering number. This completes the proof of the adversarial setting.

Now let us move on to the stochastic setting, and recall that here we only aim for a better bound
on the part of regret corresponding to the learning of predictors for g∗. As we use Algorithm 1 to
learn the predictors for each task separately, we can focus on each task k, with Tk steps. We would
like to apply our Theorem 2 for the finite case, but some care is needed. The key difference is that,
for the event Bt defined there, we can no longer bound its probability by a simple union bound as
there are now an infinite number of experts. To deal with this issue, we rely on the assumption that
the set H of experts has a finite ε-covering number N , and let S denote such a subset of experts
which achieves this ε-covering number.

Given ε, let us choose ∆ = 32ε here, and consider as before the set

Ar = {i ∈ H : Λr ≤ ∆i ≤ 2Λr} where Λr = 2r∆,

for r ≥ 0. As the regret contributed by experts not in any such set is at most ∆T = O(εT), we can
focus on experts in these sets. Now fix any r ≥ 0. Let us define the event Bt:

∃i ∈ Ar such that L̄t−1,i − L̄t−1,i∗ ≤
1

8
∆i(t− 1).

LIFELONG LEARNING WITH BRANCHING EXPERTS (APPENDIX)

Moreover, let us define the set

Sr = {i ∈ S : Λr − ε ≤ ∆i ≤ 2Λr + ε},

as well as the event Ct:

∃j ∈ Sr such that L̄t−1,j − L̄t−1,i∗ ≤
1

4
∆j(t− 1).

We claim that the event Bt implies the event Ct. To see this, consider any i ∈ Ar and let j ∈ S
be its ε-cover, so that `(i) ≈ε `(j) for any loss `, using the notation x ≈ε y for |x − y| ≤ ε. This
implies that ∆i ≈ε ∆j and hence ∆i ≤ 32

31∆j , as well as j ∈ Sr. Then note that

L̄t−1,i ≈ε(t−1) Lt−1,i ≈ε(t−1) Lt−1,j ≈ε(t−1) L̄t−1,j ,

which implies that
L̄t−1,j − L̄t−1,i∗ ≈3ε(t−1) L̄t−1,i − L̄t−1,i∗ .

Therefore, if L̄t−1,i − L̄t−1,i∗ ≤ 1
8∆i(t− 1), then

L̄t−1,j − L̄t−1,i∗ ≤
(

1

8
∆i + 3ε

)
(t− 1)

where
1

8
∆i + 3ε ≤ 7

32
∆i ≤

7

31
∆j ≤

1

4
∆j .

This proves our claim, and we have

Pr [Bt] ≤ Pr [Ct] ≤
∑
j∈Sr

e−Ω(∆2
j t) ≤ e−Ω(Λ2

r(t−r̃)),

for some r̃ ≤ O(1
∆2 logNH), as in the proof of Lemma 5. Then it is straightforward to check that

all the remaining proof works and we can achieve the regret bound of O(
√
Tk logNH + εTk) as in

Theorem 2.
Finally, by summing the bound over task k, and combing the adversarial bound for learning

representations, we obtain the regret bound for the stochastic setting. This completes the proof of the
corollary.

Appendix C. Proofs in Section 6

C.1. Sub-optimality of previous algorithms

First, the algorithm of (Gofer et al., 2013) uses a constant learning rate, and according to Proposition
7 in (Mourtada and Gaïffas, 2019), such an algorithm has a regret lower bound of Ω(

√
T logN) in

the stochastic setting, even when a large gap ∆ exists. Thus, it cannot achieve an upper bound of the
form O(1

∆ logN) we are looking for, which motivates us to design a different algorithm.
Next, let us consider the algorithm of (Cohen and Mannor, 2017) which resets and restarts the

learning every time a new expert branches out. In the following, we show that its regret depends on
the number of branching steps in the stochastic setting, which we would like to avoid.

To make the algorithm of (Cohen and Mannor, 2017) suffer such a regret, our strategy is to make
suboptimal experts branch out in appropriate time steps so that the algorithm must restart many times
and suffer large enough regret each time. More precisely, we design the loss functions as follows,
with any ∆ ∈ (0, 1

4] and ε < ∆
N .

• We let expert N be the optimal expert with deterministic loss `t,N = 0 for each step t.

• We let each expert j, for N
2 ≤ j < N , be a suboptimal one, with deterministic loss `t,j =

∆ + 2(N − j − 1)ε for each step t.

• We let each remaining expert i, for 1 ≤ i < N
2 , be a suboptimal one, with stochastic loss

`t,i = ∆ + (1−∆)xt,i

for each step t, where each xt,i is an independent Bernoulli random variable with mean pi, for
some pi to be determined next.

