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Abstract

Network structured data is ubiquitous in natural and social science applications. Graph
Convolutional Neural Network (GCN) has attracted significant attention recently due to its
success in representing, modeling, and predicting large-scale network data. Various types of
graph convolutional filters were proposed to process graph signals to boost the performance
of graph-based semi-supervised learning. This paper introduces a novel spectral learning
technique called EigLearn, which uses residual learning to perturb the eigenvalues of the
graph filter matrix to optimize its capability. EigLearn is relatively easy to implement, yet
thorough experimental studies reveal that it is more effective and efficient than prior works
on the specific issue, such as LanczosNet and FisherGCN. EigLearn only perturbs a small
number of eigenvalues and does not require a complete eigendecomposition. Our investi-
gation shows that EigLearn reaches the maximal performance improvement by perturbing
about 30 to 40 eigenvalues, and the EigLearn-based GCN has comparable efficiency as the
standard GCN. Furthermore, EigLearn bears a clear explanation in the spectral domain of
the graph filter and shows aggregation effects in performance improvement when coupled
with different graph filters. Hence, we anticipate that EigLearn may serve as a useful neural
unit in various graph-involved neural net architectures.

Keywords: Graph convolution; Eigenvalue perturbation; Spectral learning; Semi-supervised
learning

1. Introduction

We address the problem of using Graph Convolutional Neural Network (GCN) for semi-
supervised classification on a graph that describes pairwise relationship among the samples
(or nodes), assuming that we have the full feature set for both training and testing samples
and the label set for training samples. The primary goal of this work is to improve the
performance of GCN by learning a more effective graph convolution filter matrix.

Convolutional Neural Network architecture on graph-structured data dates back to
(Bruna et al., 2013) and (Henaff et al., 2015), where given a graph G, the convolution oper-
ation is defined based on the graph adjacency matrix A or the graph Laplacian L = D−A,
where D is the degree matrix. Specifically, the low-frequency eigenvectors of the graph
Laplacian, along with a set of learnable parameters, jointly define a graph operator in fil-
tering the input signal. The essence of such an operation is to transform the input signal
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into the spectral domain (Sandryhaila and Moura, 2013), manipulate the coefficients on the
low-frequency band, and then transform the signal back, i.e.

x̃ = VkΘkV
T
k x =

k∑
i=1

θiviv
T
i x, (1)

where Vk is composed of the first k low-frequency eigenvectors {vi | i = 1, 2, . . . , k} of the
graph Laplacian, and Θk = diag(θ1, θ2, ..., θk) is composed of the learnable parameters of
the graph filter. A disadvantage of a low-rank filter as in (1) is that it throws away the
high-frequency signals and results in information loss.

As an alternative to computing the eigenvectors, Defferrard et al. (2016) proposed to
use a truncated expansion of Chebyshev polynomials to construct a graph filter in graph
convolution. Kipf and Welling (2016) further simplified the filter using a first-order ap-
proximation. Generally speaking, these graph filter matrices can be viewed as graph shift
operators (Gavili and Zhang, 2017) as studied in (Dasoulas et al., 2021). Our proposed
approach improves the performance of the filters, such as that in (Kipf and Welling, 2016),
by learning some perturbations in the spectral domain. Another recent work (Franceschi
et al., 2019) proposed a generative approach with the reparameterization trick (Kingma
and Welling, 2013) to learn the graph, where each edge is modeled as an independent
Bernoulli distribution. The drawback of such an approach is its quadratic complexity and
the difficulty in spectral interpretation.

The recently developed LanczosNet (Liao et al., 2019) is one of the closely relevant
approaches to ours. It replaces the eigenvectors in (1) using the Ritz vectors from Lanczos
(or Arnoldi) iterations, and then learns the parameters for an ensemble of the Ritz vectors
and the polynomials of the graph Laplacian. The use of Lanczos iterations reduces the cost
of computing the eigenvalues and eigenvectors. However, LanczosNet appears to utilize the
Ritz vectors indiscriminately by treating those corresponding to the largest and smallest
eigenvalues with equal importance. In this work, we leverage more advanced variants of
Lanczos iterations with implicit restart (Lehoucq et al., 1998) and utilize only the Ritz
vectors corresponding to the dominant eigenvalues.

