
Proceedings of Machine Learning Research 157:–, 2021 ACML 2021

DDSAS: Dynamic and Differentiable Space-Architecture
Search

Longxing Yang1,2,3 yanglongxing20b@ict.ac.cn

Yu Hu1,2,3 * huyu@ict.ac.cn

Shun Lu1,2,3 lushun19s@ict.ac.cn

Zihao Sun1,2,3 sunzihao18z@ict.ac.cn

Jilin Mei1,2,3 meijilin@ict.ac.cn

Yiming Zeng4 zyms5244@gmail.com

Zhiping Shi5 shizp@cnu.edu.cn

Yinhe Han1,2,3 yinhes@ict.ac.cn

Xiaowei Li2,3 lxw@ict.ac.cn
1Research Center for Intelligent Computing Systems, Institute of Computing Technology, CAS.
2State Key Laboratory of Computer Architecture, Institute of Computing Technology, CAS.
3School of Computer Science and Technology, University of Chinese Academy of Sciences.
4Tecent ADlab.
5Capital Normal University.

Editors: Vineeth N Balasubramanian and Ivor Tsang

Abstract

Neural Architecture Search (NAS) has made remarkable progress in automatically design-
ing neural networks. However, existing differentiable NAS and stochastic NAS methods
are either biased towards exploitation and thus may converge to a local minimum, or bi-
ased towards exploration and thus converge slowly. In this work, we propose a Dynamic
and Differentiable Space-Architecture Search (DDSAS) method to address the exploration-
exploitation dilemma. DDSAS dynamically samples space, searches architectures in the
sampled subspace with gradient descent, and leverages the Upper Confidence Bound (UCB)
to balance exploitation and exploration. The whole search space is elastic, offering flexi-
bility to evolve and to consider resource constraints. Experiments on image classification
datasets demonstrate that with only 4GB memory and 3 hours for searching, DDSAS
achieves 2.39% test error on CIFAR10, 16.26% test error on CIFAR100, and 23.9% test er-
ror when transferring to ImageNet. When directly searching on ImageNet, DDSAS achieves
comparable accuracy with more than 6.5 times speedup over state-of-the-art methods. The
source codes are available at https://github.com/xingxing-123/DDSAS.

Keywords: Neural Architecture Search, Exploration-Exploitation Dilemma

1. Introduction

Neural architecture search (NAS) has demonstrated remarkable progress in automatically
designing various neural networks. How to efficiently search an optimal architecture is the
major theme throughout the development of NAS. Early works attempted to search an

. *Corresponding Author: huyu@ict.ac.cn

© 2021 L. Yang1,2,3, Y. Hu1,2,3 *, S. Lu1,2,3, Z. Sun1,2,3, J. Mei1,2,3, Y. Zeng4, Z. Shi5, Y. Han1,2,3 & X. Li2,3.

https://github.com/xingxing-123/DDSAS

Yang1,2,3 Hu1,2,3 * Lu1,2,3 Sun1,2,3 Mei1,2,3 Zeng4 Shi5 Han1,2,3 Li2,3

0 10 20 30 40 50
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

Co
sin

e
Di

st
an

ce

DARTS
GDAS
DDSAS

(a) Cosine distance between architectures

0 10 20 30 40 50
Epoch

50

60

70

80

90

100

Ac
c/

%

DARTS
GDAS
DDSAS

(b) Search accuracy

Figure 1: (a) The cosine distance between architectures of adjacent epochs. A larger dis-
tance indicates higher diversity of searched architectures thus more exploration. The cosine
distance of DDSAS is higher than that of DARTS. (b) The search accuracy along epochs.
DDSAS converges near 30 epochs while GDAS does not converge well. The results come
from NAS-Bench-201 and more details are provided in Section 4.5.1.

entire network Zoph and Le (2017) or search cells to build a network Real et al. (2019);
Zoph et al. (2018). Due to the tremendous number of candidate architectures, these methods
required thousands of GPU days to search and retrain architectures for a relatively simple
image classification task on CIFAR10. Later on, Pham et al. (2018) proposed the weight
sharing mechanism, reducing the search time to only a few hours.

