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Abstract

Federated Learning (FL) is a privacy-protected learning paradigm, which allows many
clients to jointly train a model under the coordination of a server without the local data
leakage. In real-world scenarios, data in different clients usually cannot satisfy the indepen-
dent and identically distributed (i.i.d.) assumption adopted widely in machine learning,.
Traditionally training a single global model may cause performance degradation and diffi-
culty in ensuring convergence in such a non-i.i.d. case. To handle this case, various models
can be trained for each client to capture the personalization in each client. In this paper, we
propose a new personalized FL framework, called Personalized Federated Mutual Learning
(PFML), to use the non-i.i.d. characteristics to generate specific models for clients. Specif-
ically, the PFML method integrates mutual learning into the local update process in each
client to not only improve the performance of both the global and personalized models
but also speed up the convergence compared with state-of-the-art methods. Moreover, the
proposed PFML method can help maintain the heterogeneity of client models and protect
the information of personalized models. Experiments on benchmark datasets show the
effectiveness of the proposed PFML model.
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1. Introduction

The success of machine learning, especially deep learning, depends on a large amount of
data. Deep learning usually conducts centralized training on the data collected from differ-
ent sources, hence there exist potential risks of data privacy and security. On the other hand,
due to confidentiality, data cannot be shared among enterprises, which causes the problem
of data islands. To solve the above two problems, Federated Learning (FL) (McMahan
et al., 2017; Yang et al., 2019; Kairouz et al., 2019) came into being. FL is a distributed
machine learning paradigm with privacy protection. It allows many clients (such as mobile
devices) to jointly train a global model under the coordination of a central server while
ensuring that the training data stays locally on clients.

Most of existing works of FL such as FedAvg (McMahan et al., 2017) focus on training
a single model for all clients. However, in real-world applications, the data in all the clients
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usually have different distributions so that a single global model may not perform well on
all clients. Therefore, the personalized FL framework is proposed to train local customized
models for each client to address this non-i.i.d. problem. There are several methods to cus-
tomize client models, such as fine-tuning, meta learning, mixture methods, and multi-task
learning. As a fine-tuning method, FedPer (Arivazhagan et al., 2019) requires that clients
share some base layers with the server and train their own personalized layers by adapting
to their local data. The pFedMe model (Dinh et al., 2020) uses Moreau envelopes as clients’
regularized objective to fine-tune personalized models in several gradient descent steps.
Integrated with meta learning methods such as Model Agnostic Meta Learning (MAML)
(Finn et al., 2017), Per-FedAvg (Fallah et al., 2020) attempts to build a well generalized
global model and fine-tune personalized models on local data for better performance. As a
mixture method, APFL (Deng et al., 2020) trains a personalized model for each client by
incorporating a part of the global model with some mixing weights. PFL-MoE (Guo et al.,
2020) trains personalized models by mixing the outputs of the local model and the global
model via a gating network. By formulating FL as a multi-task learning problem, MOCHA
(Smith et al., 2017) regards each client as an individual task and trains their personalized
models via a primal-dual optimization method.

Although the aforementioned models achieve good performance for personalized FL,
they have their own limitations. For example, the Per-FedAvg, APFL and pFedMe mod-
els assume that the global model and the client models have the same model architecture,
which may not be satisfied in real-world applications as clients may use heterogeneous
models with different architectures. The FedPer model also cannot handle the model het-
erogeneity among clients as it requires that all the clients have similar model architectures
with differences only lying in classification layers. FedPer model is not so good on non-iid
datasets because of the limitations of fine-tuning based personalized methods(Huang et al.,
2021). In the MOCHA model, communication and computation costs are high when the
number of clients is large since each client is required to participate in every training epoch.

