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Abstract

Fuzzy C-Means (FCM) clustering is a classic clustering algorithm, which is widely used
in the real world. Despite the distinct advantages of FCM algorithm, whether the usage
of fairness constraint in the FCM could improve clustering fairness remains fully elusive.
By introducing a novel fair loss term into the objective function, a Fair Fuzzy C-Means
(FFCM) algorithm was proposed in this current study. We proved that the membership
value was constrained by distance and fairness in the meantime during the optimization
process in the proposed objective function. By studying the Fuzzy C-Means Clustering
with fairness constraint problem and proposing a fair fuzzy C-means method, this study
provided mechanism understanding in achieving the fairness constraint in Fuzzy C-Means
clustering and bridged up the gap of fair fuzzy clustering.

Keywords: fair clustering, algorithm fairness, Fuzzy C-Means.

1. Introduction

Clustering is a classical unsupervised learning task that seeks to group data objects into
different clusters, so as to maximize intra-cluster similarity and minimize inter-cluster sim-
ilarity. Currently, several types of clustering algorithms are available, e.g., the partition-,
density-, hierarchical-, spectral- and fuzzy-clustering. Since real-world problems are often
fuzzy, fuzzy clustering is becoming more and more popular because of its advantage in
dealing with problems using fuzzy mathematics. Instead of grouping objects into a certain
cluster, fuzzy clustering partition objects non-uniquely (fuzzy), so that an object can belong
to multiple clusters with different membership in the range of 0 to 1. As one of the most
representative fuzzy clustering algorithms, Fuzzy C-Means (FCM) clustering Dunn (1973);
Bezdek (2013) possesses some outstanding advantages, e.g., 1) simple structure and thus
easily being programming; 2) much more approaching real-world problems; 3)Its objec-
tive function optimization is supported by nonlinear programming theory. FCM is widely
utilized in pattern recognition Chuang et al. (1999), data mining Iyer et al. (2000), clas-
sification Hirota and Pedrycz (1999) and image segmentation Rezaee et al. (2000), among
others.
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Recently, the importance of designing fair algorithms has been caught by the machine
learning community. Traditional machine learning algorithms failed to take the bias (against
certain attributes, this paper refers to these attributes as sensitive attributes, and the value
of sensitive attribute is called group.) into account, therefore their output may contain or
even augment the bias. To date, considerable amounts of previous efforts have been pro-
posed by the machine learning community to address the fair clustering task Chierichetti
et al. (2017); Rosner and Schmidt (2018); Kleindessner et al. (2019b); Chen et al. (2019);
Bera et al. (2019); Sam Abraham et al. (2020); Micha and Shah (2020). However, these
works are mostly focused on center- or spectral- based methods. Despite the distinct ad-
vantages of the FCM algorithm, whether the usage of fairness constraint in the FCM could
improve clustering fairness remains fully elusive. In this study, we questioned how the
utilized of fairness constraint to enhance the fairness of Fuzzy C-Means Clustering.

To answer the above question, a fair Fuzzy C-Means algorithm was proposed in this
paper. Considering that FCM was a fuzzy clustering based on the objective function,
we innovatively introduced a fair loss term into the objective function, and optimized the
objective function to obtain a fair result. By setting the weight of the fair loss term, our
method achieved a trade-off between clustering quality and fairness. The fair loss function
was defined as the square of the difference between the ratio of groups in clusters and the
ratio of groups in the original dataset. To the best of our knowledge, this was the first result
that introduced fair loss fuction into Fuzzy C-Means clustering.

2. Related Work

In recent years, the research community has done a lot of work in providing fairness guar-
antee for machine learning algorithms or studying fair variants of clustering algorithms.
Plenty of relevant formulations of fairness have been proposed for supervised learning and
specifically for classification tasks Dwork et al. (2012); Hardt et al. (2016); Kleinberg et al.
(2017); Zafar et al. (2017). In this study, we emphasized the importance of fair cluster-
ing. Two work lines on fair clustering were available, i.e., the fellow-up work proposed
by Chierichetti et al. (2017) and some independent works.

