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Abstract

Deep Convolutional Neural Networks (CNNs) are successfully applied in many complex
tasks, but their storage and huge computational costs hinder their deployment on edge
devices. CNN model compression techniques have been widely studied in the past five
years, most of which are conducted in the spatial domain. Inspired by the sparsity and
low-rank properties of weight matrices in the frequency domain, we propose a novel fre-
quency pruning framework for model compression and acceleration while maintaining high-
performance. We firstly apply Discrete Cosine Transform (DCT) on convolutional kernels
and train them in the frequency domain to get sparse representations. Then we propose an
iterative model compression method to decompose the frequency matrices with a sample-
based low-rank approximation algorithm, and then fine-tune and recompose the low-rank
matrices gradually until a predefined compression ratio is reached. We further demon-
strate that model inference can be conducted with the decomposed frequency matrices,
where model parameters and inference cost can be significantly reduced. Extensive experi-
ments using well-known CNN models based on three open datasets show that the proposed
method outperforms the state-of-the-arts in reduction of both the number of parameters
and floating-point operations (FLOPs) without sacrificing too much model accuracy.

Keywords: Compression, DCT, Low-rank Approximation.

1. Introduction

Convolutional neural networks (CNNs) have been applied in many complex tasks such as im-
age classification and object detection because of their capability of representation learning.

© 2021 Y. Zeng, X. Liu, L. Sun, W. Li, Y. Fang, Q. Lu & S. Lu.
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Figure 1: Comparison of sparsity (left) and rank (right) of different layers of VGG16 on
CIFAR10.

However, with the CNNs becoming deeper and deeper, they should occupy much memory
storage and computational cost, which prevents them from being deployed in resource-
limited devices. Model compression, which focuses on reducing the size of CNNs and ac-
celerating their inference or training time, has drawn much attention from academia and
industry.

Neural network pruning Han et al. (2015); Li et al. (2017); Liu et al. (2017) has been
widely studied in the past few years, and most of them are conducted in the spatial domain.
Unstructured pruning Frankle and Carbin (2019); Han et al. (2015); Lee et al. (2019) reduces
the number of non-zero parameters by inducing sparsity to weight matrices. Although it
can obtain a large compression rate on model size, the speeding up demands for specific
hardware/libraries support. Structured pruning Li et al. (2017); Liu et al. (2017) achieves
practical acceleration, but the instability of its quality prevents it from moving towards
higher pruning rate.

Recent works Liu et al. (2018); Wang et al. (2018); Xu et al. (2020) showed that due
to the nature of local smoothness of images, filters in CNNs tend to be smooth, and they
are dominated by low-frequency components in the frequency domain. Using frequency
domain to compress CNNs was proposed recently. CNNpack Wang et al. (2018) compressed
CNN models in the frequency domain by discarding a large number of low-energy frequency
coefficients so as to reduce storage. FreshNets Chen et al. (2016) employed a hashing trick for
random weight sharing and compressed parameters in a frequency-sensitive fashion such that
low-frequency components are better preserved. FDNP Liu et al. (2018) dynamically pruned
frequency-domain coefficients to reduce model parameters based on different importance of
frequency bands in the weight matrix. Despite the efforts being made, they do not fully
capture the potentials for model compression in the frequency domain. Figure 1 compares
the percentage of non-zero entries and the rank of weight matrices in different layers of
VGG16 model trained on CIFAR10 dataset Krizhevsky (2009) in both spatial and frequency
domain. It is shown that the weight matrices in the frequency domain are much sparser
and have lower ranks, which can be exploited to develop efficient compression algorithms for
CNN models. To leverage such properties, we propose a novel frequency model compression
method called FreqPrune to reduce model parameters and accelerate inference without
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causing significant performance loss. We transform the convolutional layers as well as their
input featuremaps into the frequency domain using Discrete Cosine Transform (DCT) and
show the feasibility of replacing convolutional operation by frequency matrix multiplication.
Then we sparsify the frequency matrices of a CNN model by retraining them with a limited
number of epochs using a sparsity regularization. Base on that, we propose an iterative
model compression method, which decomposes the frequency matrices with a sample-based
low-rank approximation algorithm to obtain compact model representation and find-tune
the model iteratively until a predefined compression ratio is reached. We demonstrate that
model retraining and inference can be conducted with the decomposed frequency matrices,
based on which the model parameters can be compressed, and the inference cost measured
by FLOPs (floating-point operations) can be significantly reduced.