While weight sharing reduces the search time, the large number of architecture evalu-
ations becomes a new bottleneck. Liu et al. (2019) proposed a differentiable architecture
search technique (DARTS) to address the issue. DARTS relaxes the discrete search space
to be continuous so that the architecture can be optimized by gradient descent. However,
gradient descent optimizer is more exploitative than explorative Jie et al. (2009), which
means DARTS is biased towards exploitation and may fall into a local optimum Chen and
Hsieh (2020); Xu et al. (2019). Stochastic differentiable methods Dong and Yang (2019b);
Xie et al. (2019) alleviate the aforementioned problem by utilizing the Gumbel-Softmax
technique Jang et al. (2017). On one hand, stepwise sampling ensures more exploration
of the search space. On the other hand, the refined annealing process requires much more
epochs, e.g. 150 epochs in SNAS Xie et al. (2019) and 240 epochs in GDAS Dong and Yang
(2019b), resulting in slow convergence.

How to efficiently explore and exploit the search space to find an optimal architec-
ture? In this work, we propose a Dynamic and Differentiable Space-Architecture Search
(DDSAS) method to solve the problem. For encouraging exploration, we combine the dif-
ferentiable search with dynamic space sampling to avoid being trapped in local optimum.
For better exploitation, we utilize space-grained sampling to achieve faster convergence
than architecture-grained sampling in the Gumbel-Softmax technique. As demonstrated in
Figure 1, DDSAS has more exploration than DARTS and faster convergence than GDAS.

The flow of our method is shown in Figure 2. Our basic idea is to sequentially sample
the search space, and then analyze the quality of the sampled subspaces to guide the next
sampling. The contributions of this work are:

DDSAS

Figure 2: Comparison of di�erentiable NAS, stochastic di�erentiable NAS, and DDSAS. The
red, blue, purple, orange, and green rectangles represent search space, di�erentiable search,
stochastic di�erentiable search, space sampling, and performance evaluation, respectively.
(a) Di�erentiable NAS method (e.g. DARTS) directly searches architectures in a whole
search space. (b) Stochastic di�erentiable NAS method (e.g. SNAS) utilizes Gumbel-
Softmax to sample architectures from the whole search space. (c) DDSAS samples subspaces
from the whole search space, and then conducts a di�erentiable search in the sampled spaces.
The succeeding space sampling is guided by the prior sample information.

1. We propose a DDSAS method that balances exploration-exploitation during the
search by using Upper Con�dence Bound (UCB) to guide the dynamic space sampling and
the joint optimization of space and architecture. Due to the exploration-exploitation trade-
o�, DDSAS can e�ciently �nd an optimal architecture. With only 4GB memory and 3
hours, DDSAS achieves 2.39% test error on CIFAR10, 16.26% test error on CIFAR100, and
23.9% test error when transferring to ImageNet.

2. The computation and memory cost can be
exibly controlled according to the resource
limitations. Bene�ting from space sampling, computation and memory resources are only
related to subspace. When directly searching on ImageNet, DDSAS achieves comparable
accuracy with more than 6.5 times speedup over state-of-the-art methods.

3. The whole search space can be elastic during the search. DDSAS can abandon useless
operations or add new operations to realize shrinkage or expansion of the search space, which
allows online adaptation to resource
uctuation. Experiments show that DDSAS with search
space shrinkage and expansion can also stably obtain high-performance architecture.

2. Related Work

From the perspective of search space Lingxi et al. (2020), the related work can be broadly
classi�ed into four categories.

The NAS-RL Search Space . In the early stage, Zoph and Le (2017) proposed the
NAS-RL search space to search hyper-parameters of the entire network. However, the search
is time-consuming due to evaluating tremendous candidate architectures.

The NASNet Search Space . Inspired by the modular structure , Zoph et al. (2018)
proposed the NASNet search space to search cells to build a network instead of entire

Yang 1,2,3 Hu 1,2,3 * Lu 1,2,3 Sun1,2,3 Mei 1,2,3 Zeng 4 Shi5 Han 1,2,3 Li 2,3

Z a search space representation
A an architecture representation
� space parameters to calculatef (�)
� architecture parameters to calculateg(Z; �)
T the total number of sampling iterations
t the sampled number of the operations

f (�) the probability of an operation sampled to the subspace.
g(Z; �) the probability of an operation selected for edges in one subspace.