Note that the loss functions has a gap ∆, and we would like to have many branching steps which are
at least s = 1

∆2 logN steps apart from each other, so that we can have the algorithm suffer a regret
of Ω(

√
s logN) between two branching steps. Note that for our choice of ε, any expert j ≥ N

2 must
branch out in the beginning. On the other hand, any expert i < N

2 can branch out at some step t only
if xt,i = 1.

Our idea is to choose each pi appropriately so that each expert i is likely to succeed in branching
out in the time interval Ii = [ti, ri], with desirable ti and ri satisfying ti+1 = ri + s (with r0 = 0
for convenience). For this, we would like each of the following three bad events to happen with
probability at most δ = 1

2M , for some M to be determined later, with t̂ = min{τ : xτ,i = 1}, which
is the first time that xτ,i = 1.

• B1: t̂ < ti.

• B2: t̂ > ri.

• B3: xt̂,j = 1 some j 6= i.

It is easy to see that expert i succeeds (branching out in the interval Ii) if none of the events happens.
Note that we can have Pr [B1] ≤ tipi ≤ δ with pi = δ

ti
. We can also have Pr [B2] ≤ (1− pi)ri ≤ δ

with ri = 1
pi

log 1
δ = ti

δ log 1
δ , which with the notation α = 1

δ log 1
δ implies that

ri = αti = α(ri−1 + s) =

i∑
j=1

αjs ∈ [αis, αi+1s].

Moreover, we have Pr [B3] ≤
∑

j<N
2
pj because after fixing t̂ as well as the randomness of expert i,

the distribution of xt̂,j , for any j 6= i, is still independent from each other. As pj = δ
tj

= δ
rj−1+s , we

have
Pr [B3] ≤

∑
j<N

2

δ

rj−1 + s
≤ δ.

As a result, the probability that some expert fails is at most Mδ = 1
2 . Moreover, as ri ≤ sαi+1, we

can have ri ≤ T for i ≥M , with some M = Ω(log T
log log T).

Next, let us consider the case that all the experts in [M] succeed, so that there are M branching
steps, which fall in those M intervals I1, . . . , IM , with Ii = [ti, ri]. As the algorithm restarts at
each branching step, it suffices to show a large regret lower bound between two such branching

LIFELONG LEARNING WITH BRANCHING EXPERTS (APPENDIX)

steps, denoted as bi and bi+1, of experts i and i+ 1, which are at least s steps apart, as bi+1 − bi ≥
ti+1 − ri = s. Recall that after τ steps of update since a restart, the algorithm with a time-varying
learning rate ητ =

√
(c logNτ)/τ plays suboptimal experts with probability at least(
N

2
− 1

)
e−ητ2∆τ ≥

(
N

2
− 1

)
e−
√

4c∆2τ logN ≥ 1

2

when τ ≤ t̃, for some t̃ ≥ Ω(1
∆2 logN). This implies that between steps bi and bi+1, the pseudo

regret of the algorithm is at least

∆ · 1

2
· Ω
(

1

∆2
logN

)
≥ Ω

(
1

∆
logN

)
,

and the total pseudo regret is at least

Ω

(
M

∆
logN

)
,

which depends on the number of branching steps M .

C.2. Proof of Theorem 8

Our proof is based on the previous approaches for proving lower bounds in the branching settings
(Gofer et al., 2013) and the lifelong learning setting (Wu et al., 2019). Both rely on the well-known
lower bound of Ω(

√
T logN) for the traditional case of experts problem, with N experts in one task

of length T (see e.g. Section 3.7 in (Cesa-Bianchi and Lugosi, 2006)).
Following (Wu et al., 2019), we prove our lower bound by considering two special cases. First,

let us consider the case when the predictor set for each representation has only one element, and the
problem reduces to that of learning representations. Consider the scenario in which the T steps are
evenly divided intoMG intervals, where the representations do not branch within each interval. Given
any algorithm, our strategy is to make it suffer a large regret by adding NG/MG new representations
at the start of each interval. More precisely, at the start of the first interval, there are NG/MG

representations, and we can have the algorithm suffer a regret of at least Ω(
√

(T/MG) log(NG/MG))
based on the lower bound for the experts problem. In each later interval i ≥ 2, we take the best
representation gi−1 in the previous interval and have it split into NG/MG representations, with Si
denoting this set of NG/MG representations. We let representations not in Si remain bad by giving
them large losses in this interval, while the new best representation is now hiding in this set Si. We
use representation in Si to confuse the algorithm by letting them share the same losses as that of gi−1

up to interval i− 1, but in interval i, the algorithm face a new experts problem with this set Si of
experts, and again we can establish the same regret lower bound as in the first interval. Therefore,
the total regret the algorithm suffers is MG times that in each interval, which is

Ω(
√
TMG log(NG/MG)).