Compared to the conventional deep model compression methods, the advantages of the
proposed FreqPrune method are as follows. (1) Adaptiveness: unlike conventional filter
pruning methods requiring manual setting of pruning rate for each layer, the proposed
method can automatically and adaptively decide the pruning rate without expert knowledge.
(2) Effectiveness: with the sparsification and low-rank decomposition method introduced
in the frequency domain, the proposed method can reduce both FLOPs and the number of
model parameters significantly and efficiently.

The contributions of the paper are summarized as follows:

• We propose a novel iterative deep model compression and acceleration method in the
frequency domain. We transform spatial convolutional operation as frequency matrix
multiplication, and then sparsify and decompose the frequency matrices using low-
rank approximation and fine-tuning techniques iteratively to obtain a compact model
representation. We show that model inference can be conducted with the decomposed
frequency matrices, which can reduce both computational and storage costs.

• To the best of our knowledge, we are the first to comprehensively explore model
decomposition, weight pruning, parameter fine-tuning, and inference in the frequency
domain. Unlike the previous work of weight pruning in the frequency domain, our
work obtains practical model compression and acceleration, reducing more FLOPs by
low-rank decomposition and inference in the frequency domain.

• We explore the importance of components in the frequency domain that can easily
distinguish salient components from trivial ones. We search for important compo-
nents efficiently without trial-and-error or reinforcement learning, which are time-
consuming.

• We conduct extensive experiments on a variety of CNN models based on three open
datasets. It shows that the proposed method outperforms the state-of-the-art model
compression methods to reduce FLOPs and the number of parameters without harm-
ing the test accuracy.

2. Related Works

We summarize the related works in the following aspects: unstructured model pruning,
structured model pruning, and model compression in the frequency domain.
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Unstructured model pruning aims to remove useless parameters from CNNs and turn
the dense weight matrices into sparse ones. LeCun et al. (1990) tried to prune the unim-
portant weights using the second-order Taylor expansion. Han et al. (2015) proposed an
iterative weight pruning method by discarding weights with small absolute values. Lee
et al. (2019) proposed to prune the network at initialization by identifying structurally
important connections. The lottery ticket hypothesis Frankle and Carbin (2019) showed
that dense networks contain sparse sub-networks that have comparable performance to the
original networks. However, unstructured pruning relied on dedicate hardware for inference
acceleration Li et al. (2017).

Structured model pruning adopted a filter-wise pruning mechanism to simplify the CNN
structure and accelerate inference. Many works utilized the discriminative properties of
a pre-trained CNN model to measure the importance of its filters, such as lp norm He
et al. (2018a); Li et al. (2017), scaling factor Liu et al. (2017), correlation Wang et al.
(2019a), and reconstruction error Lin et al. (2020a). Recently, some AutoML methods were
introduced to prune networks automatically. He et al. (2018b) and Lin et al. (2017) utilized
reinforcement learning to decide the pruning ratio of each convolutional layer. Based on the
finding of Liu et al. (2019) that a pruned network could be trained from scratch to reach
comparable accuracy against the full model, Wang et al. (2019b) proposed an algorithm to
prune networks in the very early stage.