The most recognized notion in the field of fair clustering was proposed by Chierichetti
et al. (2017). They modeled fairness based on disparate impact doctrine Feldman et al.
(2015), which posited that any ”sensitive attribute” must have approximately equal rep-
resentation in the decision taken (through algorithms). To achieve fair clustering, they
introduced the fairlet decomposition, which partitioned data objects into small and balance
subsets (e.g., the fairlets). These subsets were clustered to get a fair result. Due to their
method only worked in the scenery of two groups and time-consuming, the Chierichetti
method was not so successful but he actually opened up ideas for further research, espe-
cially since he first defined a normal notion for fair clustering. Later, several follow-up works
extended this idea. Schmidt et al. (2020) proposed a fast fairlets decomposition method.
They defined a notion called “coreset”, which was a representative subset of the original
dataset. By solving fair clustering problem on the coreset, an approximate solution for the
original dataset was provided. Backurs et al. (2019) suggested embedding the input data
into Hierarchically well-Separated Tree to accelerate fairlet decomposition. Both methods
could speed up the fairlet decomposition, however, the fairness notion used in both methods
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was proposed by Chierichetti et al. (2017), and hence only worked for two groups. Rosner
and Schmidt (2018) considered a multiple groups variant of fair k-center clustering and de-
veloped a k-center constant factor approximation approach. Bercea et al. (2019) improved
the result of Rosner and Schmidt (2018) and gave a bicriteria constant factor approximation
algorithm for several classical clustering objectives. Kleindessner et al. (2019b) introduced
fairness to spectral clustering by viewing the fairness notion as a constrained variant of spec-
tral clustering. This method only worked for single sensitive attribute. Bera et al. (2019)
extended the fairness notion as the upper and lower bound of the representation of a group
in a cluster. In addition, they gave a general fair clustering framework. The framework
consisted of two steps. Firstly, vanilla clustering was used to generate cluster centers, and
then the linear programming method was used to fairly assign data objects to the cluster
centers. Nevertheless, this framework was only suitable for K-center and K-median clus-
tering. Ahmadian et al. (2019) explored the problem of preventing excessive representation
of groups in each cluster, and gave an algorithm based on linear programming. Ahmadian
et al. (2020) recently studied two variants of fair clustering, the one was minimum diver-
gence clustering, and the other one was upper and lower bound clustering. Their algorithms
work for multiple groups. Davidson and Ravi (2020) showed that for any clustering with two
groups, linear programming could be used to calculate the most similar fair clustering. Quy
et al. (2021) recently studied the fairness problem in the education domain and gave two
fair method, namely hierarchical clustering and partitioning-based clustering.

Chen et al. (2019) considered the proportional centroid clustering problem and outlined
an independent fairness notion. For clustering n points with k centers, any n/k points were
entitled to form their own cluster if there is another center that was closer in distance for all
n/k points. Kleindessner et al. (2019a) advised a simple k-center clustering algorithm with
fairness constraint. In this method, a cluster was regarded as a summary of the original
dataset, and fair summary was generated for each cluster. Jung et al. (2020) proposed the
notion of individual fairness of clustering, which required each object somewhat to close a
center, "somewhat” depended on the object’s k nearest neighbors. Recently, Ghadiri et al.
(2021) and Abbasi et al. (2021) independently proposed the social fair clustering prob-
lem. Makarychev and Vakilian (2021) improved and generalized the O(¢)-approximation
algorithms of the social fair clustering problem in Ghadiri et al. (2021) and Abbasi et al.
(2021). The works most relevant to this study were Ziko et al. (2019) and Sam Abraham
et al. (2020). Ziko et al. (2019) incorporated fairness constraints into the clustering steps
by adding a fairness loss term into the objective function. They defined the fair loss as
the KL divergence between the probability distribution of sensitive attributes in clusters
and the probability distribution in the dataset. However, this method was designed only
for one sensitive attribute. Sam Abraham et al. (2020) also used a similar idea, but works
for multiple sensitive attributes. Unfortunately, they did not consider introducing fairness
into fuzzy clustering. Fuzzy clustering was widely used in the real world, it was imperative
to ensure that these algorithms were fair. In this current study, the proposed algorithm
provided fair guarantee for fuzzy c-means clustering. In addition, fair loss was defined as
the square of the difference between the ratio of groups in clusters and the ratio of groups
in the original dataset.
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3. Preliminaries

