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Appendix A. Method

A.1. Approximation in Differentiale Search

Here we further explain why we use Eq. (7) as an approximation. As a comparison,
directly using weight without approximation, i.e., normalized Eq. (9), represents the w/o
approximation case. We conduct experiments on CIFAR10 and CIFAR100 to show the
impact of the approximation on test error. The experimental settings are the same as
that in Section 4.2 of the main text. Table 5 shows the results. Compared with the w/
approximation case, the w/o approximation case has higher test errors. As shown in Eq.
(13), the gradient of space probability pk is very small due to the multiplication of multiple
probabilities in the w/o approximation case. For example, with 8 operations, the maximum

of
∏

l 6=k(pl)
Zi,j
l (p̄l)

Z̄i,j
l is (0.57)2 ≈ 6 × 10−5. In fact, the approximation helps to alleviate

the vanishing gradients problem, and helps the differentiable search to converge better.

∂P (Zi,j , Ai,j)

∂pk
= qk · (
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l ) (13)
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Method CIFAR10 (%) CIFAR100 (%)

w/o approximation 2.74±0.16 18.00±0.62
w/ approximation 2.59±0.17 17.15±0.33

Table 5: Comparison of test error between without and with approximation on CIFAR10
and CIFAR100.
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Figure 7: The effect of hyper-parameters L and M . The figure shows the best accuracy of
DDSAS with different L and M .

Appendix B. Experiments

B.1. Hyper-parameter Settings

CIFAR10 and CIFAR100. In the searching phase, we leverage bi-level optimization to
update the parameters. Half of the images are used to update the space and architecture
parameters by an Adam optimizer with a learning rate 0.0003, weight decay 0.0001, and
momentum (0.5, 0.999). The other half is used to update the weight parameters by an SGD
optimizer with an initial learning rate 0.025, momentum 0.9, and weight decay 0.0003. In
the training phase, the network consists of 20 layers with 36 initial channels. The SGD
optimizer is used to train 600 epochs for the searched network with a batch size 96. The
initial learning rate is 0.025 and decayed to 0 based on cosine scheduler. The other settings
are also the same as DARTS: the length of cutout is 16, the weight of auxiliary towers is
0.4, and the probability of path dropout is 0.3.

ImageNet. The network is built with 14 cells and the input size is 224×224. An SGD
optimizer is used to train the network for 250 epochs with an initial learning rate of 0.5,
weight decay of 0.00003, and a momentum of 0.9. The batch size is 1024. We train the
network on eight V100 for around three days.



DDSAS

B.2. The Effect of L and M on Performance

We evaluate L and M on the CIFAR10 dataset in the DARTS search space, with a total of
64 configurations of L ∈ {15, 28, 42, 56, 70, 84, 96, 112} and M ∈ {1, 5, 10, 20, 30, 40, 50, 60}.
The trend of accuracy obtained by the best cells is shown in Figure 7. We can see that
DDSAS has stable performance under different L and M configurations, showing its robust-
ness and effectiveness.
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(a) Skip number in CIFAR100
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(b) Skip number in NAS-Bench-201

Figure 8: The number of skip operation along epochs in CIFAR100 and NAS-Bench-201.
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(a) Sampled times in CIFAR100
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(b) Sampled times in NAS-Bench-201

Figure 9: The heat maps of operations sampled times in CIFAR100 and NAS-Bench-201.
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B.3. About Skip Aggregation

Although DARTS su�ers from skip aggregation, DDSAS has no this problem in all exper-
iments. On CIFAR100 and NAS-Bench-201, where skip aggregation is easy to appear as
reported by P-DARTS and NAS-Bench-201, Figure 8 shows that skip numbers (mean� std)
of DDSAS is much less than that of DARTS, speci�cally 1:75 � 0:83 vs. 6:75 � 0:43 on
CIFAR100 and 1:17 � 0:37 vs. 6:00 � 0:00 on NAS-Bench-201. Furthermore, Figure 9
shows the sampled times of each operation. We observe that the number of sampling for
skip, nor conv 1� 1 and nor conv 3� 3 is 264=284=241, 351=311=267 and 280=304=363 in
edge(0; 1)(0; 2)(1; 3) on NAS-Bench-201. The root cause is that excessive sampling skip
operations reduces the UCB value thus other operations with higher UCB value will be
sampled into subspaces.

B.4. The in
uence of epochs

The in
uence of epochs is shown in Figure 5(d) where the accuracy gradually increases and
converges along with more epochs, indicating that the sampled subspace contains better
architectures. Meanwhile, the cosine distance between architectures decreases, showing
that the sampling prefers more exploitation in later epochs.

B.5. Calculation of Cosine Distance

The cosine distance is calculated by the one-hot encoding of architectures between adjacent
epochs. Here we give an example for illustration. Suppose that there are two edges and
three operations in a supernet. The one-hot encoding ofarch1 and arch2 can be expressed
as:

arch1 =
�
0 1 0
1 0 0

�
arch2 =

�
0 1 0
0 0 1

�

We convert the matrix to a single row so that arch1 and arch2 can be written as
(0; 1; 0; 1; 0; 0) and (0; 1; 0; 0; 0; 1). And then we can calculate the cosine distance between
arch1 and arch2:

Dis (arch1; arch2) = 1 �
harch1; arch2i

jjarch1jj jj arch2jj
= 0 :5
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