Model compression in the frequency domain was proposed recently. Xu et al. (2020)
proposed a learning-based frequency selection method to identify the trivial frequency com-
ponents in images which can be removed without accuracy loss. Wang et al. (2018) com-
pressed CNNs in the frequency domain by decomposing filter representation into common
parts and individual private parts so that a large number of low-energy frequency coeffi-
cients in both parts can be discarded. Chen et al. (2016) converted filter weights to the
frequency domain and used hash functions to group them into hash buckets to save storage.
Liu et al. (2018) dynamically pruned frequency-domain coefficients utilizing the different
importance of frequency bands.

3. FreqPrune Model Compression Method

In this paper, we propose a novel pruning framework named FreqPrune based on iterative
weight matrices decomposition and recomposition in the frequency domain.

3.1. Framework Overview

Figure 2 shows the pipeline of FreqPrune. Firstly, we transform the convolutional layers
as well as its input featuremaps into frequency domain with Discrete Cosine Transform
(DCT) Rao et al. (1990) to replace convolutional operation by frequency matrix multipli-
cation (Section 3.2.1). Secondly, we derive the gradient for backward propagation in the
frequency domain to retrain the deep model. We sparsify the weight matrix by regulariza-
tion to concentrate the information into some certain frequency regions without accuracy
drop (Section 3.2.2). Thirdly, we propose a sample-based low-rank approximation algorithm
to decompose the frequency weight matrices (Section 3.3.1), and fine-tune the decomposed
matrices by backward propagation to recover the test accuracy (Section 3.3.2). Finally, the
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Figure 2: Pipeline of model compression in the frequency domain. We firstly transform

the convolutional layers into frequency domain with DCT. Then, we sparsify
the weight matrix to concentrate on the information in some certain frequency
regions. Finally, we decompose the frequency weight matrices, fine-tune the de-
composed matrices, and recompose them for further rank reduction until the
required compression ratio is satisfied.

decomposed matrices are recomposed for further rank reduction until the required compres-
sion ratio is satisfied (Section 3.3.3).

3.2. Model Sparsification in the Frequency Domain

Given a pretrained deep model, we first apply DCT to transform the convolutional layers
into frequency representation, and then retrain the model with sparse regularization.

3.2.1. DCT for CNNs

We introduced the principle of DCT to transform a CNN model into the frequency domain.
Denote the DCT as D. Given an input matrix P ∈ Rn×n, the DCT coefficient F ∈ Rn×n of
P is defined as: F = D(P). In element-wise, let P = [Pij ]n×n and F = [Fuv]n×n, the DCT
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can be denoted as:

Fuv=αuαv

n−1∑
i=0

n−1∑
j=0

Pijcos
π(2i+1)u

2n
cos

π(2j+1)v

2n
, (1)

where αu =
√

1
n if u = 0 and αu =

√
2
n , otherwise.

Once the transformation pairs both satisfy dividable and symmetry, which means that
the patch P is square, the matrix form of DCT can be written as F = CPCT , where
C = [Cij ]n×n is the transformation matrix, and the element of C is Cij = αi · cos π(2i+1)j

2n .
Assume a convolutional layer consists of cout filters, each of them has cin kernels sized

d×d. Denote a convolutional layer as a 4D tensor W̃ ∈Rcin×d×d×cout , and the input as a 3D
tensor Ĩ∈Rcin×hin×win , where hin×win is the dimension of the input feature map. Denote
the output of convolution as Õ∈Rcout×hout×wout , where hout × wout is the dimension of the
output feature map. The convolution operation (in the spatial domain) can be denoted by

mat(Õ) = mat(Ĩ) ·mat(W̃ ), where mat(·) is the matrix form of a tensor1.

Let W , I and O be the frequency representations of W̃ , Ĩ and Õ accordingly. They
are formed as follows. For a convolutional layer, we apply DCT on each kernel d×d using
Eq. (1) to flatten it into a vector, and group all vectors in the layer to form the frequency
weight matrix W ∈R(d×d×cin)×cout . Similarly, we apply DCT to the input tensor to form its
frequency representation I∈R(hout×wout)×(cin×d×d).