To learn a global model and personalized models with good performance at the same
time, we propose a Personalized Federated Mutual Learning (PFML) model. We combine
mutual learning into the model learning of each client so that the proposed PFML can
handle the model heterogeneity in clients. Specifically, each client has two models, includ-
ing the local model and the auxiliary model. The local model minimizes the local loss
regularized by minimizing the distance from the global model to make it more conducive
to the generalization of the global model, and the auxiliary model minimizes the local loss
regularized by minimizing the distance from the model in the previous round, which con-
tains personalized information, to generate a personalized model. Experiments conducted
on several benchmark datasets validate the effectiveness of the proposed PFML method.
The contributions of this paper include:

(1) Good Global Model. Due to the non-i.i.d. nature of data in all the clients, per-
sonalized models of clients usually differ from each other. When such different personalized
models are pursued, the performance of the global model is usually impaired as shown in
our experiments. The proposed PFML is to train a global model and personalized models
of clients that perform well simultaneously. As shown in the experiments, the global model
learned in the PFML method has better performance than those in the FedAvg and pFedMe
methods.
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(2) Good Personalized Models. Existing personalized FL models usually use the
global model as a base model to learn personalized models through fine-tuning or one-step
update. We think these trained personalized models contain much information from the
global model. Different from those methods, the proposed PFML method can improve the
performance of personalized models by using mutual learning in clients and the histori-
cal information from the auxiliary models that do not directly participate in the server
aggregation.

(3) Tolerance of Model Heterogeneity. Many personalized FL models require that
the personalized models of clients have the same model architecture as the global model,
which places a restriction on the use of FL in many real-world applications. By introducing
deep mutual learning into the local training of clients, the proposed PFML model can allow
clients to have heterogeneous model architectures. Hence, the proposed PFML model is
more flexible.

2. Related Work

Challenges of Federated Learning. When McMahan et al. (2017) first propose the
FedAvg algorithm to address a large-scale next-word prediction task and demonstrated its
effectiveness and data privacy protection, FL gradually began to attract the attention of
machine learning researchers. However, Li et al. (2020) note that FL is currently facing
some challenges, including the expensive communication cost between the server and clients,
system heterogeneity in clients, non-i.i.d. data distribution among clients, and privacy
concerns. A large amount of research has shown that the non-i.i.d. distribution of data will
result in the degradation of the performance of the learned model. Facing the challenge
of non-i.i.d. data, different types of approaches have been proposed. Some methods (Tuor
et al., 2020; Yoshida et al., 2019) use simple strategies like data sharing, which means clients
share part of their own data with the server. Some aim to improve the robustness of the
global model against non-i.i.d. data. For example, the FedProx method (Li et al., 2018)
adds a regularized term in the local training objective to guarantee that local models are
not far away from the global model. However, these methods have their own weakness.
Data sharing based methods may violate the privacy requirement of FL. A robust global
model may still not be suitable for all the clients.

Model Distillation. Model distillation (Hinton et al., 2015), which is also known as
knowledge distillation, uses a pre-trained large network as a teacher to provide additional
knowledge (e.g., smoothed probability estimation) for a small student network, and em-
pirical studies show that the optimization process of the student network becomes easier
and its performance is comparable to or even better than that of the teacher network. Dif-
ferent from one-way knowledge transfer between the teacher and student networks, Deep
Mutual Learning (DML) (Zhang et al., 2018) allows two networks to learn from each other
through their predicted probability distributions during the training process. Specifically,
DML uses the Kullback-Leibler divergence to match the probability estimates of the two
networks involved. Currently, some works such as FedMD (Li and Wang, 2019) have ap-
plied model distillation into federated learning. The main idea of FedMD is that the server
collects clients’ predictions on a public dataset and computes a consensus for clients’ next
training round. After fitting on the public dataset, clients will finetune on their private
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data to improve the performance further. However, a public dataset is required in FedMD,
which cannot always be satisfied in real-world applications. The proposed PFML frame-
work, which combines the idea of deep mutual learning into clients’ local updates, does
not have such requirements. The PFML model not only protects the information of local
models but also retains the heterogeneity of local model architectures.

