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Abstract

In this paper, we study a task called Learning from Label Proportions (LLP). LLP aims to learn an
instance-level classifier given a number of bags and each bag is composed of several instances. The
label of each instance is concealed and what we know is the proportion of each class in each bag.
The lack of instance-level supervision information makes the model struggle for finding the right
direction for optimization. In this paper, we solve this problem by developing a two-stage training
framework. First, we facilitate contrastive learning to train a feature extractor in an unsupervised
way. Second, we train a linear classifier with the parameter of the feature extractor fixed. This
framework performs much better than most baselines but is still unsatisfactory when the bag size or
the number of classes is large. Therefore, we further propose a Feature-Label Matching mechanism
(FLMm). FLMm can provide a roughly right optimization direction for the classifier by assigning
labels to a subset of instances selected in this bag with a high degree of confidence. Therefore,
the classifier can more easily establish the correspondence between instances and labels in the
second stage. Experimental results on two benchmark datasets, namely CIFAR10 and CIFAR100,
show that our model is far superior than baseline models, for example, accuracy increases from
43.44% to 61.25% for bag size 128 on CIFAR100. Code is available at https://github.
com/LHRYANG/LLP_FLMmn.

Keywords: Learning from Label Proportions, Contrastive Learning, Matching Mechanism, Multi-
ple Instance Learning

1. Introduction

Weakly supervised learning (WSL) Zhou (2017) aims to utilize limited or incomplete sources to
establish a powerful model. For example, semi-supervised learning (SSL) Chapelle et al. (2010) is
a kind of WSL problem where the dataset is composed of a small amount of labeled data and a large
amount of unlabeled data. In this paper, we delve into another WSL problem - Learning from Label
Proportions (LLP) Patrini et al. (2014); Tsai and Lin (2019); Yu et al. (2015), which has many real-
world applications, e.g., spam email filtering Quadrianto et al. (2009), disease diagnosis Hernandez-
Gonzélez et al. (2018); Tokunaga et al. (2020), political elections Fish and Reyzin (2017), etc.
The LLP dataset comprises a number of bags and each bag is composed of several instances and
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Figure 1: A general training paradigm of LLP tasks. The black square contains an example of a bag
with size 10. E(-) and f(-) represent the feature extractor and the classifier respectively.

equipped with information on the proportion of each class. An example is illustrated in Figure 1.
Given these bag-level information, the goal is to build an instance-level classifier.

The main difficulty for LLP is that the model is intrinsically harder to train since it can not easily
find the right direction for optimization. To gain some insight of this phenomenon, an intuitive
explanation is provided. In Figure 1, instances in the bag are firstly encoded by a feature extractor
E(-), then a classifier f(-) is applied to calculate the predicted probability of each instances. The
predicted bag-level class distribution is the average of all instances’ probabilities. To train the model,
the Kullback Leibler divergence (KLD) between the ground truth and the predicted bag-level class
distributions is usually used as the loss function. Suppose we have already established a powerful
E(+), then the instances with the same label will be clustered together in the feature space. In this
situation, the classifier f(-) may assign the same label (may not be the correct label) to a cluster of
instances belonging to the same class. In this example, f(-) classifies the purple points correctly
but wrongly classifies the red points to c3 and green points to c;. When calculating the KLD loss,
we can see that there is a difference between 0.2 and 0.5 which means that ¢; and c3 account for
the whole KLD loss. So the optimizer tries to narrow down this difference. However, this only
reveals that green points and red points are not likely to belong to ¢; and c3 respectively without
telling which instances should be classified to c; and c3. Therefore, the classifier has to explore all
possible combinations between instances and labels, making it difficult to converge to the optimum.
Moreover, two factors aggravate this phenomenon. The first factor is the training scheme. Recall
that the above analysis is based on the premise that E(-) is well trained in advance. If E(-) and
f(+) are jointly trained in an end-to-end training scheme, not only the f(-) but also the E(-) (usually
a huge network) will not be well optimized. The second factor is the bag size and the number of
classes. The growth of the number of classes or the bag size results in much more combinations
between instances and labels. In other words, the search space will become huge. That’s why the
performance of previous models Yu et al. (2013); Dulac-Arnold et al. (2019); Liu et al. (2021) is
attenuated significantly in situations where the number of class categories or the bag size is large.