L a hyper-parameter for top-L selection, indicating the size of the subspace
M a hyper-parameter, indicating the gradient descent step in the sampled subspace.

saliency the values used to select the �nal architecture

Table 1: The de�nition of main notations utilized in the paper.

architectures. Lately, Liu et al. (2018) proposed PNAS to accelerate the search by using a
sequential model-based optimization strategy. Real et al. (2019) proposed AmoebaNet based
on evolutionary algorithms. To further reduce search time, Pham et al. (2018) proposed a
weight-sharing method ENAS to avoid training every architecture from scratch and achieved
searching in a few hours.

The MobileNet Search Space . This search space replaces cells in NASNet search
space with e�cient hand-crafted network blocks, e.g. MobileNet Andrew et al. (2017)
blocks. The hyper-parameters of blocks are searched, e.g. kernel size and expansion ratio.
Many works Cai et al. (2019); Tan et al. (2019); Wu et al. (2019) have shown that the search
space is hardware-friendly and the lower-bound of accuracy is high Lingxi et al. (2020).
Compared with searching well-designed blocks, searching cell topologies and operation types
are more challenging, thus our experiments mainly focus on the DARTS search space.

The DARTS Search Space . DARTS Liu et al. (2019) simpli�ed the NASNet search
space and provided a search space with higher
exibility. DARTS and its variants Chen and
Hsieh (2020); Chen et al. (2021); Li et al. (2020, 2021); Xu et al. (2019); Zela et al. (2020a)
relax the discrete search space to be continuous, thus the architecture search and weight
optimization is uni�ed in gradient-based algorithm. Afterwards, Dong and Yang (2019b);
Xie et al. (2019) leverage Gumbel-Softmax to enforce discrete architecture being searched
in a gradient manner. P-DARTS Chen et al. (2019) progressively increases the depth of
searched architectures with the shrinkage of the search space by reducing operations. CNAS
Guo et al. (2020) gradually incorporates the learned knowledge to guide the search from
a small space to a large space. Unlike P-DARTS which monotonically shrinks the search
space and CNAS which expands it, DDSAS can either shrink or expand the search space,
o�ering more
exibility to adapt to resource
uctuation. Wang et al. (2019) proposed
LaNAS to iteratively learn action space and sample an architecture by Monte Carlo Tree
Search (MCTS). Di�erent from the discrete sampling in LaNAS, DDSAS jointly optimizes
space and architecture parameters with gradient descent, thus achieving a much shorter
search time (150 GPU days vs 0.13 GPU days, as shown in Table 2).

DDSAS

Figure 3: The detailed implementation of DDSAS. The colors have the same meaning as
in Figure 2 (c), except the black means the �nal architecture. In each iteration, the top-
L operations are selected as candidates to form a sampled subspace based on the UCB
score (as shown in the orange rectangle). Di�erentiable search is used to optimize space
and architecture parameters (as shown in the blue rectangle) for evaluation. The space
parameters will be used in the UCB calculation of the next iteration to guide succeeding
space sampling. The saliency will be updated in the evaluation stage (as shown in the green
rectangle), and �nally, the salienyT that fuses all the sampled subspace information is used
for selecting an optimal architecture. *For the sake of easier understanding, we use the
supernet diagram Liu et al. (2019) as an example.

3. Method

3.1. Problem Formalization

For cell-level NAS methods Liu et al. (2018), either a normal cell or a reduction cell can be
represented as a directed acyclic graphs (DAG), i.e. a supernet. For conventional cell-level
di�erentiable methods, the NAS problem can be formulated as:

min
�

L val (! � (�); �)

s:t: ! � (�) = arg min
!

L train (!; �)
(1)

L train and L val are the training and validation loss respectively. ! and � are weight and
architecture parameters of the supernet respectively.