In this section, vanilla FCM Bezdek (2013) is formally described and the fuzzy C-means
with fairness constraints problem is defined in order to introduce terminology and set the
ground for our works.

Let P be a collection with n objects embedded in metric space (X,d), where P :=
{p1,p2, -+ ,pn}and d: P2 — R > 0. Let k be the number of clusters, u;; is the membership
value of object j to cluster center ¢; and w;; is subject to wji +ujo+---+uj, = 1, usj € [0, 1].

The task of vanilla FCM is to find a fuzzy partition matrix U := [u;;] and a set of cluster
k n

centers C := {c1,cg, -+ , ¢4} to minimize the objective function Jyem == > > uit{lpj — cill?.
i=1j=1

In fair clustering task, one is additionally, there are two sets of attributes C, and S,
defined over datasets. C, denote the attributes that are relevant to the clustering task
interest, such as the patient’s symptoms and living environment in the case of disease
clustering. S, denote sensitive attributes, which may be expected to maintain fairness in
the generated clusters, such as gender, race, religion, nationality, etc. What’s more, the
values of sensitive attribute are called groups (as mentioned in the section 1). Assuming
that gender is a sensitive attribute, it may have two groups, named male and female. The
fairness notion utilized in this paper is proportional fairness, which maintains the same
proportion of sensitive attribute groups in clusters as they are in the original dataset. In
other words, there are two groups of a sensitive attribute (Considering gender) with a ratio
of 7:3 in the original dataset, and their ratios are expected to be 7:3 (ideally) in each
generated clusters. Fuzzy c-means with fairness constraints problem is formally defined
below.

Definition 1 (Fuzzy C-Means clustering with fairness constraint problem.) Given l groups
P, P, -, P as the values of the sensitive attribute, and PLU P, U---U P, = P. The fair
fuzzy clustering problem can be described as finding a partition of P so as to minimize object

k n

function Jgem == 3 > ultllpj — cill? and make the ratio of each group in clusters as close
i=1j=1

as possible to its ratio in original dataset.

4. Proposed Approach

We propose a Fair Fuzzy C-Means (FFCM) clustering method to attack the Fuzzy C-
Means clustering with fairness constraint problem. In FFCM, a novel fair loss function is
constructed to quantify the fair loss in clusters and an optimization method is designed for
the objective function to achieve fair clustering. Firstly, the construction of the fair loss
function is detailed in the next part of this section. After that, the optimization method is
explained, and the validity of the proposed objective function formula is proved theoretically.
In the last part of this section, the complexity of the proposed algorithm is analyzed.

4.1. Fair Loss Term Construction

For an ideal fair clustering, the ratio of groups in the generated clusters is expected to be
the same as in the original dataset. With the intent of generating clusters that are as fair
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as possible, a natural definition of fair loss function is the difference between the ratio of
groups in clusters and the ratio of groups in the original dataset. The greater the ratio
difference, the greater the loss function score will be. The mathematical expression for the
fair loss of a group in a cluster is

. 2
bias(Cys) = (|C’1|21|R"’| _ ‘|%‘> , sel] (1)

where bias(C;s) is the fair loss of group Py in cluster C;. Naturally, the entire fair loss of
cluster Cj; is the sum of all the group’s loss score in cluster C;. The entire fair loss can be
written as

bias(C Z bias(Cis) (2)

It should be noted that different sensitive attributes may have different numbers of
groups (considering the sensitive attributes of gender and age. Gender may have two groups,
male and female, while age may have multiple groups, such as infants, children, youth,
middle-aged and old). It can be observed from Eq. 2 that sensitive attributes with a
large number of groups may produce a large fair loss score. This means that the sensitive
attributes with more groups might dominate the fair loss term. In order to make each
sensitive attribute have the same contribution to the fair loss term, the fair loss term is
normalized in Eq. 3 by the number of groups.