3. Problem Definition

In vanilla horizontal federated learning, there is a server and N clients. The server initiates
the global model with random parameters. Then the server randomly selects a set of active
clients and sends the global model to them. Each client will make a copy of the global
model and then train the model with their local data. After finishing the training, each
client returns the local model or the gradients back to the server. The server aggregates
these local models or gradients to update the global model. The process is repeated until
the global model converges or the number of communication rounds reaches a threshold.
All the clients jointly optimize the following objective function as

. 1
i {F(w) =N ;fi(w)} - (1)

Each client has a labeled dataset and f; represents the loss of the the ith client as

where D; denotes the labeled dataset in the ith client, |D;| denotes the size of D;, and
l;(w; x,y) measures the loss between the true label y and the prediction by the model w on
a local data point x. After solving problem (1), an optimal global model w* will be learned.

However, according to existing research, a single global model is usually not well gen-
eralized when data are heterogeneous across clients. To better address the impact of the
non-i.i.d. data challenge, it is natural to customize client models locally. Different from
problem (1) to find a single solution for all the clients, a personalized FL method usually
optimizes the following objective as

N
{65,...,68} = argmin > _ fi (6:), (3)
=1

which aims to learn optimal personalized models for each client.

4. The PFML Model

In this section, we present the proposed PFML model.

4.1. Overview

PFML incorporates the idea of deep mutual learning into the learning process of clients to
generate personalized models. The framework of the PFML model is shown in Figure 1.
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In the PFML model, there are two models (i.e., the local model and the auxiliary model)
in each client, and they are trained using the same local data. The local model will be
transmitted to the server for the model aggregation, and the auxiliary model is used to
generate a personalized model with good performance on local data. The following sections
will introduce the details of the PFML model.

Pw { Global model

[ Local model
® Q Auxiliary model
Personalized model

Client1 - - Client i

Figure 1: The framework of the proposed PFML model. The training process is described
as follows. A server selects active clients and broadcasts a global model with
parameters w to them as their local models w;. Clients then initialize their aux-
iliary models m; and conduct regularized mutual learning between local models
and auxiliary models. After mutual training, auxiliary models will generate per-
sonalized models with parameters 6; through the one-step update corresponding
to the personalization step. Then the ith client updates w; and m;, and sends
w; to the server for aggregation. Finally, the server updates its global model and
continues until convergence.

4.2. The Entire Model

Client Mutual Learning. Deep mutual learning has shown its success by co-training
two models through two-way knowledge transfer, where the knowledge is represented as the
predicted class-conditional probability of the two models on the local data. In the PFML
model, each client has two models, which are called the local model and the auxiliary
model, respectively. Similar to deep mutual learning, in the PFML model, we design the
local update in a client by combining this two-way knowledge transfer in the mutual learning
of the local model and the auxiliary model. Specifically, the two models (one with global
information and the other with local information) regularize the output of their peers so
as to achieve the purpose of mutual learning. Mathematically, based on Eq. (2), the loss
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functions of two models in the ith client can be formulated by

Li(w;) =fi(w;) + D1 (Pm;» Pw;) (4)
Li(m;) =fi(m;) + D (Dw;> Pmy) 5 (5)

where w; and m; denote the sets of parameters in the local model and the auxiliary model of
the the ith client, respectively, Dk (-, ) denotes the Kullback-Leibler divergence, and pyy,,
(pw,) denotes the predicted class-conditional probability of the local (auxiliary) model. As
shown in Egs. (4) and (5), for the ith client, the objectives of its two models (i.e., the local
model w; and the auxiliary model m;) are composed of two parts: one is the classification
loss, and another is a mimicry loss in terms of predicted class-conditional probabilities of
the two models on the same local data. Here we use the Kullback-Leibler divergence to
define the mimicry loss.

Personalized Step. Most of the existing personalized FL methods try to learn personalized
models through the one-step update based on the global model w as an initial model. For
instance, the Per-FedAvg method (Fallah et al., 2020) considers that the ith client can
run one or more gradient decent steps w.r.t its own loss function (i.e., 87 = w — o'V fj(w)
with « as the learning rate) as one-step update and then obtain the personalized model
0f. The pFedMe model minimizes f; (6;) + % 16; — w]||* as one-step update and obtains the
optimal personalized model ¢7. In the proposed PFML model, the auxiliary model m; in
the ith client is designed to generate the personalized model 0] because it contains more
local information than the local model which is closer to the global model. Moreover, as we
expect 07 to learn some historical knowledge from the auxiliary model obtained in the last
round, we add a regularization term to minimize the distance between it and the previous
auxiliary model m?™” and the objective based on Eq. (5) is formulated as

i

A 2
hi(mizmi™™") = Li(mi) + 5 [[mi™" = mil|", (6)
where the hyperparameter A controls the distance between two models. The optimal per-
sonalized model 6} for the ith client is to minimize h;(m;; mP"®") as a one-step update. That
is,