Another related work to our approach is the FisherGCN (Sun et al., 2020), which uses
a minimax formulation based on the Fisher information metric (FIM) to learn a spectral
perturbation. Motivated by the adversarial attack model based on FIM in (Zhao et al.,
2019), the minimax formulation in FisherGCN tries to mitigate the worst-case scenario to
improve adversarial robustness while improving generalization. However, as pointed out in
(Tsipras et al., 2018), there may exist an inherent tension between the goal of adversarial
robustness and that of standard generalization. Hence, FisherGCN may also suffer from
such a trade-off and in turn yield a suboptimal performance, as evident in our experimental
study. In addition, their minimax formulation leads to significantly higher training costs
with FisherGCN compared to the regular GCN (Kipf and Welling, 2016). In contrast, we
formulate the objective as a pure minimization problem to improve the performance and
generalization, with minimal overhead compared to the regular GCN (Kipf and Welling,
2016). Although this work does not consider adversarial robustness, our proposed approach
demonstrates superior robustness in terms of reducing the standard deviation of testing
accuracy.
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Figure 1: Schematic of one-layer of GCN with EigLearn. H denotes the feature matrix,
W is the linear mapping matrix and S̃ = S + Vk∆V

T
k is the perturbed graph

filter matrix with S being the original filter matrix. In the perturbation unit,
Vk is composed of k significant eigenvectors of S. The learnable parameters in
∆ represents the eigenvalue perturbation and is realized as a residual unit in the
neural network.

At a high level, the core idea of our proposed approach, EigLearn, is to overcome
the shortcomings of the aforementioned approaches using a novel combination of some
variants of spectral modification (Koutis and Le, 2019) and residual learning (He et al.,
2016; Srivastava et al., 2015). As illustrated in Fig. 1, EigLearn learns some perturbations
to the low-frequency signals while preserving high-frequency signals by including a residual
unit. Overall, the contributions of this work are as follows:

• We introduce a new formulation of eigenvalue perturbation as a residual learning prob-
lem, called EigLearn,1 which hybridizes the ideas of optimal low-rank approximations
and residual learning.

• EigLearn can be easily applied to existing graph filter matrices to improve their per-
formances with moderate computational overhead.

• EigLearn is robust in terms of hyperparameters, and empirical results show that a set
of default parameters yields near-optimal improvements.

The remainder of the paper is organized as follows. Section 2 briefly reviews semi-
supervised learning with GCN and lays out the theoretical foundation of our approach.
Section 3 describes the logic and details of our proposed method, EigLearn. Section 4
compares EigLearn with LanczosNet and FisherGCN and presents the empirical study of
the sensitivity of its hyperparameters. Finally, we conclude the paper with some discussions
on future works.

1. https://github.com/ShiboYao/EigLearn

https://github.com/ShiboYao/EigLearn
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2. Preliminaries

2.1. Semi-supervised Classification with GCN

In semi-supervised learning, let {xu} and {xl} denote the sets of feature vectors of unlabeled
and labeled samples, respectively, and {yl} denote the set of labels of training samples
typically amongst {xl}. The objective is to infer the labels {yu} for the testing samples.
Graph-based learning involves a graph G = (V, E) that describes the pairwise relations of
the samples (i.e., the nodes in V). GCN belongs to the family of graph-based learning,
which takes advantage of both G and the rich capacity of the neural network to improve
model performance. A typical GCN layer is formulated recursively as follows:

H l+1 = σ(SH lW ) (2)

where H l ∈ Rn×d is the feature-map matrix for all the nodes in the lth layer, S ∈ Rn×n
is a graph filter matrix, W ∈ Rd×d′ corresponds to a weight matrix of a single (dense)
layer perceptron, and σ is an activation function for nonlinearity. The classification result
is usually obtained with a softmax function in the final output layer.

Typically, the graph filter matrix S is obtained from the adjacency matrix A or the
graph Laplacian L. A commonly used filter is the symmetrically normalized adjacency
(SNA) matrix with added self-loops (Kipf and Welling, 2016), i.e.

SSNA = D̃−
1
2 ÃD̃−

1
2 , (3)

where Ã = A+I and D̃ = diag(Ã1). Other examples include higher-order polynomials with
some normalization (Gavili and Zhang, 2017). Sun et al. (2020) introduced a more sophis-
ticated filter matrix by preprocessing the graph adjacency matrix A based on DeepWalk
similarities (Perozzi et al., 2014) and termed the resulting Graph Convolutional Networks
GCNT . We denote the graph filter matrix in (Sun et al., 2020) as SDW. In this work, we use
GCN based on SSNA in (Kipf and Welling, 2016) and GCNT based on SDW in (Sun et al.,
2020) as the baselines for perturbation and performance improvements. For conciseness, we
will omit the subscripts and use S to denote the graph filter matrix for generality.