Lo 2
Nbias(C Z (3)

UJ

Where A is the number of sensitive attributes, and [, is the number of groups in the w
sensitive attribute.

Since fair loss must be related with membership value, the larger the distance from the
object to the cluster center plus the fair loss score, the smaller the membership value of the
object is expected to be. Thus, the fair loss is decomposed into each membership value.
For an object pj, it is assigned to clusters Cj, i from 1 to k, and the assignment of other

objects is retained. Let bias , bias ,---, bias be the normalized fair loss score, which is
p]'—)cl pj—)CQ p]‘—>Ck

calculated by Eq. 3.. These fair loss scores are introduced into the objective function so that
the fair loss and distance jointly determine the membership value. The overall objective
function is shown in Eq. 4

k n
2 .
Jifem = D0 > uy <||pj — cil| +17pl;%ggi> ,

i=1j5=1

k
s.t. Yuy =1
i=1

where 7 is a hyperparameter, which denotes the weight of fair loss term.
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4.2. Objective Function Optimization and FFCM Algorithm

After the fair loss is introduced into the objective function of FFCM, the task of Fuzzy
C-Means with fairness constraint is reduced to identifying a partition that minimizes J¢tcm
as much as possible. As in the vanilla fuzzy c-means, the Lagrange Multiplier Method is
used to find the minimum value of the objective function. The Lagrange function of FFCM
is constructed as

kK n n k
L= ;;ug <Hp] all®+n p?gtg) ;)‘J (; Ui 1) (5)
where the first part in Eq. 5 is the objective function of FFCM, and the second part is
the inherent constraint of membership value (i.e., the sum of the membership values of an
object to all clusters is equal to 1).

By calculating the partial derivative of the Lagrange function with respect to u;;, the
expression of membership value wu;; is obtained as

1

1

9 m—1
llp;—cill +npjgggi
k 'mlf
> | lIpj—cr P40 bias
T=1 pj"CT

Theorem 2 The membership value is constrained by distance and fair loss term at the
same time during the optimization process.

Proof For any object p; and cluster center C;, when p; is assigned to Cj, the fair loss of
A,
this assignment is bias = > > (|C; N Ps|/|Cs| — |Ps|/|P])/|lw|- Let d;j be the distance

Pj—C; w=1s=1
from p; to the cluster center ¢;, Eq. 6 can be reduced to

k T
> | dir+n bias
=1 p;—Cr

k
We guarantee that (de +n biag > is a constant. Observing Eq. 7, it is easy to find
pj—Cr

=1

that when the fair loss bias is large, 1 / (dij + bias ) will be small. Therefore, the mem-
pj—)ci pj—>oi

bership value u;; will also be small. Conversely, when bias is small, 1 / (dij + bias ) will
p]'—>Ci pj—)ci
be large, and correspondingly u;; will also be large.
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Algorithm 1 Fair Fuzz C-means Clustering.

Input: Collection P with n object, the number of clusters k, the end condition &, the
maximum number of iterations 7 and the weight of fair loss 7.

Output: The labels of objects.