Next we illustrate that convolution operation in the spatial domain can be transformed
to matrix multiplication in the frequency domain. The DCT of W̃ is W = D(W̃ ) = D ·
mat(W̃ ), where D is an orthogonal matrix defined by Wang et al. (2018). Similarly, the
DCT of Ĩ is I=D(Ĩ)=mat(Ĩ) ·DT . Therefore we have

O=I ·W =
[
mat(Ĩ)·DT

]
·
[
D ·mat(W̃ )

]
=mat(Õ). (2)

With such property, we can represent the original CNN model as a sequence of matrices in
the frequency domain.

3.2.2. Retraining for weights sparsification

After frequency transformation, we retrain the model for a few epochs to sparsify its weight
representation. The retraining process is conducted in the frequency domain as follows.
In forward propagation, the output of each layer is simply computed by Eq. (2). In back
propagation, the gradient used to update W can be calculated by

∂L
∂Wmn

=
∂L
∂Oij

(
JmnIT

)
ij
, (3)

where L is the objective function, (·)ij means the element of the matrix in position (i, j),
and Jmn is a single-entry matrix where the (m,n)-th element is 1 and 0 elsewhere.

To get a sparse representation in the frequency domain, we add a regularization term to
force more weights to be zero as much as possible. Therefore we use the following objective
function to retrain the model.

Ltotal = Loriginal (D(model)) + λ‖D(model)‖1, (4)

1. https://pytorch.org/docs/stable/generated/torch.nn.Unfold.html
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where Loriginal() is the loss function of the original deep model, D(model) is the model’s
weights (after DCT) in the frequency domain, ‖ ·‖1 is the l1-norm regularization that drives
the weights approaching zero, and λ is a weight to balance the degree of sparsity.

3.3. Iterative Model Compression & Acceleration

We propose an iterative decomposition-recomposition method for model compression and
acceleration as follows.

3.3.1. Sample-based Low-rank Approximation

To reduce the parameter size and computational cost of the CNN model (after DCT),
we introduce a sample-based low-rank approximation method to decompose the weight
matrices into multiplication of smaller matrices while producing similar output. Given a
weight matrix W , low-rank approximation seeks two matrices U and V to decompose W ,
i.e., W ≈ UV , where U ∈ Rm×r, V ∈ Rr×n, and r ≤ min{m,n}. A natural choice for the
approximation criterion is to minimize ‖W −UV ‖2F where ‖·‖F is the Frobenius norm Horn
and Johnson (2012).However, an optimal rank for matrix decomposition is NP-hard Zhou
and Tao (2013), and a layer-wise matrix decomposition approach neglects the information
flow through CNN layers, which could cause error accumulation. To address these issues,
we propose a low-rank approximation method based on small samples.

Consider a set of samples Ω = {ω1, ω2, · · · }, which is a subset of the input dataset.
For a sample ωi, it goes through several layers of convolutional operations, where the j-th

layer’s output ω
(j)
i is used as the input of the (j+1)-th layer. Without causing confusion,

we omit the superscript thereafter, and generally refer to the layer’s input as ωi. Based on
the sample set, the low-rank approximation problem can be formulated as

min
U,V

1

|Ω|

|Ω|∑
i=1

‖ωiW − ωiUV ‖2F , (5)

s.t.
‖W − UV ‖2F
‖W‖2F

≤ ε, (6)

rank(UV ) ≤ rank(W )− 1, (7)

where ε ∈ (0, 1) is a predefined error tolerance and the proposed low-rank approximation
can be applied on any W (full rank or not) to minimize Eq. (5).