A commonality among the existing filters is that they can all be interpreted as some
manipulation of the eigenvalues of the given graph adjacency or Laplacian. Taking a higher-
order polynomial filter as an example, when the graph is undirected, it is easy to show the
polynomial construction of graph filter is equivalent to the polynomial of eigenvalues, in
that given M = V ΛV T ,

k∑
i=0

θiM
i =

k∑
i=0

θi(V ΛV T )i =

k∑
i=0

θiV ΛiV T = V

(
k∑
i=0

θiΛ
i

)
V T .

Another example is the inverse shifted Laplacian (Jiang et al., 2019)

L̃−1 = (D̃−
1
2 (D̃ − Ã)D̃−

1
2 )−1,

where Ã = A + θI and D̃ = diag(Ã1). Given L̃ = V ΛV T , the inverse matrix is calculated
as follows:

L̃−1 = (V ΛV T )−1 = (V T )−1Λ−1V −1 = V Λ−1V T ,
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where Λ−1
ii = 1/λi. Hence, the inverse shifted Laplacian as a graph filter matrix can also

be interpreted as a manipulation of the eigenvalues. This observation motivates us to
formulate our approach also as manipulation of the eigenvalues. Instead of working on the
full spectrum, we propose to manipulate the eigenvalues of a graph filter matrix selectively
to improve its performance with low computational cost.

2.2. Optimal Low-Rank Approximations and Minimal Perturbation

We develop our approach by starting with an approximation of the graph filter matrix S.
Our point of departure is the following well-known fact regarding the optimal low-rank
approximations.

Lemma 1 Given a symmetric matrix A ∈ Rn×n with an eigendecomposition A = V ΛV T ,
where the eigenvalues in Λ are in descending order in magnitude, i.e., |λ1| ≥ |λ2| ≥ · · · ≥
|λn|, the matrix Ak =

∑k
i=1 λiviv

T
i satisfies

Ak = arg min
B∈Rn×n∧rank(B)≤k

‖A−B‖. (4)

The lemma directly follows from the Eckart-Young theorem (Golub and Van Loan, 2013,
p. 79). Lemma 1 is more relevant to the classical graph shift operators as in (Bruna et al.,
2013) and (Henaff et al., 2015), but it is not directly applicable in our setting, since we
perturb the eigenvalues of the filter matrix. The following theorem shows that the optimal
low-rank approximation is indeed a good choice for perturbing the filter.

Theorem 2 Given a symmetric matrix A ∈ Rn×n, its optimal rank-k approximation Ak in
Lemma 1 also minimizes the maximum perturbation in A − B for all B ∈ Rn×n of rank k
or less and all perturbations δ ∈ Rn×n with ‖δ‖ = c for some constant c > 0, i.e.,

Ak =

k∑
i=1

λiviv
T
i = arg min

B∈Rn×n

rank(B)≤k

max
δ∈Rn×n

‖δ‖=c

‖A−B + δ‖. (5)

Proof Given any B ∈ Rn×n, let û1 ∈ Rn and v̂1 ∈ Rn denote the left and right singular
vectors corresponding to the largest singular value of A−B. Due to the Cauchy-Schwartz
inequality,

‖A−B + δ‖ ≤ ‖A−B‖+ ‖δ‖,

where the inequality is an equality when δ = cû1v̂
T
1 . Hence,

min
B∈Rn×n

rank(B)≤k

max
δ∈Rn×n

‖δ‖=c

‖A−B + δ‖ = min
B∈Rn×n

rank(B)≤k

‖A−B‖+ c,

which is minimized iff ‖A−B‖ is minimized, i.e., B = Ak due to Lemma 1.

In plain English, Theorem 2 states that the worst-case deviation from the graph filter
S is minimized when the filter is constructed from the optimal low-rank approximation. It
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is worth noting that Lemma 1 also holds in the Frobenius norm, so does Theorem 2. We
omit their proofs.

In practice, however, the graph filter matrix S is typically asymmetric, even in the case
of SNA. In general, we could apply the Eckart-Young theorem in place of Lemma 1 and
use a truncated singular value decomposition (TSVD) of an asymmetric S to construct the
graph filter. However, if S is not too far from symmetry, it is more efficient (in terms of
both computational cost and memory requirement) to use the eigenvalue decomposition of
(S+ST )/2 to construct a “near-optimal” low-rank approximation. In this work, we use the
latter approach for its better efficiency. We found it to be effective for applications such as
citation networks.