1: Initialize the membership value u;;;

2: while J}?Cm - J(fi‘_c;z >cand t < 7T do

3:  Update the cluster centers ¢; by Eq. 9;

4:  forpje P,j=1tondo

5 the object p; is assigned to clusters Cj, i from 1 to k,
6: Calculate the fair loss term by Eq. 3;

7 Update the membership value u;; by Eq. 6;

8 end for

9:  Calculate the value of the objective function J¢ ., by Eq. 4;
10: end while
11: return The labels of each object.

k
Lemma 3 For any object p;, the ) (de +n bias > is a constant.
=1 p;j—Cr
Proof If p; is assigned to clusters C,Cy,- - ,C, the fair loss of these assignments are
bias , bias ,---, bias . Then we have:
Pj—Ci1 Pj—Co Pj—cy,
k
dri +n bias | = (di; +d2; +---+dg;) + bias + bias +---+ bias 8
;( Tj Tle—)CT) ( 1J 27 kj) 77 (pj—>01 pj—>CQ pj—>ck> ( )

k
Because d,; and bias ,V7T € [k] are all constants, their sum ) <de +n < bias >> is also

Pj—Cr =1 PjsCr
a constant.

Similar to the membership value u;;, by calculating the partial derivative of the Lagrange
function with respect to ¢;, the expression of the cluster center ¢; is obtained as

n
> Wijpj
2
=" (9)
2.
j=1

uij

The FFCM algorithm is summarized in Algorithm 1. Algorithm 1 resembles the working
of vanilla FCM except a fair loss is considered at each step that allows it to be fairer than
vanilla FCM. Specifically, the membership value is initialized first, and proceeds iteratively.
In each iteration, three steps are performed. First, update the cluster center through the
membership value. Then, we traverse each object p in round-robin fashion, the object
is assigned to each cluster respectively and the fair loss score of the present assignment
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is calculated. Finally, the membership value is updated based on the fair loss score and
distance. The updating process will stop until the objective function converges or the
maximum iteration threshold is reached.

4.3. Complexity Analysis

The complexity of FFCM is determined by fair loss calculation, membership value update
and cluster center update. First, considering the complexity of the fair loss calculation. For a
data object p, when it is assigned to each cluster, the ratio of groups needs to be re-stated. In
each cluster, the fair loss needs to be calculated for A sensitive attributes and [ groups of each
sensitive attribute. The fair loss calculation method is shown in Eq. 1, which can be regarded
as a simple calculation completed in a constant time. Therefore, the complexity of fair loss
calculation is O (nk?|A||l| + k|A||l]). Next, we consider the complexity of membership
value update and cluster centers update. According to Eq. 5, the complexity of membership
value update is O(nk?). And according to Eq. 6, the complexity of cluster centers update
is O(nk). In summary, the complexity of t iterations is O(tn3k* |A| |I| + nk? | A| |I] + nk?).

5. Experiments

In this section, we performed empirical evaluations of the proposed algorithm. Firstly,
we outlined the datasets and settings in the experiment. Then, we illustrated the mea-
surements. Finally, we reported the experimental results and the analysis of experimental
results.

5.1. Datasets and Settings

We considered six real-world datasets, which were popular in the fair clustering task. (1)
Diabetic Chierichetti et al. (2017) recorded information related to patients with diabetes.
(2) Census1990 Meek et al. (2002) consisted of the 1990 U.S. census records. (3) Credit-
card Yeh and hui Lien (2009) contained information about the card holders from a certain
credit card in Taiwan. (4) Bank Moro et al. (2014) contained instances related to the di-
rect telemarketing activities of Portuguese banking institutions. (5) Adult Zhou and Chen
(2002) was also known as census, which contained examples of the 1994 U.S. Census. (6)
Athlete Bohm et al. (2020) contained bio data on Olympic athletes and medal results from
Athens 1896 to Rio 2016. We subsampled all datasets to 1000 records, except Creditcard.
Creditcard was subsampled to 600 records. For each of these datasets, we chose numerical
attributes to represent points in Euclidean space. In addition, we also set sensitive at-
tribute for each dataset and created groups based on their values. More information about
the dataset settings was shown in Table 1.