9:‘ — m;‘ = arg mmeiﬁd h; (mi; m;orev)‘ (7)
1

prev)

We use the gradient descent method to learn this optimal solution. The gradient Vh;(m;; m;

of Eq. (6) can be computed as
Vhi(mi;mE™") = VL;(m;) + A(ml™" —m;). (8)

2 (2

A gradient descent operation is called a personalization step. After K personalization steps
where K is a predefined hyperparameter, we will get the personalized model. Because of
non-i.i.d. data across clients, some methods such as FedProx have considered adding the
parameters of the global model as a part of the regularization term. Inspired by this idea,
we also add a regularization term to keep the local model w; not too far from the global
model w* and the corresponding objective is formulated based on Eq. (4) as

* )\ *
gi(wiw*) = Li(w) + 5 o —will*. 9)

6
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Similar to the auxiliary model, we minimize g;(w;;w*) within K steps and get the optimal
solution w;. Both 67 and w; will be used in the next step to update the auxiliary model and
the local model. And the server will aggregate the sampled client’s local models to update
the global model and then distribute it to clients to start the next round of federated
training.

4.3. The Objective of PFML

In summary, the PFML model can learn the local model and the auxiliary model in clients
and the global model in the sever via solving the following three problems as

(

A
07 —argmm hi(mg;ml™") = argmin L;(m;) + = Hmpm’ — my?
mi
A . * . )\ *
i = argmin gi(wiw?) = argmin L) + 5 [ — i (10)
w; w; 2
L
w* =arg min w) = — (w
& min {f( )= A >}

There are two types of objectives, including the global objective that is to obtain the global
model (w*), and the local objective that is to learn personalized models (i.e., 07,...,0%)
using only their own data. We can iteratively optimize these two problems in the following
two steps.

(i) Update the global model. At first, the global model is initialized randomly, and
later it is updated by aggregating the sampled client’s local model. The process of updating
the global model is almost the same as the FedAvg method by performing the average
operation on model parameters of sampled clients’ local models. Here, to speed up the
convergence, a hyperparameter [ is introduced similar to (Karimireddy et al., 2020; Reddi
et al., 2021). Specifically, we update the global model by aggregating models of sampled
clients as

wt = (1-p) w—i——Zw (11)

t
|Z/l | teut

where w'*! and w! denote the global models in the (¢4 1)th and tth round respectively, U*
denotes the client set sampled in the tth round, [U¢| denotes the number of sampled clients,
and w! denotes the local model of the ith client. When 3 is set to 1, the aggregation process
will be the same as FedAvg.

(ii) Update the personalized models. When the ith client receives the global model,
it is passed to the local model and the auxiliary model. When the architecture of the
personalized model, which is just the auxiliary model, is different from that of the global
model, the auxiliary model is initialized randomly. For the auxiliary model, we perform K
steps of gradient update in Eq. (6) and get the solution as a personalized model §;. We
do the same for the local model and get a solution w;. After the personalization step, each
client will send the local model to the sever for the aggregation.

The whole algorithm for the PFML model is shown in Algorithm 1.
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5. Experiments

In this section, we empirically evaluate the proposed PFML model.

5.1. Experimental Settings

Three benckmark datasets, including MNIST, Synthetic (Li et al., 2018), and CIFAR-10,
are used in our experiments.