2.3. Connection of Eigenvalue Perturbation with Residual Learning

One limitation of using a low-rank approximation as described in Section 2.2 is that such low-
rank approximations only contain the low-frequency signals, and a filter based on low-rank
approximation alone may miss some important information in the high-frequency signals.
To overcome this limitation, one can introduce a “residual unit” into the neural network,
analogous to the residual learning in HighwayNet (Srivastava et al., 2015) and ResNet (He
et al., 2016). The key idea of residual learning is to allow the original signal flow freely
in the neural net and focus on learning the signal residual, and therefore generate better
sample representations. In this work, we propose a similar yet different idea. Our objective
is different from the aforementioned residual learning, in that we design a novel residual
unit in the frequency domain, to better learn the low-frequency signals while preserving
the original signals in both low-frequency and high-frequency bands, and in turn improve
the performance. We accomplish the residual learning in EigLearn by training a constant
number of free parameters that serve as the perturbation to the graph filter matrix’s low-
frequency eigenvalues. One benefit of our residual learning is that it does not require a
complete eigendecomposition and incurs no steep computation cost. In other words, the
residual unit in EigLearn is composed of a collection of actual neurons that resembles the
biases, as we will explain in detail in Section 3.

3. Learning Eigenvalue Perturbation

As discussed in Section 2.1, our approach is motivated by the fact that many GCN models
exploit certain types of eigenvalue manipulation on the adjacency matrix A or the Laplacian
matrix L and construct an effective graph filter matrix. The examples include but are not
limited to, subspace constructed from the graph Laplacian with learnable coefficients (Bruna
et al., 2013; Henaff et al., 2015), graph shift operator constructions (Dasoulas et al., 2021;
Defferrard et al., 2016) and inverse Laplacian (Jiang et al., 2019). We develop our approach
by first raising the following questions:

• Given a graph filter matrix, either hand-crafted or parameterized, can we further
perturb it using a data-driven approach and make it more effective in learning graph
signals?

• The polynomial graph filter matrices are based on manipulation on all eigenvalues,
which can be a waste of computation and a waste of model capacity if the polynomial
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is parameterized. Can we selectively perturb a subset of eigenvalues efficiently and
effectively?

• Can we do this without increasing the overall complexity of GCN?

These questions also serve as the design principles of our method and guide the investigation
throughout the paper.

3.1. Perturbing the Eigenvalues

Without loss of generality, let us assume the graph filter matrix S ∈ Rn×n is symmetric,
since we have addressed the general treatment of asymmetric matrices in Section 2.2. Let
S = V ΛV T denote the eigendecomposition of S. We hypothesize that there is a sizable room
for performance improvement even in those well-designed graph filter matrices for GCN, if
we introduce some modifications to the graph filter matrix S. One might be tempted to
directly treat all entries in S as free parameters, but such an approach would incur at least
quadratic complexity and would not reveal insights on the spectral properties.

Instead, we propose to modify the eigenvalues of S and optimize the filter in the spec-
tral domain. Because the modification is often small, conceptually it corresponds to a
perturbation process, i.e.

Λ̃ = Λ + ∆ = diag(λ1 + δ1, ..., λn + δn), (6)

where most of the δi should be zeros for efficiency. We address the complexity with k
significant eigenvectors and residual learning in the following section.

3.2. Analysis of Complexity

One potential challenge of the proposed approach is the complexity of the eigendecompo-
sition in the first place. A straightforward implementation based on eigendecomposition
introduces cubical complexity and hinders scalability. Instead, we can improve the GCN
performance with the proposed approach with only additional linear complexity w.r.t. the
number of nodes and a constant number of learnable parameters. This is done by learning
the perturbation on a constant number, k, of significant eigenvalues. Note that most of the
graphs in real-world applications are sparse. Hence, extracting a significant eigenvector in
the sparse system has linear-time complexity in the number of edges (and equivalently the
number of nodes) per Lanczos iteration. Since it typically suffices to use a low-precision
approximation to the leading eigenvectors, we expect the number of Lanczos iterations can
be limited to a small constant. Hence, solving for k significant eigenvectors in a sparse
system is approximately O(kn). Given ∆ = diag(δ1, ..., δk),

Λ̃ = Λ + ∆ = diag(λ1 + δ1, ..., λk + δk, λk+1, ..., λn). (7)

Note that it is unnecessary to have a full matrix decomposition. The above equation is the
same as follows:

S̃ = S + Vk∆V
T
k (8)

where Vk are pre-computed and stored. It constitutes residual learning where S is the
original matrix and the perturbation is the residual component. To generalize the approach
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to dense matrices S without suffering from quadratic complexity when solving for Vk, one
can employ the promising matrix sparsification (Achlioptas and McSherry, 2007) and graph
sparsification (Spielman and Teng, 2011; Koutis et al., 2015) methods that preserve the
spectral properties within a provable error bound. Although the sparsification on a dense
system takes quadratic complexity w.r.t. the number of nodes, it is inexpensive in practice
and can be done reasonably fast for very large-scale situations.