To help the model converge to its optimum quickly, we propose a two-stage training framework
where the first stage focuses on training a feature extractor and the second stage is responsible for
training a linear classifier. In the first stage, we utilise SimCLR Chen et al. (2020a,b), a contrastive
learning framework, to train the feature extractor. SimCLR is an unsupervised feature extraction
technique and can generate as good a feature space as that based on supervised learning. The
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generated features have the following property: inputs belonging to the same class are mapped
closer and inputs belonging to different classes are mapped far apart in feature space. With a well-
trained feature extractor, in the second stage, we only need to optimize a simple linear classifier
which is much easier than optimizing the feature extractor and classifier jointly. However, as the
bag size or the number of classes becomes larger, it is still difficult for the classifier to converge
using the bag-level KLD loss. The reason has been explained in the above paragraph. Therefore, we
further put forward a Feature-Label Matching mechanism (FLMm). This mechanism is motivated
by the desired property that the instances with the same label should be clustered together if the
pretrained feature extractor is powerful enough. Based on this property, in the second stage, a linear
classifier even without well trained can generate analogous probability distributions for instances
with the same label, although it is possible that the classifier makes an incorrect prediction. FLMm
takes advantage of the probability similarity between the predicted bag-level class distribution and
the ground truth bag-level class distribution to assign labels to a subset of instances elaborately
selected in this bag. Then, instance-level supervised training is conducted on the selected instances
and their assigned labels. We show that FLMm can provide a a roughly right optimization direction
to speed up the convergence of the classifier. Our proposed two-stage training framework with
FLMm can achieve dramatic improvements compared with previous proposed models on two image
classification datasets CIFAR10 and CIFAR100.

2. Related Work

2.1. Learning from Label Proportions

Practically, it is not only time-consuming but also expensive to obtain a large number of labeled
data, not to mention privacy issue. In this context, learning from label proportions (LLP), which
trains the classifier only using the label proportion at bag level rather than the independent label of
each instance, comes into being, and has been widely applied to many fields including the census Pa-
trini et al. (2014), medical research Herndndez-Gonzdlez et al. (2018) and object recognition Kiick
and de Freitas (2005). Previously works can roughly be divided into two categories: SVM-based
and deep learning methods. SVM-based methods including InvCal Rueping (2010), «SVM Yu
et al. (2013), NPSVM Qi et al. (2016) aim to model LLP as a SVM optimization problem. InvCal
puts forward a “super instance” concept which is the mean of each bag and each super instance
is associated with a soft label. However, the mean representation may sometimes not be a good
representation of the whole bag which could result in poor performance. Instead, Yu et al. pro-
pose ««SVM which explicitly models the unknown label for each instance in a bag. Besides, they
also provide two algorithms to optimize their model by alternatively fixing labels and fixing clas-
sifier parameters. Qi propose NPSVM which tries to determine labels of instances according to
two nonparallel hyper-planes under the supervision of label proportion information. However, all
the above methods can only solve the binary classification LLP problem and lag behind in the era
of deep learning. Therefore, Dulac-Arnold et al. (2019) put forward ROT which can be applied
to general nonlinear multiclass setting. To learn a smooth classifier which is consistent when the
input is perturbed, Tsai and Lin (2019) introduce consistency regularization as an auxiliary loss
term. Liu et al. (2019) integrate generative adversarial network (GAN) into the LLP framework
which achieves boosting improvement. Besides these two categories, there are also some works
that attempt to use cluster Stolpe and Morik (2011) and label propagation Poyiadzi et al. (2018)
techniques, which will not be described here.
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2.2. Contrastive Learning