In the proposed method, the weight of the fair loss term 7 needed to be set. Based on
empirical observation, we set n to 10? for Diabetic and Census1990, 103 for Athlete, 10° for
Bank, 107 for Creditcard and Adult. We analyzed the sensitivity of 7 in section 5.4. The
maximum number of iterations 7 was set to 10. Our codes are available on GitHub for
public use.!

1. https://github.com/author’s-name/author’s-name-Fuzzy C-MeansWithFairnessConstraint
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Table 1: Clustering attributes and sensitive attributes.

Datasets Clustering attributes Sensitive Groups
attributes
age,time-in-hosp, male,
Diabetic num-medications,num-outpatient, gender female,
num-emergency,num-inpatient unknown
bill-amt 1—
Creditcard age, br-am , education 7 groups

limit-bal, pay-amt 1—6

married, single,

Bank age, balance, duration marital .

divorced

age, education-num, asian-pac-isl,

final-weight, capital-gain, Amer-ind, white,

Adult hours-per-week race black, other
dAncstryl, dAncstry2, iAvail,

iCitizen, iClass, dDepart,iFertil, .

Census1990 iDisabl1, iDisabl2, iEnglish, iSex male, female
iFeb55, dHispanic, dHour89

Athlete Age, Height, Weight, Year Season summer, winter

5.2. Measurements

In fair clustering, two sets of metrics were mainly concerned. One was clustering quality,
which was related to clustering interest (i.e., Cg, as described in Section 3). The other
was fairness, which was related to fair interest (S;). In this subsection, we described these
metrics.

Clustering quality measured the rationality of clustering, it could include: (1) Clustering
Cost (Cost), it measured the deviation of objects from cluster centers. The smaller the
clustering cost, the better the clustering result. One of the clustering cost presentation was
objective function, and the objective function of FCM Bezdek (2013) was

k n
Tpem = Y_ > ulp; —cil® (10)

i=1 j=1

(2) Silhouette Coefficient (SC) Rousseeuw (1987), it described the cohesion and separation
of clusters. It lies in the range of [—1, 1], the closer the value to 1, the better the clustering
result and vice versa.

Fairness measured the fairness of attributes in the generated output, it could include:
(1) balance Bera et al. (2019), which described the lowest level fairness of groups in a
cluster. It was defined as: Let f(Ps) = |Ps|/|P| be the ratio of group s in the en-
tire dataset, and let f(Cis) = |PsNC;|/|C;i| be the ratio of group s in cluster i. The
fairness(C;) = min(f(Cis)/f(Ps), f(Ps)/f(Cis)) , i€ [k],s € [I] was the balance in clus-
ter i. (2) Euclidean distance of distribution vectors (Ed) Sam Abraham et al. (2020), which
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measured the unfairness of clustering. Let S be a sensitive attribute, which could take on [
groups. The distribution of these groups in the dataset P produced a I-length distribution
vector Ps. Similarly, the distribution of these groups in each cluster yielded a I-length dis-
tribution vector Cs. By calculating the Euclidean distance between the representations P
and Cs to get the quantized intra-cluster unfairness. (3) Wasserstein distance of distribu-
tion vectors (Wd) Wang and Davidson (2019), The definition of Wd metric was similar to
Ed, except that Euclidean distance was replaced by Wasserstein distance.

Table 2: Fairness comparison — FFCM vs. FCM

Cluster Datasets Ed Wd

number FFCM FCM impr(%) FFCM FCM impr(%)
Diabetic 0.4283 0.7745 44.6963 0.2045 0.3476 41.1644
Census1990 0.1452 0.3980 63.5148 0.0884 0.2370 62.6912

k=4 Creditcard 0.3105 0.3789 18.0532 0.1204 0.1424 15.4326
Bank 0.2623 0.6007 56.3373 0.1402 0.2689 47.8452
Adult 0.2345 0.3270 28.2810 0.0774 0.1016 23.8213
Athlete 0.3258 0.5606 41.8921 0.2303 0.3964 41.8921
Diabetic 0.7565 1.5480 51.1299 0.4071 0.8046 49.4120
Census1990 0.2088 0.6472 67.7311 0.1252 0.3576 64.9790