One of the most important hyperparameters in EigLearn is k, which should be large
enough to introduce sufficient capacity to the model and yet small enough to prevent over-
fitting and retain the complexity. Practically, one could apply grid search to identify an
optimal k in the same way as finding the optimal number of neurons. In our experimental
study, we found that a small k (30–40) achieves optimal performance and the EigLearn is
robust within a reasonable range of k (20-150).

When computing Vk, we observe linear complexity w.r.t. |E|, i.e., O(kr|E|), where k is
constant and not proportional to |V|, r is the number of Arnoldi iterations and constant
with low precision, and |E| is the number of edges in the graph. In most applications, the
graph is sparse and |E| is linear to |V|, and therefore computing Vk is O(kr|V|), i.e. linear in
|V|. For dense graphs, the evaluation of A ·X or S ·X is already quadratic, and computing
Vk is also quadratic. Hence, EigLearn does not change the asymptotic complexity of the
GCN model in either dense or sparse cases. It’s worth mentioning that with a relatively
larger error tolerance in the eigen solver, EigLearn still works well.

3.3. Forward-Back Propagation, Gradient Descent and Neural Architecture
Setup

Let us first use one GCN layer as an illustration and omit the bias term for simplicity. The
forward propagation is:

H l+1 = ReLU(S̃H lW ). (9)

Substituting S̃ = S + Vk∆V
T
k , we have

H l+1 = ReLU((S + Vk∆V
T
k )H lW ). (10)

We follow a two-stage training procedure. Firstly ∆ is initialized as 0 and fixed. Stage-I is
equivalent to a regular GCN training and

H l+1 = ReLU(SH lW ).

The parameters in W (and the bias term if there is any) are updated in stage-I. In stage-II,
we keep W fixed and update ∆.

Assume we employ empirical risk minimization learning schema given some predefined
loss function and let L denote the empirical loss back-propagated to this GCN layer. The
gradient descent on W in stage-I training is

W ←W − η · ∇WL (11)

and the gradient descent on ∆ in stage-II training is

∆← ∆− η · ∇∆L (12)
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where η is the learning rate.
In our experimental study, we use a two-layer GCN for illustration. To further reduce

the degree of freedom and prevent potential overfitting, we share ∆ (of which the k diagonal
entries are trainable) in both layers, i.e.,

S̃(1) = S̃(0) = S̃ = S + Vk∆V
T
k . (13)

Hence, the GCN output is

Ŷ = softmax(S̃(ReLU(S̃XW (0)))W (1)). (14)

4. Empirical Study

We have implemented EigLearn in PyTorch (Paszke et al., 2019). Our implementation
presently supports the graph filter matrices SSNA and SDW as mentioned in Section 2.1.
We refer to the resulting GCN models as EigLearnGCN and EigLearnGCNT , respectively.
In terms of the eigenvalue solver, we used eigsh in SciPy(Virtanen et al., 2020), a wrap-
per of ARPACK (Lehoucq et al., 1998). It is worth mentioning that EigLearn only requires
moderate accuracy of the computed eigenvalues and eigenvectors. Throughout our empirical
study, we used a relative tolerance of 1e−8 for the eigenvalues, leading to a good balance be-
tween accuracy and efficiency. To assess the effectiveness of the proposed approach against
other competitors, we conducted semi-supervised node classification on three benchmark
datasets, namely Cora, CiteSeer and PubMed, and compared our approach with Lanczos-
Net (Liao et al., 2019) and FisherGCN (Sun et al., 2020) based on their corresponding
experimental setups.

We used a similar configuration as in (Sun et al., 2020). In particular, we used a two-
layer GCN with 64 hidden units. During stage-I training on the regular GCN, we minimized
the loss function (i.e., negative log-likelihood) using the ADAM optimizer with 200 epochs,
0.01 learning rate, 2e−4 weight decay, and 0.5 dropout for the sparse feature input. In
stage-II training for the perturbations to the dominant eigenvalues, we set the number of
dominant eigenvalues to be perturbed to 40. We used a smaller learning rate of 0.002 and a
larger weight decay of 4e−3, in order to encourage smaller perturbations and penalize large
perturbation.