Algorithm 1 PFML
input : w’: initial global model weight
T': total number of communication rounds
E: the number of local updates
7n: the learning rate of local updating
A: the weight of the regularization term
K: the number of one-step update for obtaining personalized models
D: the training batchsize
B: the coefficient to speed up the convergence

Server aggregation:
fort=0toT—1do

Server selects a subset of active clients Ut randomly and sends w' to them

for each client i € U* do

| w! = Client Update(w")

end

Aggregate wt (i € U') to update global model w'*': wit = (1 — B)w’ + % D icut Wh
end

Client Update:
for each client i € Ut do
wj o = w' // local model
mig=m; " =w'// auxiliary model
fore=0to E—1do
Sample a batch of data with the batch size D
for k=0to K —1do

// Personalization Steps:

For m! ,, minimize L; (m!,) + % ||m

i,e?
*
0

¢ L ot A "
For w; o, Manimize L; (wi’e) +3 Hwt wi’eH

prev — mieH2 and get optimal personalized model

* and get w;

end
Update m;e : mﬁ)eﬂ = mﬁ,e — nVLi(mg,e) —nA (mﬁ)e — 9;“)
¢

Update wt  : wf,e+1 = wfe — nVLi(w: )~ nA (wie — wi)

i,e .

end
end
Return w! (i € U') to Server

The MNIST dataset contains 10 classes and 70,000 instances. We divide the dataset
into 20 parts for 20 clients. Each client has 2 out of the 10 classes as its local data. The
classes owned by each client come from the set {(0,1),(2,3),(4,5),(6,7),(8,9)}. For the
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other two datasets, we adopt the non-i.i.d. setting of (Dinh et al., 2020). For the Synthetic
dataset, we generate the data using two parameters @ = 0.5 and 3 = 0.5 to control the
degree of difference among datasets of clients divide it into 100 parts for 100 clients. For
the CIFAR-10 dataset, we consider 20 clients and each of them has only 3 out of the 10
classes. All the datasets are split randomly with 75% and 25% for training and testing,
respectively.

We consider both convex objectives and non-convex objectives in FL. For simplicity, in
the p-strongly convex setting, we consider a lo-regularized multinomial logistic regression
(MLR) model, which is a fully connected layer following the log-softmax activation. In the
non-convex setting, we use a two-layer deep neural network (DNN) with a hidden layer
whose size is 100 for the MNIST dataset and 20 for the Synthetic dataset. We use the
LeNet5 (denoted by CNN) for the CIFAR-10 dataset.

5.2. Experimental Results

We conduct experiments on the benchmark datasets and analyze experimental results as
follows.

(1) The p-strongly convex setting: We use the MLR model for the MNIST and Synthetic
datasets. The results shown in Figure 2 and Table 1 report the test accuracy and training
loss of the FedAvg, pFedMe, and PFML models. For the pFedMe and PFML, the suffixes
‘GM’ and ‘PM’ stand for the global model and the personalized model, respectively. The
accuracy of GM is measured on the testing datasets of all clients and the accuracy of PM is
measured on the local dataset of each client. According to the results, we can see that the
performance of the personalized models trained by PFML has a significant improvement
than other baselines. For instance, for the MNIST dataset, PFML’s personalized models
have 5.5% and 6.8% improvement when compared with pFedMe and FedAvg. Moreover, the
global model of the PEFML model behaves better than FedAvg and pFedMe. For example,
on the Synthetic dataset, PFML’s global model is 1.1% and 1.6% better than pFedMe and
FedAvg.

Table 1: The classification accuracy of FedAvg, pFedMe, and PFML on the MNIST and
Synthetic datasets.

. MNIST (|ut|=10 Synthetic (|4?|=10
Algorithm Model AB A(c’culacy )(%) A B A((:|cur’acy ((;3)
FedAvg MLR 1.0  91.87+0.02 1.0 77.97+0.28
pFedMe-GM MLR |15 2.0 92.13+£0.02 |20 2.0 78.48+0.42
pFedMe-PM MLR |15 2.0 93.06+£0.03 |20 2.0 82.81+0.03

PFML-GM (ours) MLR |15 2.0 9245+0.02 |20 2.0 79.58+0.18
PFML-PM (ours) MLR |15 20 98.65+0.01 |20 2.0 90.74+0.01