k=6 Creditcard 0.4000 0.5026 20.4046 0.1585 0.1925 17.6503
Bank 0.3599 0.5638 36.1701 0.1490 0.1968 24.2674
Adult 0.3874 0.5775 32.9252 0.1332 0.1804 26.1849
Athlete 0.4575 0.8619 46.9213 0.3235 0.6094 46.9213
Diabetic 0.6330 1.6767 62.2456 0.4283 1.0256 58.2363
Census1990 0.5643 1.8573 69.6189 0.3006 0.8933 66.3466

k=38 Creditcard 0.6782 0.9104 25.5040 0.2728 0.3540 22.9374
Bank 0.3868 0.8890 56.4952 0.1984 0.3719 46.6364
Adult 0.5010 0.7830 36.0159 0.1618 0.2444 33.8049
Athlete 0.5832 1.1865 50.8454 0.4124 0.8390 50.8454

5.3. Clustering Results Comparison with FCM

Table 2 displayed the fairness metrics of FFCM and FCM, and the best of all results were
highlighted in boldface. The impr column represented the fairness improvement percentage
by FFCM. As could be seen from Table 2, the performance of FFCM in fairness metrics
significantly surpassed FCM. Specifically, FFCM performed the best on the Census1990,
and the percentage of fairness improvement was about 65%, while it performed slightly
poorly on the Creditcard, and the percentage of fairness improvement was still more than
20%. In addition, it was worth noting that when k = 6, the overall performance of FFCM
was better than when k = 4. Whereas k = 8, the performance of FFCM was stronger. This
indicated that FFCM benefitted from higher flexibility (with higher k) in the process of
reducing fairness loss. Figure 1 presented the balance of FFCM and FCM in each cluster,
and the balance of different methods was marked by different colors. Since the goal of the
FFCM objective function was to minimize the overall fairness loss, and no specific constraint
to ensure good performance on the lowest level fairness (i.e., balance). Therefore, in order
to obtain a lower fairness loss, FFCM might sacrifice fairness in one or several clusters
(the cluster 1 of Adult in Figure 1). Although the balance metric of FFCM implied that
such trends were not widely prevalent, it was a direction to meliorate FFCM. Table 3
presented the results of clustering quality, and the decr column indicates the clustering
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Figure 1: The balance of FFCM and FCM in clusters (k=4)
Table 3: Clustering quality comparison — FFCM vs. FCM

Clusters Datasets SC Cost

number FFCM FCM decr(%) FFCM FCM decr(%)
Diabetic 0.2129 0.3245  34.3762 | 11530.20 7619.95 51.3159
Census1990 | 0.3849 0.4356  11.6223 | 13198.64 12101.05 5.7647

k=4 Creditcard | 0.3356 0.3681  8.8241 60734399.00  55858552.77 8.7289
Bank 0.3612 0.6407  43.6250 | 922940.18 560447.64  64.6791
Adult 0.5434 0.5591  2.8085 17681552.15  17178839.57 2.9263
Athlete 0.2169 0.2663  18.5702 | 23433.9640 15485.7225  8.4599
Diabetic 0.1875 0.3086  39.2395 | 10684.31 7263.53 47.0952
Census1990 | 0.2531 0.2987 152615 | 10990.44 10951.39 9.4878

k=6 Creditcard | 0.3302 0.3868  14.8517 | 52442935.66  45661436.31 14.8517
Bank 0.4307 0.5348  19.4512 | 577817.18 426868.76  35.3618
Adult 0.5234 0.5581  6.2172 12220439.55  11276031.07 8.3754
Athlete 0.2206 0.2724  19.0199 | 14463.9656 13232.7524  9.3043
Diabetic 0.1503 0.3231  53.4927 | 9235.05 6018.09 53.4549
Census1990 | 0.3185 0.3468  13.9433 | 9953.08 9746.08 12.3845