In this work, we have the subspace hierarchy. Suppose there areT sampled subspaces
Z1:::T , then the NAS problem is formulated as:

min
� i ;� i

L val (! � (� i ; � i); � i ; � i ; Z i)

s:t: ! � (� i ; � i) = arg min
!

L train (!; � i ; � i ; Z i)
(2)

where � are space parameters. Then we utilizesaliency to select the �nal architecture. We
calculate saliency based on� �

i ; � �
i :

saliency = EvalAllSubspaces(� �
1::T ; � �

1::T) (3)

Yang 1,2,3 Hu 1,2,3 * Lu 1,2,3 Sun1,2,3 Mei 1,2,3 Zeng 4 Shi5 Han 1,2,3 Li 2,3

3.2. Search Space and Architecture Representation

Assuming the DAG has n nodes, e edges with m candidate operations applied to each
edge, then the search space can be represented byZ; Z 2 Re� m ; Z i;j

k 2 f 0; 1g, where the
0-element inZ means thek-th operation does not exist between edge (i; j), while 1-element
means the operation exists. If8Z i;j

k ; Z i;j
k = 1, then Z represents the whole search space as

shown in the red rectangle in Figure 3. If9Z i;j
k = 0, then Z is a subspace as shown in the

orange rectangle in Figure 3. Besides, an architecture is represented byA; A 2 Re� m ; A i;j
k 2

f 0; 1g; jjA i;j jj0 = 1, which can be considered as a subspace only containing one architecture
(e.g. the �nal architecture in the black rectangle of Figure 3).

3.3. Space Sampling

Space sampling is a key stage in DDSAS because it determines the trade-o� between ex-
ploration and exploitation of the whole space. At the beginning of the search, the early
iterations mainly focus on exploration, learning more knowledge about the landscape of the
search space, while the later iterations tend to concentrate search on the subspaces in which
better architectures more likely exist. We use the Upper Con�dence Bound (UCB) Auer
et al. (2002) to guide the balance of exploration and exploitation:

UCB(Z i;j
k) = f (� i;j

k) +

s
2logT

t i;j
k

(4)

where � i;j
k is the space parameters,f (� i;j

k) is the estimated probability of P(Z i;j
k = 1), T

is the total number of sampling iterations, and t i;j
k is the number of Z i;j

k = 1. The f (� i;j
k)

term corresponds to exploitation while the
r

2logT
t i;j
k

term corresponds to exploration. We

calculate f (� i;j
k) with the Sigmoid function:

f (� i;j
k) = Sigmoid(� i;j

k) (5)

Afterwards, we select the operations with the highest top-L con�dence to form the
sampled subspaceZ and use gradient descent to search in the sampled subspace withM
steps. Ablation study on the two hyper-parameters L and M will be discussed in the
supplementary material due to the limited space. Based on Eq. (4), the UCB sampling
strategy tends to explore the operations with fewer sampled times and exploit the operations
with higher estimation probabilities, thus balancing the exploration and exploitation of the
search space. Besides, space sampling can decouple resource requirements from the whole
search space settings by adjusting the two hyper-parametersL and M , making the proposed
method resource-friendly.

3.4. Di�erentiable Search

To make the search space continuous, DARTS relaxes categorical choices by utilizing a
softmax over all operations:

�oi;j (x) =
mX

k=1

exp(� i;j
k)

P
exp(� i;j

k0)
ok (x) (6)

DDSAS

where ok (x) is the k-th operation with a latent representation x, and �oi;j (x) is the mixed
operation.

Because of having the subspace hierarchy, the quality of the sampled subspaces needs to
be evalueted to guide next sampling. Therefore, we combinef (�) into di�erentiable search
for optimization space parameters:

�oi;j (x) =
mX

k=1

f (� i;j
k)g(Z i;j

k ; � i;j)
P

f (� i;j
k0)g(Z i;j

k0 ; � i;j)
ok (x) (7)

g(Z i;j
k ; � i;j) =

I (Z i;j
k = 1) exp(� i;j

k)
P m

k0 I (Z i;j
k0 = 1) exp(� i;j

k0)
(8)

where g(Z i;j
k ; � i;j) denotes the probability of the k-th operation selected for edge (i; j), i.e.