There have been many methods emerging during the last few years for unsupervised feature ex-
traction since the amount of unlabeled data is substantial. For instance, VAE Kingma and Welling
(2014), discrete VAE van den Oord et al. (2017) and NVAE Vahdat and Kautz (2020), which are
based on the variational bayesian inference, try to reconstruct the original input after compressing
it into a low-dimensional Gaussian distribution and achieve impressive performance especially in
computer vision domain. In natural language domain, generalised language models, such as GPT-
2 Radford et al. (2018), GPT-3 Brown et al. (2020) and BERT Devlin et al. (2019) are proposed
and trained by defining different tasks, , predicting next word or masked word and judging whether
two sentences are adjacent. Recently, contrastive learning Chen et al. (2020a); He et al. (2020);
Khosla et al. (2020); Oord et al. (2018); Tian et al. (2020); Yang et al. (2021) has demonstrated
its power for feature extraction in unsupervised way so we want to take advantage of it to achieve
fast convergence as well as excellent feature extraction in LLP. SimCLR Chen et al. (2020a) gen-
erates two transformed images from the same image and introduces a contrastive loss which is
capable of bringing same class features together and keeping different classes features away from
each other. Experiment on supervised image classification tasks shows that pretrained feature ex-
tractor coupled with a linear classifier surpass the end-to-end training framework. Iter et al. (2020)
utilise contrastive learning for pretraining language models which is beneficial to improve discourse
performance. The above successes inspire us to solve the LLP problem by a two-stage training pro-
cedure.

3. Proposed Model

3.1. Overview

First of all, we describe some commonly used notations and give a formal definition of LLP prob-
lem. Suppose the label set is C which contains K classes (c1,co, .., cx). The training dataset
is represented by Dyyqin, Which is composed of n instances (x1, 2, ..., x,) together with their
corresponding label vectors (y1,y2, - ,¥n) Where y; € RX is a one-hot vector. Each bag
B; = (:1311, azé, e ,:cinl) consists of m; instances sampled from Dy,.q;,. Then we can obtain the
bag class distribution p; given by

1
pi=—>yj (1)
m; =

We can see that the k-th element pf of p; is the proportion of instances belonging to the class k
with the constraint Y p¥ = 1.

Given a bunch of such bags with their corresponding bag-level class distributions {(B;, pi)};,
LLP aims to learn an instance-level classifier which will be tested on Dy, after training. There are
two points that should be noticed: (1) In real scenarios, the bag size m; may be different for different
bags. Here, just as previous works did, all bags are assumed to have the same size, uniformly
expressed as m. If m = 1, LLP degrades to the normal supervised learning problem. We shall see
in detail later, m has a significant impact on the performance of the model. (2) During training time,
the label of each instance in a bag is not accessible while in testing time, each instance is provided
with the ground truth label so as to evaluate the performance of LLP models.
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3.2. Extractor Training with Contrastive Learning

Compared with other unsupervised learning families, e.g., auto-encoder Baldi (2011), variational
auto-encoder Kingma and Welling (2014), which extract low-dimensional features by reconstructing
the input, contrastive learning Chen et al. (2020a); Tian et al. (2019) takes the relationship between
different instances into consideration. It tries to minimize the distance between instances with same
label and maximize the distance between those with different labels. However, the label information
is not really needed by generating two different views of the same input so that it is capable of
extracting features of input in an unsupervised way.

3.2.1. FEATURE EXTRACTOR

Firstly, an instance z is transformed into two augmented instances by some transformations x® =
T;(z), 2* = Tj(z), T;,T; € T. Here, we denote the transformation set by T which comprises
several commonly used transformations, e.g., ResizedCrop, HorizontalFlip, ColorJitter, Grayscale.
We follow the same setting provided in SupContrast Khosla et al. (2020). Specifically, T;, which
randomly crops the instance and then resizes that back to the original instance size, is always se-
lected. 7 is sampled from T randomly. The augmented instances are then fed into the encoder
E(-) to generate the representation vectors z¢ = F(z%), z° = E(a?). The encoder allows various
choices of network architectures and here we adopt ResNet50 He et al. (2016) architecture and note
that ResNet50 is not pretrained.