The above optimization problem seeks a UV decomposition of the weight matrix W
with two constraints: (1) the difference between the decomposed matrix and the original
one is within a predefined threshold (Eq. (6)), and (2) the rank of the decomposed matrix is
lower than that of the original matrix (Eq. (7)). By fixing the rank of UV to rank(W )− 1,
we can derive a feasible solution of the optimization problem as follows. By introducing a
Lagrange multiplier γ, the Lagrange function with respect to U , V , γ can be written as

LU,V,γ=
1

2|Ω|

|Ω|∑
i=1

‖ωiW−ωiUV‖2F+
γ

2

(
‖W−UV‖2F−ε‖W‖2F

)
.
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Taking partial derivative on L, we have

∂L
∂U

=

− 1

|Ω|

|Ω|∑
i=1

ωTi ω(W−UV )−γ(W−UV )

V T ,

∂L
∂V

= UT

− 1

|Ω|

|Ω|∑
i=1

ωTi ω(W−UV )−γ(W−UV )

 .

Let ∂L
∂U = 0 and ∂L

∂V = 0, we use ADMM (Alternating Direction Method of Multipliers)
to alternatively update U and V in step k as follows,

Uk = A†BV T
k−1(Vk−1V

T
k−1)†,

Vk = (UTk AUk)
†UTk B,

(8)

where A= 1
|Ω|
∑|Ω|

i=1 ω
T
i ωi+γE; B= 1

|Ω|
∑|Ω|

i=1 ω
T
i ωiW+γW ; † means the MP inverse Penrose

(1955) of the matrix, and E is an unit matrix.
We update Uk and Vk iteratively until convergence, and if the constraint of Eq. (6)

holds, the matrices U and V are output as the decomposition of W .
Based on the above low-rank approximation algorithm, we can sequentially decompose

the CNN model in the frequency domain layer-by-layer using the sample sets Ω. After
optimizing the current layer, we use its output as the input sample of the next layer and
decompose the next layer in the same way without causing error accumulation through
layers.

The pseudo-code of the algorithm is illustrated in Algorithm 1.

3.3.2. Fine-tuning

After low-rank decomposition, the CNN model can be represented by a sequence of low-
rank matrices U and V . Like conventional filter pruning approaches He et al. (2018a); Li
et al. (2017), we use the original dataset to fine-tune the compressed model to recover its’
accuracy.

Different from the existing works, we fine-tune the decomposed low-rank matrices U and
V in the frequency domain. To use the decomposed low-rank matrices for model training
and inference, we explicitly derive the forward and backward propagation process.

For each layer, the forward propagation is simply computed by

I · U · V = O. (9)

To illustrate the backward propagation process, we derive the gradients of different
components U and V for a given loss function L.

∂L
∂Vmn

=
∂L
∂OTij

·
∂OTij
∂Vmn

=
∂L
∂OTij

(JnmUT IT )ij ,

∂L
∂Umn

=
∂L
∂Oij

· ∂Oij
∂O′kl

·
∂O′kl
∂Umn

(O′ = UT IT )

=
∂L
∂Oij

· (J lkV )ij · (JnmIT )kl,

(10)
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Algorithm 1 Iterative Rank-reduction in Frequency-domain

Input: model:original network; ε0:initialized error tolerance; ∆ε:increment of error toler-
ance; λ:regular coefficient to control sparsity; T :max rounds; FLOPs requirements;

Output: decomposed compact model;
1: Module 1: Sparsing in the frequency domain
2: Transform W into W for all layers to get D(model);
3: repeat

Feed data to D(model) to calculate loss Eq. (4);
Compute gradient by Eq. (3) to fine-tune;
until Performance of D(model) converged.;

4: Module 2: Iterative Rank Reduction
5: round = 0;
6: while round ≤ T do

foreach layers in D(model) do
if rank(W )− 1 > 0 then

Initialize U0V0 with rank equal to rank(W )−1; for k = 1 to K do
Update Uk and Vk by Eq(8);

end
if Eq(6) satisfied then

decompose W into UkVk;
end

end

end
Fine-tune U, V for all layers;
if FLOPs or #Params satisfied then

return decomposed model;
else

Recompose UV to generate W ′; W :←W ′

end

end

where the gradients ∂L
∂OT

ij
and ∂L

∂Oij
are given by Eq. (3). With the above gradients, U and

V can be updated using the stochastic gradient descent method in the forward propagation
process.