P(A i;j
k = 1 jZ i;j), and the value of I (�) is 1 when the condition is true, and 0 when false.

If Z i;j
k = 0, then g(Z i;j

k ; � i;j) = 0 and the corresponding operation will not participate in
the forward propagation. Because the forward pass and the back-propagation pass is only
conducted in the sampled subspace, the computation and memory cost is greatly reduced.

To better understand the Eq. (7), we reveal that the Eq. (7) is an approximation in
terms of the edge-wise joint distribution of space and architecture, i.e.P(Z i;j ; A i;j). For
the sake of simplicity, we setpk = f (� i;j

k); qk = g(Z i;j
k ; � i;j); �pk = 1 � pk ; �Z i;j

k = 1 � Z i;j
k .

Assume that operations in edge (i; j) are independently selected into the sampled sub-
spaceZ as candidates, and givenA i;j

k1 = 1, then we get the edge-wise joint distribution:

P(Z i;j ; A i;j) = P(A i;j jZ i;j) � P(Z i;j)

= (
mY

k=1

(qk)A i;j
k) � (

mY

k=1

(pk)Z i;j
k (�pk)

�Z i;j
k)

= qk1 � (
mY

k=1

(pk)Z i;j
k (�pk)

�Z i;j
k)

= qk1pk1 � (
Y

k6= k1

(pk)Z i;j
k (�pk)

�Z i;j
k)

(9)

Although it is straightforward to use Eq. (9) as the weight of the operation, an approx-
imation can reduce computation cost. Ideally, if the �rst term qk1pk1 of Eq. (9) dominates
the joint distribution, then we can use the normalized pkqk as the weight of the mixed
operation �oi;j (x) to make the search space continuous, i.e. Eq. (7).

SupposeA1 and A2 are two architectures yielded by subspaceZ . We compare k1-th
and k2-th operations under the Z i;j

k . Let A1i;j
k1 = 1 ; A2i;j

k2 = 1, then:

P(Z i;j ; A1i;j)
P(Z i;j ; A2i;j)

= (
qk1pk1

qk2pk2
) � (

Q
k6= k1(pk)Z i;j

k (�pk) �Z i;j
k

Q
k06= k2(pk0)Z i;j

k 0 (�pk0)
�Z i;j

k 0

) (10)

So if the ratio of the second term of Eq. (10) is 1, then the �rst term is dominant. We will
demonstrate the assumption is valid in ablation study (Section 4.5.2).

Yang 1,2,3 Hu 1,2,3 * Lu 1,2,3 Sun1,2,3 Mei 1,2,3 Zeng 4 Shi5 Han 1,2,3 Li 2,3

3.5. Evaluation

We select the optimal architecture based on the saliency of each operation. We uses 2 Re� n

to evaluate the saliency of each operation on each edge. Suppose thatsi;j
k (u) is the k-th

operation between nodesi and j in the u-th iteration. If one operation is a candidate in
the u-th iteration, its saliency will be updated, otherwise, no update. The update equation
is as follows and please note thatt i;j

k (u) =
P u

v=1 Z i;j
k (v):

si;j
k (u) =

(si;j
k (u � 1) � t i;j

k (u � 1) + pk (u) � qk (u))

t i;j
k (u)

(11)

In other words, the saliency of an operation indicates the average performance of the oper-
ation in all sampled subspaces, which is equivalent to Eq. (11):

si;j
k (T) =

P T
u=1 Z i;j

k (u) � pk (u) � qk (u)

t i;j
k (T)

(12)

The �nal architecture A is chosen based on saliencys. argmax(si;j (T)) is used for
selecting an operation for edge (i; j). We edge-wisely select the non-zero operation with the
highest saliency. And similar to DARTS, we let each node have two incoming edges.

The pseudocode of DDSAS is shown in Algorithm 1.