k=38 Creditcard | 0.3022 0.3617  16.4626 | 43072356.90  41601196.60 15.5556
Bank 0.2633 0.4309  38.8918 | 562538.63 353313.56  59.2180
Adult 0.5005 0.5418  7.6275 10184113.67  8337259.17  22.1518
Athlete 0.1028 0.2739 624609 | 14194.2831 11915.2959  19.1266

quality degradation percentage by FFCM. Due to FFCM needed to be held accountable for
fairness, it was expected to perform poorly on clustering quality metric. We focused on the
difference between the improvement of fairness and the degradation of clustering quality
by FFCM. Table 4 displayed these results, the avg.impr row was the average improvement
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Table 4: Comparison of fairness improvement and quality degradation by FFCM

Datasets Diabetic Census1990 | Creditcard | Bank Adult Athlete agv.whole
avg.impr(%) | 51.1474 65.8136 20.0000 44.6253 30.1722 46.5529 42.3511
avg.decr(%) 46.4958 17.1160 13.1772 43.5378 8.3511 22.8236 25.7356
margin(%) 4.6512 48.6975 6.8198 1.1087 21.8211 23.7293 16.616

percentage of Wd and Ed, and the avg.decr row was the average degradation percentage
of Cost and SC. Their values were the average values when the number of clusters k =
4,6,8. It might be seen that compared to the degradation of clustering quality, FFCM
had higher fairness margins. In general, the above results illustrated that FFCM provided
fairer clustering. Despite FFCM reduced clustering quality, it brought fairer margin than
the degradation of clustering quality.
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Figure 2: The change of fairness metrics with different n
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Figure 3: The change of clustering quality metrics with different n

5.4. Sensitivity Analysis to 7

FFCM attempted to achieve a trade-off between clustering quality and fairness by changing
the value of the only hyper-parameter 7 (i.e., the weight of fair loss function). The FFCM
formula was expected that the greater the 7, the smaller the fairness loss of clustering,
and the better the performance on the fairness metrics. We observed such desired trends
across all experimental datasets. Figures 2 and Figures 3 presented the changes of fairness
metrics and clustering quality metrics on Diabetic, Census1990 and Athlete (Considering
that the setting of 1 have the similar values) when 7 varied from 100 to 1000. For the
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metrics that widely varied in range, both sides of the y-axis were used to plot them, and the
axis used for each metric was indicated in the figure. The Bias in Figure 2 was the whole
fair loss of clustering. The fact could be obtained from Figures 2 and Figures 3 that with
the increase of 7, the clustering generated by FFCM tends to be fair (bias and Ed metric
decrease gradually) and the clustering quality degrades accordingly (SC metric decreased
and Cost metric increased). Although their change was not stable, the direction of change
was in line with our expectations.

6. Conclusions And Future Directions

Although the fair clustering algorithm has attracted considerable attention, the fairness
of fuzzy clustering has yet remained elusive. In this paper, we studied Fuzzy C-Means
clustering with fairness constraint problem and proposed a fair fuzzy C-means method to
bridge the gap of fair fuzzy clustering. By introducing a novel fairness loss term in the
objective function, the membership value was constrained by fairness and distance at the
same time during the optimization process, we gave theoretical proof for this constraint. We
evaluated the performance of the proposed algorithm on real-world datasets, the empirical
evaluation illustrated that FFCM significantly improved clustering fairness. We depicted
two directions to enhance the performance of FFCM. Firstly, FFCM did not guarantee
the lowest level of fairness, so it might sacrifice fairness in several clusters to minimize the
fairness loss function. We considered adding a constraint in the loss function to prevent this
phenomenon. Secondly, due to FFCM was a fair variant based on FCM, it was sensitive to
the initial cluster centers and easily fell into the local optimal value. Future efforts should
replace the vanilla FCM algorithm with a robust variant to improve the performance of
FFCM.
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