3.2.2. CONTRASTIVE LOSS

To optimize the feature extractor, contrastive loss Chen et al. (2020a) is utilized. Concretely, given a
batch of instances (71, 72, - - - , ), 2N augmented instances denoted by (z¢, 2%, 2%, 25, - - - | 2%, 24
are generated by applying the transformation. And then, 2V instances are inputted into the extractor
E(-) to generate 2N features (2z4,2%,24,25, - - - , 2%, 2% ). For a specific vector z¢, the positive pair
is (z¢, z?), and z¢ with the other remaining 2N — 2 features forms (2N — 2) negative pairs. For 2,

it is the same as z{. The loss takes the following form

a cap(zf - 2)/7)
L =-l 2
P ol )+ S palea(el - /7) + cap(ai - 7)) *
b.,a

rb— exp(z; - 2§ /T) 3
‘ Ogexp(zi? -z8/T) + Zj#(emp(zi? -Z$/T) + exp(z! - Z?/T)) ©)

N
L= (Lr+ L @)

i=1

where - represents the dot product between two vectors and 7 denotes a temperature parameter.

After training, we obtain the vector representation z; in low-dimensional feature space for each
instance x; by concatenating z; and zi?. These vectors have a property: the distance between two
vectors is small if two instances have the same label, otherwise the distance is large (See Figure 3
and Figure 4 as an illustration). This property lays the foundation for Stage 2 which is described
below.
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3.3. Linear Classifier Training
3.3.1. BAG-LEVEL KLD Loss

With a well-trained E(-), in Stage 2, we only need to train a simple linear classifier f(z) = 0(W2z)
with the knowledge of each bag’s class distribution. o represents the softmax function. Specifically,
for each bag B; = (x%,x%,--- , ¢ ), we firstly obtain their corresponding features (z1, 22, " -+ , Zm)
and then feed them into f(-) to output their probability distributions (p1, P2, -, Pm ), Where p; is a
K-element vector. Although the label of each instance in this bag is not accessible, we can still
employ KLD loss into a bag-level version by averaging the generated probabilities of each bag. We

have

1 o~
QiZ*ZPj )
m =
rkid — 5170.Pi 6
7 _pi Og(q.) ()

where p; and q; are the ground-truth and predicted bag-level class distribution respectively.
In addition, we impose an entropy regularization Grandvalet and Bengio (2004) to p; with the
purpose of encouraging it to converge to a one-hot vector whose entropy is zero, giving

m
£ =" —pllog(p;) @)
j=1
The total loss for bag i is
L;= LM 4 st (8)

3.3.2. FEATURE-LABEL MATCHING MECHANISM

The two-stage model proposed above has exceeded most baselines. But the classification accuracy
drops significantly as the bag size becomes larger, especially for large class number K. This hap-
pens because the linear classifier still fails to find the direction of optimization even if the two-stage
training framework has already reduced the difficulty of optimization. To alleviate this issue, we
propose a Feature-Label Matching mechanism (FLMm). FLMm is motivated by such an observa-
tion: if F(-) is trained perfectly, the instance clusters in the feature space, sorted in the descending
order of their size, should correspond to the labels sorted in the descending order of their propor-
tions. For example, in Figure 2, instances [1,7] form the largest cluster and they should be classified
to ¢; whose proportion is the largest in this bag according to p;. Analogously, instances [18,23]
should be classified to c5. This kind of feature cluster-label matching can provide the classifier
instance-level supervision information for optimization. A straightforward implementation is to
cluster these features firstly and then assign each cluster a label. However, it has several issues. The
first issue is that several clusters may have the same size which causes some confusion when assign-
ing labels. The second issue is that the order of clusters and the order of labels are not necessarily
corresponding to each other since the feature extractor is usually not perfect. A wrong cluster-label
matching will mislead the classifier when optimizing.

Therefore, FLMm is designed as a fuzzy matching algorithm. Before starting to introduce this
mechanism, we first define h; as the hard generated bag-level class distribution and the j-th element
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Figure 2: Given a bag of instances, we firstly obtain their corresponding feature vectors with the
help of the feature extractor pretrained in Stage 1. Under ideal circumstances, features with the same
label are clustered together as shown in the left part. Then, the classifier is trained by employing the
bag-level KLD divergence loss (yellow background part). To further training the classifier, instances
[1,7],[18, 23] are selected based on h; (blue arrow) and ¢y, ¢ are selected based on p; (red arrow).
Finally, instance-level supervised learning is conducted to optimize the classifier.