Algorithm 1 DDSAS

Input: subspace sizeL , the number of gradient descent stepsM
Output: an architecture A
Initialize: network weights ! , space parameters� , architecture parameters � , con�dence

UCB, operation saliencys, the total number of sampling iterations T, edge-wise sam-
pling numbers of operationst, steps

1: while not convergeddo
2: if step % M == 0 then
3: Update con�dence UCB by Eq. (4)
4: Sample the subspaces Z with the top-L operations based on con�dence inUCB
5: Edge-wisely accumulate the sampling numbers of operations:t i;j

k t i;j
k + Z i;j

k
6: T T + 1
7: end if
8: Update space parameters� and architecture parameters � by r � L val (!; �; �) and

r � L val (!; �; �) by Eq. (2)(7)
9: Update network weights ! by r ! L train (!; �; �) by Eq. (2)

10: steps steps+ 1
11: if step % M == 0 then
12: Update saliencys by Eq. (11)
13: end if
14: end while
15: return an architecture A with the highest operation saliency s.

DDSAS

4. Experiments

4.1. Datasets

We use DDSAS to search architectures on �ve datasets, including CIFAR10, CIFAR100,
ImageNet, NAS-Bench-1Shot1, and NASBench201. CIFAR10 and CIFAR100 Krizhevsky
and Hinton (2009) are two popular datasets containing 50K training images and 10K testing
images, respectively. ILSVRC2012 Russakovsky et al. (2015) has 1.28M training and 50K
validation images with 1000 object categories, which is used to test the transferability and
scalability of DDSAS. Note that the search space on CIFAR10, CIFAR100, and ImageNet is
the DARTS search space. NAS-Bench-1shot1 Zela et al. (2020b) is a benchmark framework
with three one-shot search spaces from NAS-Bench-101 dataset Ying et al. (2019). The
three spaces contain 6240, 29160, 363648 architectures respectively. NAS-Bench-201 Dong
and Yang (2020) is an extension to NAS-Bench-101 with a di�erent search space containing
15625 architectures. Also, we conducted ablation studies to further analyze DDSAS.

4.2. Results on CIFAR10 and CIFAR100

The prede�ned network in the search phase is the same as DARTS, which consists of eight
layers of cells, including six normal cells and two reduction cells. Each cell has seven
nodes with four intermediate nodes, two input nodes, and one output node. There are
fourteen edges in one cell and eight candidates operations for one edge, which can build
the whole search space of a normal cell or reduction cell. The eight candidate operations
are skip-connect, max-pool-3� 3, avg-pool-3� 3, sep-conv-3� 3, sep-conv-5� 5, dil-conv-3� 3,
dil-conv-5� 5, and zero. Besides, the size of subspaceL is 28 and gradient descent steps
M is 30. We also designed two experiments to investigate the adaptation of DDSAS to
search space changes. One is shrinking the whole search space. Every 10 epochs, we delete
the 14 operations that have the lowest saliency among all edges from the search space,
i.e. subsequent space sampling will no longer consider the subspaces containing the deleted
operations. DDSAS searches for a total of 60 epochs. The other one is expanding the whole
search space. We �rst initialize the search space with three candidate operations for each
edge, i.e. skip-connect, zero, sep-conv-3� 3. To reduce the bias on either nonparametric
operations or parametric operations, we heuristically expand the search space by adding
another operation per edge after every 10 epochs following the sequence ofmax-pool-3� 3,
dil-conv-3� 3, avg-pool-3� 3, sep-conv-5� 5, dil-conv-5� 5. Likewise, a total of 60 epochs are
searched. The �nal search space consists of eight operations. The hyper-parameter settings
are placed in the supplementary material.