4.1. Comparison with LanczosNet

We first compare EigLearn with LanczosNet (Liao et al., 2019), since it is probably the most
similar to our approach in that it also has a learnable filter based on approximate eigen-
vectors. The experimental study in (Liao et al., 2019) had a focus on multi-scale molecule
regression besides semi-supervised node classification. Since the publicly available imple-
mentation of LanczosNet does not include the semi-supervised classification, we adapted the
problem setup of EigLearn based on that in (Liao et al., 2019). In particular, we adopted
the public fixed split in this comparison. In addition, according to the publicly available
implementation, LanczosNet did not employ sparse dropout. For a fair comparison, we
implemented EigLearn both with and without sparse dropout.

Table 1 compares EigLearnGCN with and without sparse dropouts with LanczosNet
and AdaLanczosNet in (Liao et al., 2019). Since the testing loss was not given in (Liao
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Table 1: Performance comparison of EigLearnGCN with and without sparse dropout versus
LanczosNet and AdaLanczosNet (without dropout). Leaders are in boldface.

Testing Accuracy

model Cora CiteSeer PubMed

LanczosNet 79.5± 1.8 66.2± 1.9 78.3± 0.3
AdaLanczosNet 80.4± 1.1 68.7± 1.0 78.1± 0.4

EigLearnGCN (w/ dropout) 82.1± 0.2 70.3± 0.8 79.2± 0.5
EigLearnGCN (w/o dropout) 81.8± 0.3 70.7± 0.7 79.3± 0.2

et al., 2019), we only report testing accuracy in Table 1. EigLearnGCN consistently deliv-
ered better performance than LanczosNet regardless of whether sparse dropout is utilized.
It is worth noting that the results in (Liao et al., 2019) were obtained using the fine-tuned
hyperparameters for different cases, but EigLearnGCN used the default parameters for all
the cases. These results show that EigLearn is not only more accurate but also more robust
than LanczosNet in terms of parameter tuning. The superiority of EigLearn is probably be-
cause EigLearn only perturbs the dominant eigenvalues to construct minimal perturbations
based on Theorem 2, whereas LanczosNet perturbs all the approximate extreme eigenvalues
(i.e., the Ritz values). The additional parameters associated with the smallest eigenvalues
in LanczosNet are unlikely to improve accuracy, and their presence may cause Lanczos-
Net to be more prone to overfitting and hence lower performance. We also noticed that
the baseline performance of GCN in (Liao et al., 2019) was worse than that in (Kipf and
Welling, 2016), but no explanation was provided in (Liao et al., 2019).

4.2. Comparison with FisherGCN

The second assessment focuses on the comparison between EigLearn and FisherGCN (Sun
et al., 2020) that is arguably more sophisticated than LanczosNet. In this comparison,
we adopted the same settings for data splitting and training as in (Sun et al., 2020). In
particular, we split the data into a training set with 20 samples per class, a validation set
with 500 samples, and a testing set with 1000 samples. We ran experiments with 20 random
splits and for each data split there were 10 different initializations per split. As thoroughly
studied in (Shchur et al., 2018), a random split is a less biased evaluation setting for GCN
performance, and hence is preferable over the public fixed split. The other parameters
remained the same in EigLearn as in Section 4.1, which is consistent with those in (Sun
et al., 2020).

Table 2 reports a comparison among the baseline GCN, FisherGCN, and EigLearn using
the graph filter matrices based on SSNA and SDW, respectively. We used both classifica-
tion accuracy and loss on testing set as the evaluation metrics. For the baselines, we
report the performances of both TensorFlow-based implementations of GCN and GCNT in
(Sun et al., 2020) and our PyTorch-based implementation.2 Table 2 shows that EigLearn
consistently improved the baseline performances and reduced testing losses. Furthermore,

2. There are some subtle differences between the implementations in TensorFlow and PyTorch that lead
to the performance discrepancies in different baseline implementations. For example, TensorFlow real-
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Table 2: Comparison of model performances in terms of average values and standard devi-
ations. PT denotes PyTorch, and EL denotes EigLearn. Leaders are in boldface.

Testing Accuracy Testing Loss

model Cora CiteSeer PubMed Cora CiteSeer PubMed

GCN 80.5± 2.3 69.6± 2.0 78.2± 2.4 1.07± 0.04 1.36± 0.03 0.75± 0.04
FisherGCN 80.7± 2.2 69.8± 2.0 78.4± 2.4 1.06± 0.04 1.35± 0.03 0.74± 0.04
GCN (PT) 79.8± 2.1 69.7± 1.9 78.3± 2.2 0.66± 0.04 0.96± 0.04 0.58± 0.05
ELGCN 81.4± 1.5 70.1± 1.8 78.9± 2.1 0.59± 0.04 0.94± 0.04 0.57± 0.05