3.3.3. Recomposition

After fine-tuning, we recompose the low-rank matrices U and V into a new weight matrix
W ′=UV . Since rank(W ′) ≤ rank(W ), model inference based on the low rank matrices W ′

yields lower computational cost.
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Model Method Frr(%) Prr(%) Acc.(%) Baseline(%) ∆Acc.(%)

VGG-16

Li-pruning 34.2 64 93.4 93.66 -0.26
SFP* 73.41 73.13 93.18 93.69 -0.51
COP 73.5 92.8 93.31 93.66 -0.35

FDNP* 70.89 75.37 92.76 93.69 -0.93
FreqPrune-A 71.65 80.46 93.51 93.69 -0.18
FreqPrune-B 75.94 93.28 93.32 93.69 -0.37

ResNet-56

Li-pruning 27.6 13.7 93.06 93.04 +0.02
SFP 52.6 - 93.35 93.59 -0.24
GAL 60.2 65.9 91.58 93.26 -1.68

ABCPruner 54.13 54.2 93.23 93.26 -0.03
EB-Tickets* 60 59.21 92.74 93.5 -0.76

FDNP* 58.97 55.03 93.07 93.50 -0.43
FreqPrune-A 60.08 54.95 93.37 93.5 -0.13
FreqPrune-B 62.67 72.46 93.23 93.5 -0.27

ResNet-110

Li-pruning 38.6 32.4 93.3 93.53 -0.23
SFP 40.8 - 93.38 93.68 -0.3
GAL 48.5 44.8 92.74 93.5 -0.76

FDNP - 75 93.5 - -
FreqPrune-A 41.23 55.49 94.08 94.02 +0.06
FreqPrune-B 63.58 81.29 93.24 94.02 -0.78

Table 1: Results on CIFAR10. Results with “*” are reproduced from their released code,
and the others are from the original papers. “Frr(%)” means the FLOPs-reductoin
ratio, and “Prr(%)” means the parameters-reduction ratio. “Acc(%)” means top-1
test accuracy.

3.3.4. Iterative Model Compression Algorithm

To avoid unrecoverable accuracy loss caused by aggressive parameter pruning, we adopt
an iterative decomposition-recomposition method for gradually model compression in the
frequency domain. It contains the following steps.

(1) Given a deep CNN model, we use the frequency transformation method introduced
in Section 3.2.1 to represent it by a sequence of frequency weight matrices.

(2) For each weight matrix W , we choose a small sample set Ω, and apply the sample-
based low-rank approximation algorithm introduced in Section 3.3.1 to decompose it into
low rank matrices U and V with error tolerance ε. If there is no feasible decomposition for
W , it skips and tries to decompose the next weight matrix.

(3) To recover the model accuracy, we fine-tune the decomposed low-rank matrices U
and V using the method introduced in Section 3.3.2.

(4) After fine-tuning, we recompose W ′ = UV , where W ′ has lower rank than W and
fewer computational cost (# FLOPs) in inference.

(5) Let W = W ′. Repeat step (2)-(4), until the required compression ratio (measured
by # FLOPs) is satisfied, or the maximum number of iteration rounds is reached.
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4. Experiments

In this section, we conduct extensive experiments on a variety of deep CNN models based on
several datasets to evaluate the performance of the proposed FreqPrune method for model
compression and acceleration.