Table 2 shows the comparison between DDSAS and other methods on CIFAR10 and CI-
FAR100. We report the results by four independent runs with di�erent random seeds. The
average test error on CIFAR10 and CIFAR100 is 2.59% and 17.15% respectively, indicating
that DDSAS can search for a good architecture under di�erent seed initialization. Note
that despite of similar performance and search cost on CIFAR10, DDSAS has signi�cant
performance gain on ImageNet than NASP/PC-DARTS in Table 3 (23.9 vs. 26.3/25.1).
Compared with �xed search space, the average errors are reduced to 2.52% and 2.57% on
CIFAR10, 16.74% and 16.77% on CIFAR100, indicating that shrinkage and expansion can
improve search accuracy, especially on CIFAR100. This testi�es that the whole search space

Yang 1,2,3 Hu 1,2,3 * Lu 1,2,3 Sun1,2,3 Mei 1,2,3 Zeng 4 Shi5 Han 1,2,3 Li 2,3

Method
CIFAR10 CIFAR100 GPU

Algorithm
Test Err.(%) Params(M) Test Err.(%) Params(M) Days

NASNet Zoph et al. (2018) 2.65 3.3 - - 1800 RL
AmoebaNet Real et al. (2019) 2.55� 0.05 2.8 - - 3150 EA

PNAS Liu et al. (2018) 3.41� 0.09 3.2 - - 225 SMBO
ENAS Pham et al. (2018) 2.89 4.6 - - 0.5 RL
LaNAS Wang et al. (2019) 2.53� 0.05 3.2 - - 150 MCTS
DARTS Liu et al. (2019) 3.00� 0.14 3.3 20.58� 0.44 z - 1.5 gradient
SNAS Xie et al. (2019) 2.85� 0.02 2.8 - - 1.5 gradient

P-DARTS Chen et al. (2019) 2.5 3.4 15.92 3.6 0.3 gradient
RobustDARTS Zela et al. (2020a) 2.95� 0.21 - 18.01� 0.26 - 1.6 gradient
SDARTS Chen and Hsieh (2020) 2.61� 0.02 3.3 - - 1.3 gradient
GDAS Dong and Yang (2019b) 2.93 3.4 18.38 3.4 0.17 gradient

SGAS Li et al. (2020) 2.66� 0.24 3.7 - - 0.25 gradient
NASP Yao et al. (2020) 2.83� 0.09 3.3 - - 0.1 gradient

PC-DARTS Xu et al. (2019) 2.57� 0.07 3.6 - - 0.1 gradient
DrNAS Chen et al. (2021) 2.54� 0.03 4.0 - - 0.4 gradient
CNAS Guo et al. (2020) 2.60� 0.06 3.7 - - 0.3 gradient

DDSAS 2.59� 0.17� 3.5 17.15� 0.33� 3.4 0.13 gradient
DDSAS (shrinking) 2.52� 0.06� 3.9 16.74� 0.18� 3.7 0.13 gradient
DDSAS (expanding) 2.57� 0.10� 3.7 16.77� 0.38� 3.9 0.13 gradient

DDSAS (best) 2.39 3.6 16.26 4.2 0.13 gradient

Table 2: Comparison with state-of-the-art NAS methods on CIFAR10, CIFAR100. z the
data is reported by Zela et al. (2020a). � The mean and the standard deviation come from
four independent search with di�erent random seeds.

can be elastic during the DDSAS search process. The best architecture achieves test errors
of 2.39% and 16.26%, coming from �xed search space and expanding search space respec-
tively. This shows that DDSAS has excellent performance compared with other methods,
while only requiring 4GB memory and 0.13 GPU days on one NVIDIA V100 GPU.

4.3. Results on ImageNet

We test the transferability of the best cells searched on CIFAR10 by evaluating them on
ImageNet. As shown in Table 3, with only 0.13 GPU days, DDSAS can achieve 23.9% Top-
1 error and 7.1% Top-5 error, outperforming all the other methods. To further verify the
scalability of our method, we directly search on ImageNet. We follow PC-DARTS Xu et al.
(2019) to randomly select 10% and 2.5% images from ImageNet to train weight parameters
and space-architecture parameters respectively. A total of 60 epochs are searched with a
batch size 512. We setL to 28 and M to 30, which is the same as CIFAR10. We only sample
operations with trainable parameters in the �rst 40 epochs and sample all operations in the
last 20 epochs. Our method achieves an error of 24.2/7.3% with 5.5M parameters and
0.58 GPU Days, which has comparable accuracy with more than 6.5 times speedup over
state-of-the-art methods.