of h; is

1 m
— Z (arg max(px) = j) )]
m

where 1(s) = 1 if s is true, otherwise 0. Obviously, the generated bag class distribution q; is a
soft version of h;. Hence, values of these two vectors are similar in an ideal situation. We use
~ a to represent a value close to a. FLMm aims to tell what are the most likely labels for a
subset of instances with high confidence in a bag. In FLMm, firstly we select all the class ¢ whose
corresponding ground-truth probability p§ is greater than or equal to a threshold parameter ¢;1. The
selected set of classes is denoted by C. Then, we select instances whose predicted label [ satisfies
hé > t9, where to is another threshold parameter. We denote these instances by /. We can see that
the instances in I belong to one of the class in C' with a high probability.

After selecting instances I and classes C' based on h; and p;, we iteratively assign a label in
C to these instances I and conduct supervised classification and then back propagation. Through
this way, the classifier converges faster since the above supervised training provides a rough right
direction to the optimizer. Here comes a question: what if a wrong label is assigned to some of
the instances in I which have already been correctly classified ? We show that this situation will
not influence much on the classifier. Consider the example in Figure 2, in the k-th step, [18, 23]
have already been classified to the correct label c; by f(-). But the model still need to do back
propagation twice for [18, 23], one for ¢; and the other for ¢5 in a supervised manner. The worst
case is that these two gradients are in the opposite direction. So the two gradients may cancel each
other out and f(-) can still classify [18, 23] to ¢5 correctly. Since FLMm works in the worst case,
it is even more valid in other cases. The full training process of the classifier is summarized in
Algorithm 1.
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Algorithm 1 Training Classifier for Bag B5;

%

Require: Bag B; = (2%, 2%, -+ ,2%,), bag class distribution p;, pretrained feature extractor E, classifier f,

,_
e

WX N RN

? m

parameter ¢, parameter to

fix £

(21,22, ,2m) = E(B;) {obtain features};

(P1, P2, Pm) = f((2i, 22, ,Zm))

obtain q; and h; according to Equation 5 and Equation 9 respectively

calculate £; according to Equation 8 and conduct back propagation

obtain the selected class set C' where for each ¢ € C satisfies p§ > ¢;

obtain the selected instances I where for each instance b € I, the predicted label [ satisfies hé > to

for cin C do
suppose that the label of instances in [ is ¢, conduct supervised classification and then back propaga-
tion using cross entropy loss .

end for

4.

Experiment and Analysis

4.1. Datasets & Evaluation Metric

We conduct experiments on two benchmark datasets CIFAR10 and CIFAR100 Krizhevsky (2012).
Both datasets consist of 50000 training instances and 10000 testing instances. Each instance is a
3 x 32 x 32 colored image. CIFAR10 has 10 classes and CIFAR100 has 100 classes, with each
class containing 5000 and 500 training images respectively. We use the accuracy on test dataset as
the evaluation metric.

4.2. Baselines

We compare our model with five baseline models:

1. VANILLA is an ordinary network which is trained in an end-to-end manner and it is optimized
using the bag-level KLD loss.

2. ROT Dulac-Arnold et al. (2019) extends the idea xSVM, which tries to estimate the individ-
ual labels within each bag, to the multi-class setting. It also facilitates the method of Relax
Optimal Transport (ROT) Peyré and Cuturi (2019) to make the loss function differentiable.

3. LLP-VAT Tsai and Lin (2019) aims to encourage the model to produce a decision boundary
that better describes the data manifold by adding consistency regularization Berthelot et al.
(2019); Verma et al. (2019). Specifically, it augments images by adding noise and the consis-
tency loss tries to make the two generated probability distributions corresponding to original
image and corrupted image close with each other.

4. LLP-GAN Liu et al. (2019) leverages generative adversarial networks Goodfellow et al.
(2014) to train a classifier which can not only predict the label of instances but also can
detect the difference between the real and the generated fake instances.