4.1. Experimental Setup

Implement Details: We implement FreqPrune2 using PyTorch v1.3. The experiments
are conducted on a GPU-equipped server (Tesla V-100). We train the baseline networks
following the same training settings as Li et al. (2017); Liu et al. (2019). After transforming
the networks with DCT, we sparsify the models by training them with 20 epochs on CIFAR
and 5 epochs on ImageNet using Eq. (4). We set the learning rate to 0.001 and 0.0001
for CIFAR and ImageNet respectively. The frequency matrices are iteratively decomposed
with a given error tolerance ratio ε, and the models are fine-tuned 50 epochs for CIFAR
and 30 epochs for ImageNet. We adopt SGD as the optimizer for all training processes with
weight decay being 10−4 and momentum being 0.9. The default size of sample set Ω is 5%
of the total dataset, and the default error tolerance rate is ε = 0.02.

Models and Datasets: We conduct experiments based on two well-known CNN mod-
els: VGG Krizhevsky (2009) and ResNet He et al. (2016). We use three open datasets: CI-
FAR10 Krizhevsky (2009), CIFAR100 Krizhevsky (2009) and ImageNet Deng et al. (2009).
We implement two versions of FreqPrune: (1) FreqPrune-A: It prunes the same FLOPs as
the state-of-the-arts to show the accuracy achieved; (2) FreqPrune-B : It keeps the same
accuracy as the state-of-the-arts to show the compression ratio measured by the reduction
of FLOPs and the number of parameters.

Baseline Algorithms: We compare FreqPrune with the following state-of-the-art
model compression methods. (1) Unstructured pruning : Rewind Renda et al. (2020). (2)
Structured pruning : Li-pruning Li et al. (2017), SFP He et al. (2018a), COP Wang et al.
(2019a), GAL Lin et al. (2019), ABCPruner Lin et al. (2020b), PFA Suau et al. (2018),
CP He et al. (2017), EB-Tickets You et al. (2020), FilterSketch Lin et al. (2020a) and
PP Singh et al. (2019). (3) Frequency pruning : FDNP Liu et al. (2018).

4.2. Results on CIFAR

The results of model compression on the CIFAR10 and CIFAR100 datasets are shown in
Table 1 and 2.

For the results on CIFAR10 (illustrated in Table 1), FreqPrune-A achieves the high-
est test accuracy while keeping the same pruned FLOPs as that of the other algorithms.
FreqPrune-B can reduce much more FLOPs and parameters than other algorithms but still
acquires comparable accuracy. The results of FreqPrune-A in compressing ResNet110 is es-
pecially stunning, which reduce 41.23% FLOPs and 55.49% parameters while the accuracy
of the compressed model achieves 94.08%, which is even higher than the baseline accuracy
by 0.06%.

Similar results can be found from the experiments on CIFAR100 (Table 2). FreqPrune
reduces more FLOPs and parameters from VGG and ResNet than other algorithms with

2. Source code is available at https://github.com/AldrichZeng/FreqPrune_ACML2021

https://github.com/AldrichZeng/FreqPrune_ACML2021
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Model Method Frr(%) Prr(%) Acc.(%) Baseline(%) ∆Acc.(%)

VGG-16

SFP* 42.28 42.35 71.53 72.59 -1.06
COP 43.1 73.2 71.77 72.59 -0.82

PFA-KL 46.1 58.1 70 72.59 -2.59
EB-Tickets* 44.96 78.16 67.92 72.58 -4.66

FDNP* 50.68 60.31 68.93 72.58 -3.65
FreqPrune-A 52.96 66.13 71.9 72.58 -0.68
FreqPrune-B 66.51 78.55 71.7 72.58 -0.88

ResNet-32

SFP* 33.9 33.8 67.83 70.01 -2.18
COP 34.2 35.2 68.29 68.74 -0.45

EB-Tickets* 41.94 21.83 68.03 70.01 -1.98
FDNP* 42.60 46.37 68.94 70.01 -1.07

FreqPrune-A 42.56 47.17 69.73 70.01 -0.28
FreqPrune-B 47.98 53.95 68.87 70.01 -1.14

ResNet-56

SFP* 54.06 40.99 69.38 71.33 -1.95
PFA-KL 32.3 26.4 68.05 - -
PFA-En 20.6 18.5 69.22 - -

EB-Tickets* 53.88 26.14 68.68 71.33 -2.65
FDNP* 53.08 49.56 68.74 71.33 -2.59

FreqPrune-A 55.43 47.59 70.46 71.33 -0.87
FreqPrune-B 62.43 59.85 70.09 71.33 -1.24

Table 2: Results on CIFAR100.

very low accuracy drop. As an example, FreqPrune-B outperforms other methods by prun-
ing dramatically more parameters (nearly 20% more) from ResNet56 and achieves the high-
est accuracy.