Next, let us consider the case when there is only one representation, and the problem reduces to
that of learning predictors. In this case, the tasks become unrelated to each other and we can bound
the regret of each task separately, since the offline algorithm is allowed to use a different predictor
for a different task. Thus, we divide the time steps and the branching steps evenly for these K tasks,

each having Tk = T/K steps and MH,k = MH/K branching steps. Using the argument as in the
first case, we can establish for each task k a regret lower bound of Ω(

√
TkMH,k log(NH/MH,k)).

Multiplying this lower bound by K, we obtain a total regret lower bound of

Ω(
√
TMH log(NHK/MH)).

Finally, since the problem has these two special cases, the regret lower bound is at least the
maximum of these two lower bound, which is at least the average of the two. This proves the theorem.

C.3. Proof of Theorem 9

Our approach here follows closely that for Theorem 8, but now we instead rely on the stochastic
lower bound for the standard case of experts problem, also of the form Ω(

√
T logN), which can be

found in Proposition 4 of (Mourtada and Gaïffas, 2019).
Again, we prove the bounds by considering two special cases. In the first case, the predictor set for

each representation has only one element, and the problem reduces to that of learning representations.
Although the loss distribution of a representation must remain fixed during a task, it can change
when a new task starts as that of its predictor can change. Therefore, we now make the branching
happen only at the start of a new task, unlike in the adversarial case. That is, we will use the first
K ′ = min{MG,K} tasks to force a large regret by adding NG/K

′ new representations each time,
with each of these K ′ tasks lasting for Ω(T/K ′) steps. Following our approach for Theorem 8, but
now using instead the stochastic lower bound of (Mourtada and Gaïffas, 2019), we can establish a
regret lower bound of

Ω
(√

TK ′ log(NG/K ′)
)
.

The second case is when there is only one representation. In this case, the tasks become unrelated
to each other, so we can establish a lower bound for each task separately and add these bounds
together, just as in our proof of Theorem 8. However, as allowing branching in a single task does
not make the problem harder in the stochastic setting, as shown by our Theorem 2, we simply apply
(Mourtada and Gaïffas, 2019) to obtain a lower bound of Ω(

√
(T/K) logNH) for each task, with

each lasting for T/K steps. By multiplying this by K, we obtain a total regret lower bound of

Ω
(√

TK logNH

)
.

Finally, by combining these two lower bounds for these two special cases, we obtain the claimed
lower bound of the theorem.

References

Sébastien Bubeck. Introduction to online optimization. Lecture Notes, 2011.

Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, Learning, and Games. Cambridge University
Press, 2006.

Alon Cohen and Shie Mannor. Online learning with many experts. arXiv preprint arXiv:1702.07870,
2017.

LIFELONG LEARNING WITH BRANCHING EXPERTS (APPENDIX)

Pierre Gaillard, Gilles Stoltz, and Tim van Erven. A second-order bound with excess losses. In
Proceedings of the Conference on Learning Theory (COLT), pages 176–196, 2014.

Eyal Gofer, Nicolo Cesa-Bianchi, Claudio Gentile, and Yishay Mansour. Regret minimization for
branching experts. In Proceedings of the Conference on Learning Theory (COLT), pages 618–638,
2013.

Jaouad Mourtada and Stéphane Gaïffas. On the optimality of the hedge algorithm in the stochastic
regime. Journal of Machine Learning Research (JMLR), 20(83):1–28, 2019.

Yi-Shan Wu, Po-An Wang, and Chi-Jen Lu. Lifelong optimization with low regret. In Proceedings
on the International Conference on Artificial Intelligence and Statistics (AISTATS), volume 89,
pages 448–456, 2019.

	Proofs in Section 3
	Proof of Theorem 1
	Proof of Lemma 1
	Proof of Lemma 2

	Proof of Theorem 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 6

	Proof of Theorem 3
	Proof of Lemma 7

	Proof of Theorem 4
	Proof of Lemma 8

	Proofs in Section 4
	Proof of Theorem 5
	Proof of Lemma 9
	Proof of Lemma 10

	Proof of Theorem 6
	Proof of Lemma 11
	Proof of Lemma 12
	Proof of Lemma 13

	Proof of Corollary 7

	Proofs in Section 6
	Sub-optimality of previous algorithms
	Proof of Theorem 8
	Proof of Theorem 9