GCNT 81.2± 2.3 70.3± 1.9 79.0± 2.6 1.04± 0.04 1.33± 0.03 0.70± 0.05
FisherGCNT 81.5± 2.2 70.5± 1.7 79.3± 2.7 1.03± 0.03 1.32± 0.03 0.69± 0.04
GCNT (PT) 81.1± 1.8 70.5± 1.7 79.3± 2.0 0.62± 0.04 0.92± 0.04 0.54± 0.04
ELGCNT 82.2± 1.4 70.6± 1.6 79.8± 1.8 0.56± 0.04 0.90± 0.04 0.53± 0.04

EigLearnGCN and EigLearnGCNT noticeably outperformed FisherGCN and FisherGCNT

correspondingly. EigLearn also yielded larger improvements to the baselines than both
FisherGCN and FisherGCNT . These larger improvements are significant, since compared
to FisherGCN, EigLearn is easier to implement and fits more naturally into the neural
network architectures. In addition, EigLearnGCN is significantly faster than FisherGCN
in that the additional cost associated with EigLearn is only a small fraction of the cost for
training a regular GCN, while FisherGCN is several times slower than GCN as reported
in (Sun et al., 2020). It is also worth noting that EigLearn reduced the standard devia-
tions of testing accuracy consistently, while FisherGCNT increased the standard deviation
for PubMed. Hence, these experiment results confirm that EigLearn is more accurate and
robust than FisherGCN in terms of standard generalization.

4.3. Apply EigLearn on ChebyNet and SGCN

To testify the applicability of the EigLearn unit, we also inject it into ChebyNet (Defferrard
et al., 2016) and Simplified-GCN (Wu et al., 2019), and observe performance improvement
on SGC and ChebyNet with the EigLearn unit as shown in table 3 using the same settings
in the previous section. The ChebyNet model is based on an order-2 Chebyshev polynomial
of the shifted and rescaled Laplacian. The SGC model is based on a power-2 graph filter
matrix.3

4.4. Comparison with TruncateTrain

In the methodology section we argued that the residual formulation to learn the eigen-
value perturbation is necessary. To validate it, we also conducted experiments to compare

izes the weight decay with L2 regularization and includes the penalty in the total loss, while PyTorch
implements the weight decay in the ADAM optimizer and excludes the penalty from the total loss.

3. The SGC performance in the original paper is based on the public fix split. We use the available imple-
mentation (https://github.com/Tiiiger/SGC) and perform random splits, and observe a performance
degradation. The performance degradation on random split also happens to ChebyNet.

https://github.com/Tiiiger/SGC
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Figure 2: EigLearn v.s. TruncateTrain

Table 3: Comparison of model performances in terms of average values and standard devi-
ations. EL denotes EigLearn. Leaders are in boldface.

Testing Accuracy Testing Loss

model Cora CiteSeer PubMed Cora CiteSeer PubMed

ChebyNet 76.5± 2.4 68.5± 2.0 75.9± 2.6 0.74± 0.05 0.98± 0.04 0.65± 0.06
EL-ChebyNet 78.5± 2.0 69.1± 2.0 76.3± 2.5 0.68± 0.05 0.96± 0.04 0.65± 0.06

SGC 78.1± 2.7 69.2± 2.1 77.6± 2.5 0.81± 0.03 1.08± 0.03 0.58± 0.03
EL-SGC 81.0± 1.5 69.6± 2.0 79.2± 2.3 0.61± 0.04 0.97± 0.03 0.55± 0.04

EigLearn and the direct eigenvalue perturbation learning based on a truncated eigendecom-
position of the graph filter matrix (denote it as TruncateTrain). As shown in Fig. 2, two
observations are apparent. Firstly, only when we used a large number of eigenvectors from
the graph filter matrix, could we preserve the model performance. This observation inval-
idates the linear complexity assumption in TruncateTrain. Secondly, directly learning the
eigenvalue perturbation could not boost the model performance as effectively as EigLearn
utilizing the residual formulation. Although we do not provide theoretical analyses on this,
the straightforward explanations are: the residual formulation anchors the base level of the
eigenvalues and performance; on top of that, the perturbations are learned on individual
eigenvalues without changing the meaningful attenuation pattern of the spectrum.
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Figure 3: Pair-Sample t-test on EigLearn Performance Improvement