5. PLOT Liu et al. (2021) reduces the label noise by imposing the strict proportion consistency
on the classifier and utilizes symmetric cross-entropy (SCE) Wang et al. (2019) and mixup
dataset Zhang et al. (2018) to train classification network.
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In addition to the above four methods, we also report the results of models trained in an instance-
level supervised way including the end-to-end supervised model and two-stage supervised model.
These two results can be regarded as the upper bound for LLP models.

Table 1: Accuracy on test dataset for CIFAR10 and CIFAR100. The best are bold.

Bag size
Dataset Methods 6 H o1 o8 756
End-to-End Supervised 95.00
Two-Stage Supervised 93.03
VANILLA 88.77 85.02 70.68 47.48 38.69

ROT Dulac-Arnold et al. (2019) | 86.97 77.01 62.93 4895 40.16
CIFAR10 | LLP-VAT Tsai and Lin (2019) 89.30 8541 7249 50.78 41.62

LLP-GAN Liu et al. (2019) 86.32 83.77 78.97 72.61 -
PLOT Liu et al. (2021) 89.15 8821 84.14 79.09 -
Ours 92.34 92.00 91.74 91.54 91.29
Ours w/o FLMm 91.99 91.60 91.20 90.64 90.05
End-to-End Supervised 75.30

Two-Stage Supervised 69.66

VANILLA 58.58 48.09 20.66 5.82 282

ROT Dulac-Arnold et al. (2019) | 54.16 47.75 29.38 7.95 2.63
CIFAR100 | LLP-VAT Tsai and Lin (2019) 59.47 4898 2284 940 3.29

LLP-GAN Liu et al. (2019) 49.05 43.56 35.63 14.99 -
PLOT Liu et al. (2021) 65.41 61.68 55.66 43.44 -
Ours 66.16 65.59 64.07 61.25 57.10
Ours w/o FLMm 55.99 5127 46.16 3220 12.09

4.3. Experimental Settings

We investigate the performance of different bag size m € {16, 32,64, 128,256}. At each step, we
sample a batch of 1024 instances to form a batch of bags. For example, if the bag size is 64, then
the number of bags in a batch is 16 (equals to %).

Our model comprises a feature extractor and a linear classifier. For the extractor, we make use
of the existing implementation' released by Khosla Khosla et al. (2020). Specifically, the epoch
number is set to 1000. The architecture of the extractor is ResNet50 He et al. (2016). Batch size is
set to 512 and the temperature parameter 7 is set to 0.5. SGD optimizer Bottou (2012) is used with
learning rate 0.5 and momentum Sutskever et al. (2013) 0.9. Other strategies such as learning rate
decay are also adopted to achieve stable training. More details of the training settings for extractor
can be found in Khosla et al. (2020). After training, we can obtain a 2048 dimensional feature vector
of each instance. For the classifier, the epoch number is set to 200. The balancing parameter A is set
to 0.01. The optimizer and related settings are the same as above settings for training the extractor
except that the learning rate here is set to 1. The parameter ¢; used for selecting classes based on p;

1. https://github.com/HobbitLong/SupContrast
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and the parameter ¢5 used for selecting instances based on h; are two most important parameters to
the accuracy of the classifier. For CIFARI1O0, both ¢; and 5 are set to 0.1. For CIFAR100, both ¢;
and ¢, are set to 0.01. We will explain how to select proper ¢; and ¢5 in Section 4.4.2.

4.4. Results and Analysis
4.4.1. CLASSIFICATION PERFORMANCE

As shown in Table 1, in supervised setting, End-to-End Supervised is superior than Two-Stage
Supervised on CIFAR10 and CIFAR100. But the accuracy gap between the two models is not very
large, indicating that the feature extractor is well-trained by SimCLR. End-to-End Supervised and
Two-Stage Supervised provide an upper bound for LLP models.

First of all, we show that the two-stage framework even without FLMm can achieve superior
performance than most of existing models. For CIFAR10, we can see that Ours w/o FLMm gains
a huge improvement compared with VANILLA, ROT, LLP-VAT, LLP-GAN, PLOT on all choices
of bag size. When the bag size increases, the accuracy of Ours w/o FLMm does not drop much
compared with the accuracy on bag size 16 while for baselines, the accuracy drops significantly.
For CIFAR100, Ours w/o FLMm is also superior than baselines except PLOT. As the bag size
increases, the accuracy is still rather unsatisfying compared to that on small bag size. This shows
that the number of classes also plays an important role on the performance of models and two-stage
training without FLMm can only handle the bag size issue when the number of classes is small.