4.4. Results on NASBench

In NAS-Bench-1shot1, an architecture consists of three stacked blocks with a max-pooling
operation in between. Each block has three cells. Selecting the �nal network architecture

DDSAS

Method Top1 Err.(%) Top5 Err.(%) Params(M) GPU Days Algorithm

Transfer the optimal architecture to ImageNet

NASNet Zoph et al. (2018) 26.0 8.4 5.3 1800 RL
AmoebaNet Real et al. (2019) 24.3 7.6 6.4 3150 EA

PNAS Liu et al. (2018) 25.8 8.1 5.1 225 SMBO
LaNAS Wang et al. (2019) 25.0 0.7 5.1 150 MCTS
DARTS Liu et al. (2019) 26.7 8.7 4.7 1.5 gradient
SNAS Xie et al. (2019) 27.3 9.2 4.3 1.5 gradient

P-DARTS Chen et al. (2019) 24.4 7.4 4.9 0.3 gradient
SDARTS Chen and Hsieh (2020) 25.2 7.8 - 1.3 gradient
GDAS Dong and Yang (2019b) 26.0 8.5 5.3 0.17 gradient

SGAS Li et al. (2020) 24.2 7.2 5.3 0.25 gradient
NASP Yao et al. (2020) 26.3 8.6 9.5 0.2 gradient

PC-DARTS Xu et al. (2019) 25.1 7.8 5.3 0.1 gradient
CNAS Guo et al. (2020) 24.6 7.4 5.3 0.3 gradient

DDSAS 23.9 7.1 5.3 0.13 gradient

Directly search on ImageNet in the DARTS search space

DrNAS Chen et al. (2021) 24.2 7.3 5.2 3.9 gradient
PC-DARTS Xu et al. (2019) 24.2 7.3 5.3 3.8 gradient

DDSAS 24.2 7.3 5.5 0.58 gradient

Table 3: Comparison with state-of-the-art NAS methods on ImageNet. The upper part lists
the methods that search on CIFAR10 or CIFAR100 and then transfer the optimal architec-
ture to ImageNet. The lower part lists the methods that directly search on ImageNet.

requires searching the connections of input and output nodes and the choice blocks. For the
sake of simplicity, we only sample the space formed by the operation of choice blocks and
directly use softmax to search for the connection of input and output nodes. As the search
space changes, we modify the hyper-parameterL to 6, while M =30 remains unchanged.
Other hyper-parameters are the same as the DARTS settings in NAS-Bench-1shot1. We
searched for 50 epochs with six di�erent random seeds, and showed the trend of errors of
di�erent methods in Figure 4.

As shown in Figure 4, DDSAS has outstanding performance in the three search spaces
of NAS-Bench-1shot1. Firstly, the solid line shows that DDSAS can reach the lowest test
regret in di�erent spaces. Secondly, DDSAS converges faster than DARTS, which shows the
e�ciency of DDSAS. Finally, the standard deviation of DDSAS after convergence is very
small, showing the stability of DDSAS.

In NAS-Bench-201, an architecture is built by three stacked cells, which are connected
by a residual block. Each stack has �ve normal cells and the residual block has stride 2.
The DAG of a normal cell has four nodes and multiple edges. A mixture of �ve candidate
operations is placed on each edge. We transfer DDSAS to this search space and set the
hyper-parameter L=12 and M =30 because the number of candidate operations is less than
that in CIFAR10. Following the settings in NAS-Bench-1shot1, we use random seeds in our
search process and keep other hyper-parameters the same as in DARTS.

Table 4 compares DDSAS with other di�erentiable search methods on NAS-Bench-201.
DDSAS achieves better performance than baseline methods on three datasets. Moreover,

	Introduction
	Related Work
	Method
	Problem Formalization
	Search Space and Architecture Representation
	Space Sampling
	Differentiable Search
	Evaluation

	Experiments
	Datasets
	Results on CIFAR10 and CIFAR100
	Results on ImageNet
	Results on NASBench
	Ablation Study
	Exploration and Exploitation of Search Space
	Approximation of Joint Probability
	Resource Cost of DDSAS

	Conclusion