4.5. Experiment on Large Dataset

To demonstrate the scalability and generalization of EigLearn, we also run experiments
on a significantly larger dataset, the arxiv network, which is roughly 10 times larger than
PubMed in the number of nodes with more than 1 million edges, from the Open Graph
Benchmark (Hu et al., 2021). We follow the detailed GCN settings provided in the official
implementation from the OGB project. We train the eigenvalue perturbation with a learning
rate of 0.002 for 50 epochs without regularization or early stopping. For computer memory
issue, we use an order-3 filter matrix in GCNT . We aggregate the results from ten runs (for
both data random split and trainable parameter random initialization) in Table 4. EigLearn
consistently improves on GCN with both filter matrices and across different numbers of
eigenvalues. In term of algorithm efficiency, we compare the overall training time of GCN
and EL-GCN (including computing Vk) and do not observe a significant time increase, i.e.
(10 times average measured in seconds), 3.06 v.s. 4.18 on Cora, 3.44 v.s. 4.16 on CiteSeer,
6.44 v.s. 7.83 on Pubmed and 213.9 v.s. 273.6 on the large dataset ogbn-arxiv.

Table 4: Performance Improvement by EigLearn on ogbn-arxiv Dataset
Training Accuracy Testing Accuracy

model k=20 k=50 k=100 k=20 k=50 k=100

GCN 78.84± 0.57 79.17± 0.45 78.94± 0.59 73.86± 0.11 73.60± 0.10 73.74± 0.09
ELGCN 80.27± 0.06 80.45± 0.07 80.27± 0.12 74.14± 0.08 73.86± 0.09 73.98± 0.11

GCNT 79.80± 0.42 79.42± 0.41 79.73± 0.49 73.67± 0.10 73.61± 0.11 73.62± 0.16
ELGCNT 81.45± 0.07 81.43± 0.10 81.13± 0.12 74.08± 0.11 74.02± 0.07 73.99± 0.07

4.6. Other Experiment Results

To further demonstrate that the improvement induced by EigLearn is systematic, we con-
ducted pair-sample t-tests across different datasets, graph filter matrices (GCN means sym-
metrically normalized adjacency and GCNT is a higher-order polynomial) with perturbation
on different k eigenvalues. As shown in Fig. 3, the t-tests reveal that the majority of ex-
periment settings are statistically significant except for a few corner cases (e.g., when k is
small).

Next, we show the sensitivity analysis on the EigLearn in Fig. 4. Essentially, EigLearn
extracts the perturbation in the subspace spanned by k dominant eigenvectors of the graph
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Figure 4: EigLearn Sensitivity on k

filter matrix. One observation from Fig. 4 is that the performance induced by EigLearn
is relatively consistent within a reasonably wide band of k value (e.g., 20 to 150). It also
confirms that we do not need a large number of eigenvectors to make EigLearn achieve high
effectiveness. On the contrary, when k is large, the performance improvement diminishes.
It is most probably due to overfitting when many trainable parameters are introduced to
the model. When k is too small, the extra capacity added to the model is not sufficient
for EigLearn to make sizable improvement. Besides, as a common practice, we conduct
perturbation in the subspace spanned by the dominant eigenvectors instead of the least
significant eigenvectors. We also ran experiments with the least significant eigenvectors.
These eigenvectors barely made any performance improvement. This provides some exper-
imental justification of using the significant eigenvectors and supports our argument that
polynomial-based approaches may waste computation and model capacity on a large number
of insignificant eigenvalues when the implicit perturbation is applied to the full spectrum.

We also checked the sensitivity on learning rate and regularization (weight decay) in
the residual unit. In general, EigLearn is quite robust toward these two hyperparameters.
Experimental studies exposed that a smaller learning rate was indeed effective in learning
the perturbation and confirmed our assumption that the perturbations are small and should
be learned with a moderate learning rate. As for regularization, it turned out that a small
weight decay or even no weight decay led to slightly improved results, although it does
not make a big difference. Additional experiment results can be found in the provided
anonymous code URL.
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5. Discussions and Conclusions

In this work, we introduced EigLearn, which perturbs the given graph filter matrix in its
spectral domain for improving GCN performance. We formulated the eigenvalue perturba-
tion of the graph filter matrix as a residual learning problem and realized it with a residual
unit in neural network architecture without increasing the model complexity. Experimental
results show that EigLearn makes more significant performance improvements than the pre-
vious works, including LanczosNet and FisherGCN. We also studied the detailed behaviors
of EigLearn to demonstrate its robustness and provided a spectral explanation for the per-
turbation process. EigLearn is easy to implement and naturally fits in the neural-network
configuration. We anticipate the future work resides in generalizing EigLearn to GCN for
graph classification and regression and other graph learning problems. We also plan to
investigate the integration of EigLearn with adversarial learning to improve adversarial
robustness.
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