After adding FLMm, the accuracy is imporved on both CIFAR10 and CIFAR100. Specifically,
for CIFAR10, Ours has an increase of about one percent on all bag size compared with Ours w/o
FLMm. For CIFAR100, the improvement is huge on all bag size. For example, when the bag size
is 16, the accuracy increases from 55.99% to 66.16%. When the bag size is 256, the accuracy
increases from 12.09% to 57.10%. We can conclude that FLMm is of great importance for making
the model converge towards optimum whether the bag size and the number of classes are small or
large.

We use t-SNE van der Maaten and Hinton (2008) to visualise the features extracted by the
extractor. For CIFAR10, we randomly sample 1024 instances and visualize their corresponding
features. The result is shown in Figure 3. We can see that the features of 10 different classes are
well learned which contributes the most to the high accuracy on CIFAR10. For CIFAR100, firstly,
we randomly choose 10 classes and then select 100 instances for each class. The visualization
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Table 2: Effects of t1&to for CIFAR10

(a) bag size:16

(b) bag size:32

¢ f2 0.05(1) 0.12) 0.3(5) ¢ f2 0.05(2) 0.14) 0.3(10)
1 1
0.05(1) 92.48 92.35 92.21 0.05(2) 92.15 92.06 91.27
0.1(2) 92.39 92.34 91.56 0.1(4) 92.18 92.00 91.66
0.3(5) 91.68 91.70  91.97 0.3(10) 91.69 91.63 91.62
(c) bag size:64 (d) bag size:128
‘ b2 0.054) 0.1(7) 0.3(20) ‘ f2 0.05(7) 0.1(13) 0.3(39)
1 1
0.05(4) 92.17 91.87 91.09 0.05(7) 91.09 91.29 90.60
0.1(7) 92.12 91.74 91.05 0.1(13) 91.89 91.54 90.67
0.3(20) 91.06 90.99 91.07 0.3(39) 90.55 90.62 90.52
(e) bag size:256

‘ b2 0.05(13) 0.126) 0.3(77)

1

0.05(13) 90.13 90.03 89.94

0.1(26) 91.61 91.29 90.09

0.3(77) 89.97 90.02 89.95

is depicted in Figure 4. We can see that most of the classes are roughly separated while some
are tangled, , the green, yellow, and black classes. That’s why the accuracy of two-stage models
on CIFAR100 is not high. On the whole, unsupervised contrastive leaning is effective for feature
extraction.

4.4.2. PARAMETERS t1 AND t9

We investigate the impact of ¢; and ¢ and provide a strategy about how to choose proper values
for these two parameters. Consider two extreme cases. Case 1: t; = to = 0, then all labels and
all instances will be selected. This can mislead the direction of optimization because most of the
matchings between features and labels are incorrect. Case 2: ¢; > 1 orts > 1, then no label and no
class will be selected. Therefore, FLMm no longer works. Intuitively, these two parameters cannot
be too large or too small. We list the changes in accuracy given different ¢; and ¢ in Table 2 and
Table 3 for CIFAR10 and CIFAR100 respectively. The numbers in brackets illustrate the threshold
t1 and to from the perspective of the number of instances: for bag size m and threshold 1, class ¢
is selected if the number of instances belonging to ¢ is greater than or equal to [m X ¢; | in this bag.
It’s the same for threshold ¢,: if instances whose predicted label is [ are selected, then the number
of instances classified to [ is greater than or equal to [m X t2|. As shown in Table 2 and Table 3,
for CIFAR10, our model is relatively stable for different values of these two parameters. We can
see that for bag size 16 and 64, the best accuracy is achieved with ¢; = 0.05 and ¢ = 0.05. For
other bag size, the best accuracy is achieved when t; = 0.1 and ¢3 = 0.05. For CIFAR100, the
best accuracy is achieved when ¢; = 0.01 and ¢, = 0.01 for all bag size. The other choices of
parameters will lead to a decrease in accuracy. On the whole, we can set ¢ = {9 = % where K is
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Table 3: Effects of t1&t9 for CIFAR100