FedAvg DNN 1.0  94.86 £0.05 1.0 81.12£0.35
pFedMe-GM DNN |30 20 95.85£0.05 |30 2.0 83.13+0.37
pFedMe-PM DNN |30 20 96.72£0.01 |30 2.0 84.814+0.23

PFML-GM (ours) DNN |30 2.0 96.70+£0.04 |20 2.0 84.78+0.32
PFML-PM (ours) DNN |30 2.0 99.07+0.01 |20 2.0 94.58+0.06
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(2) The non-convex setting: We use DNN model for the MNIST and the Synthetic
dataset classification tasks and CNN for the CIFAR-10 classification task. The results show
in Figures 3 and 4 correspond to the experimental results with 5 and 10 active clients,
respectively. On the three datasets, the performance of PFML’s personalized models is
the best, and its global model performs better than pFedMe and FedAvg. On the MNIST
and Synthetic datasets, PFML’s personalized models have a significant improvement than
the other two algorithms, and even the performance of its global model is close to that of
pFedMe’s personalized models. On the CIFAR-10 dataset, the performance of the global
model of pFedMe is worst and the performance of the global model of PFML is 8.7% and
4.4% better than pFedMe and FedAvg. Detailed results can refer to Tables 1 and 2.

1.00 0.40
098]/ 0351
—e— PFML (PM) 0.301
>0.961 —* PFML (GM) »
8 —=— pFedMe (PM) 8025
g 0.94 pFedMe (GM) 20201 —e— PFML (PM)
< —*— FedAvg c —v— PFML (GM)
?, © 0.15 —=— pFedMe (PM)
£ 0.92 = pFedMe (GM)
0.101 —— FedAvg
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0.05 1
0.88 - - - 0.00 1~ - - -
0 200 400 600 0 200 400 600
Global rounds Global rounds
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1.8
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0.5 ‘ ‘ ‘ 0.0 ‘ ‘ ‘
0 200 400 600 0 200 400 600
Global rounds Global rounds

(c) test accuracy on the Syn- (d) training loss on the Synthetic
thetic dataset dataset

Figure 2: The classification accuracy of various models on two non-i.i.d. datasets based on
the MLR model, where [U/!| = 10, E = 10, 7 = 0.01, K = 3, 8 =2, and D = 200.
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Figure 3: The classification accuracy of various models on three non-i.i.d. datasets based
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Figure 4: The classification accuracy of various models on three non-i.i.d. datasets based

on the DNN model, where [U!| = 10, E = 10, n = 0.01, K = 3, and D = 200.

Table 2: The classification accuracy of various models on the CIFAR-10 dataset, where
E=10,7=0.01,A=15, K =3, =1, and D = 200.

Algorithm Model | CIFAR-10 (|U*|=5) | CIFAR-10 (|U'|=10)
FedAvg CNN 43.54 + 0.05 45.08 £ 0.06
pFedMe-GM CNN 39.73 £ 0.02 40.76 £ 0.02
pFedMe-PM CNN 71.19 £0.03 71.38 £0.01
PFML-GM (ours) CNN 49.24 £+ 0.12 49.48 £0.24
PFML-PM (ours) CNN 78.20 + 0.06 78.24 £ 0.07
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5.3. Results on Client Model Heterogeneity

Most existing works in FL require the global model and local models to have the same model
architecture. However, because of the system heterogeneity, clients may require different
model architectures for better performance (Li and Wang, 2019). PFML can support the
personalized model, that is the auxiliary model, to have a different model architecture from
the global model. To validate this ability of PFML, we use DNN for auxiliary models in
clients and MLR for both the local models in clients and the global model in the server.
Then we make a small modification on Algorithm 1 about the initialization of the auxiliary
model and the local model. That is, we initialize the local model by the global MLR model
and initialize the auxiliary model (DNN) randomly. We compare this modified algorithm
with the original PFML that only uses a model for both the auxiliary model and the local
model. In the experiment, we use two values of A (i.e., 20 and 30) for the modified algorithm,
and the original PFML uses the best value of A. According to the results showed in Table 3,
when comparing with the original PFML that only uses MLR, the performance of the global
model (denoted by GM) for this modified algorithm is comparable. But the performance
of the personalized model (denoted by PM) for this modified algorithm is better because
DNN has a better capacity than MLR. When comparing with the original PFML that only
uses DNN, the modified algorithm performs slightly worse for the global model due to the
MLR used but performs comparable for the personalized model. According to the results,
we can see that the proposed PFML model is flexible to handle the model heterogeneity
without much performance degradation, which is an additional advantage of the proposed
PFML model.