(a) bag size:16

(b) bag size:32

¢ b2 0.01(1) 0.1(2) 0.15(3) ¢ f2 0.01(1) 0.05(2) 0.08(3)
1 1
0.01(1) 66.16 62.93 58.40 0.01(1) 65.59 63.38 60.00
0.12) 62.27 61.25 58.31 0.05(2) 63.22 61.28 57.34
0.15(3) 57.92 58.38 56.93 0.08(3) 57.60 58.33 56.29
(c) bag size:64 (d) bag size:128
¢ f2 0.01(1) 0.03(2) 0.04(3) ¢ f2 0.001(1) 0.01(2) 0.03(4)
1 1
0.01(1) 64.07 63.63 62.81 0.001(1) 58.17 58.77 59.16
0.03(2) 62.24 61.78 59.98 0.01(2) 61.05 61.25 60.22
0.04(3) 58.96 58.41 57.71 0.03(4) 55.72 56.04 52.56
(e) bag size:256
¢ f2 0.005(2) 0.01(3) 0.018(5)
1
0.005(2) 51.06 51.39 51.68
0.01(3) 56.39 57.10 56.83
0.018(5) 53.98 54.10 52.03

the number of classes to obtain relatively better accuracy. In other words, the threshold in terms of
the number of instances is [m X %} which is the average number for each class in a bag with size

m.

4.4.3. CONVERGENCE ANALYSIS

’
86

~=- ours wjo FLMm
--- ours

0 25 50 75

Figure 5: Acc. Curve for CIFAR10
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Figure 6: Acc. Curve for CIFAR100

We also plot the trend of accuracy as epoch increases. As depicted in Figure 5 and Figure 6, in
the first few epochs, the accuracy of Ours fluctuates a lot and this phenomenon may be caused by
the poor quality of the classes and instances selected. After a specific epoch, the accuracy of Ours
gradually becomes stable which shows the reliability of FLMm.
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4.4.4. NECESSITY OF THE FIRST STAGE

Up to now, there is no evidence that the first step works. To demonstrate the pretraining of the
extractor is necessary, we design a simple extractor, consisting of three convolutional layers and
two fully connected layers. The results are shown in Table 4. #1, #2, #3 are all trained in an
end-to-end manner (not two-stage training). We can observe that (1) model with FLMm (#2, #3)
performs worse compared with that without FLMm (#1) (2) #2 (only optimizing the linear classifier
in FLMm) performs better than #3 (optimizing both extractor and classifier in FLMm). The reason

. Bag size
Dataset Methods 6 vl o 5 56
#1 85.67 7730 5898 37.89 27.65
CIFARI10 #2 46.84 41.68 37.84 34.03 28.32
#3 4274 3535 31.33 2751 19.08
#1 38.64 17.07 6.84 4.63 2.59
CIFAR100 #2 1549 13.68 13.19 14.39 2.92
#3 9.41 6.38 4.09 1.92 1.25

Table 4: Results. #1: model trained using KLD loss. #2: model trained using KLD loss with
FLMm. In FLMm, only the linear classifier are optimized. #3: model trained using KLD loss with
FLMm. In FLMm, the linear classifier and extractor are jointly optimized.

for these two observation is that FLMm requires the feature space is well-organised i.e., instances
with the same label should be close to each other. Otherwise, the assumption “instances in I belong
to one of the class in C with a high probability” described in Section 2.3.2 will not hold. The
completely incorrect matching between instances and labels will hinder the learning of the extractor
and classifier.

5. Conclusion

In conclusion, it is instructive to decompose the training process into different parts to reduce the
optimization complexity for LLP. Moreover, FLMm provides a straight way of associating instances
of high confidence with most likely labels to guide the model to optimize towards the right direction.
For future work, we plan to study a more general LLP problem where the distribution across classes
of the dataset and the sampling method for constructing bags are not uniform. In addition, we will
also try to give a mathematical analysis for LLP problems.
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