Table 3: The classification accuracy on the Synthetic dataset for the analysis of the model
heterogeneity, where £ =10, n = 0.01, K = 3, § =2, and D = 200.

MLR (GM) + DNN (PM) | MLR | DNN
A 20 30 20 30
GM | 80.16% 80.59% 80.44% | 84.71%
PM | 94.40% 94.58% 90.71% | 94.61%

5.4. Sensitivity Analysis

In this section, we conduct experiments to test the sensitivity of the performance with
respect to some hyperparameters in the proposed PFML model, including K, A, and 5.

In Algorithm 1, K denotes the number of the personalization steps. The results in Table
4 show that the performance is not very sensitive with respect to K. One reason is that
while K determines the local update in clients, if the global epoch or local epoch is long
enough, the entire algorithm will converge no matter what the value of K is.
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Table 4: The classification accuracy when varying K on the MNIST Dataset , where A is set
to 30 and 15, respectively, when using the DNN or MLR model, £ = 10, n = 0.01,
K =3, 3=2,and D = 200.

| | 5 10
DNN MLR

K | GM PM GM PM

96.77% | 99.08% | 92.48% | 98.64%

96.67% | 99.07% | 92.44% | 98.65%

96.65% | 99.07% | 92.48% | 98.65%

96.68% | 99.07% | 92.44% | 98.65%

N Ot W =

A is a regularization parameter to weigh the training loss and the regularizer in both the
local model and the auxiliary model for a client. According to the results shown in Table 5,
the performance of the global and personalized model changes slightly. Specifically, when
A increases, the performance of the personalized model (denoted by PM) becomes slightly
better, but the classification accuracy of the global model (denoted by GM) first increases
slightly and then decreases slightly. To balance the performance of the two models, the
value of A can be set to 20 or 30, which is the default setting of A in all the experiments.

Table 5: The classification accuracy on the Synthetic dataset when varying A, where £ = 10,
n=0.01, K =3, 8 =2, and D = 200.

| | 5 10
MLR DNN

A GM PM GM PM

10 | 79.88% | 90.45% | 84.71% | 94.16%

20 | 80.44% | 90.71% | 85.00% | 94.42%

30 | 79.99% | 90.81% | 84.68% | 94.61%

40 | 80.16% | 90.94% | 84.76% | 94.80%

B has an important connection with the server aggregation process. When its value is
relatively large, the pace of the update in the global model will be relatively large, and
when its value is close to 1, it will be close to the simple weighted averaging in FedAvg.
According to the results in Table 6, a suitable value of 8 can be set to 2 or 3, under which
the performance of both the global and personalized models is better than other cases. This
result may imply that the pace of updating the global model should be appropriate so that
the performance of the global and personlized models can be good simultaneously.
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Table 6: The classification accuracy on the Synthetic dataset when varying (3, where X is
set to 30 and 20, respectively, when using DNN and MLR, E = 10, n = 0.01,
K =3, and D = 200.

| | 5 10
DNN MLR

B | GM PM GM PM

1 [ 81.78% | 94.63% | 78.96% | 90.61%

2 | 84.71% | 94.61% | 80.36% | 90.66%

3 | 85.36% | 94.58% | 80.29% | 90.74%

4 | 82.46% | 94.49% | 79.95% | 90.76%

6. Conclusion

In this paper, we propose the PFML method for personalized FL. Empirical studies show
that the PFML method is competitive with state-of-the-art personalized FL models. While
improving the performance of the personalized models, the PFML model maintains good
generalization performance of the global model as well as the heterogeneity of client models
and protects the information of personalized models. In future work, we will extend the
PFML model to other FL settings.
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