4.3. Results on ImageNet

We further conduct extensive experiments on a real-world large-scale dataset: ImageNet.
We compress ResNet34 and ResNet56 using FreqPrune and compare the results with the
state-of-the-art methods.

Due to the existence of 1×1 kernels in ResNet on ImageNet, the frequency coefficients
in the frequency domain equal to the weights in the spatial domain. Thus, we can skip
DCT transformation on the convolutional layers whose kernels are sized 1×1. Nevertheless,
we still conduct low-rank approximation on the weight matrices to compress these layers.

As demonstrated in Table 3, FreqPrune-A can reduce 42.02% FLOPs and 43.92% pa-
rameters from ResNet34, both of which are higher than the state-of-the-art methods, and
the accuracy of the compressed network is still the best with Top-1 accuracy reaching
72.32% and surpassing other methods by a great margin. For ResNet34, FreqPrune-B can
significantly reduce FLOPs (up to 3× pruned FLOPs) and parameters with minor accuracy
drop. For ResNet56, FreqPrune-A gets the second highest Top-1 accuracy 74.59% and the
highest Top-5 accuracy 91.03% with lowest accuracy drop 1.54% while pruning 20% more
FLOPs than that of SFP He et al. (2018a). In the meanwhile, FreqPrune-B outperforms
other methods in terms of Top-1 accuracy when pruning the same level of FLOPs. These
validates the effectiveness of FreqPrune on real-world large-scale dataset.
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Model Method Frr(%) Prr(%)
Acc.(%) Baseline(%) ∆Acc.(%)

Top1 Top5 Top1 Top5 Top1 Top5

ResNet-34

Li-pruning 24.2 10.8 72.17 - 73.23 - -1.06 -
SFP 41.1 - 71.83 90.33 73.42 91.36 -1.59 -1.03

Rewinding 20.63 - 72.1 - 73.6 - -1.5 -
FDNP* 40.35 47.18 71.76 90.07 73.27 91.43 -1.51 -1.36

FreqPrune-A 42.02 43.92 72.32 91.03 73.27 91.43 -0.95 -0.4
FreqPrune-B 58.73 59.48 71.79 90.28 73.27 91.43 -1.48 -1.15

ResNet-50

SFP 41.8 - 74.61 92.06 76.15 92.87 -1.54 -0.81
CP 51.22 - 73.30 - 76.10 - -2.8 -
PP 52.2 46.27 - 91.4 - 92.2 - -0.8

FilterSketch 63.1 59.2 73.04 91.18 76.13 92.86 -3.09 -1.68
GAL 72.86 59.96 69.31 89.12 76.15 92.87 -6.84 -3.75

FDNP* 59.73 60.93 73.2 91.38 76.13 92.86 -2.93 -1.48
FreqPrune-A 61.06 57.81 74.59 92.15 76.13 92.86 -1.54 -0.71
FreqPrune-B 67.85 62.09 73.05 91.16 76.13 92.86 -3.08 -1.70

Table 3: Results on ImageNet.
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(a) VGG16 on CIFAR10
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(b) ResNet56 on CIFAR100

Figure 3: Influence of the size of sample set Ω.

4.4. Hyperparameter Sensitivity

4.4.1. Influence of size of sample set Ω

In the optimization problem of Eq. (5), the size of sample set Ω will influence the result
of low-rank approximation. We explore the model compression performance by randomly
choosing different percentage of samples from the original dataset to form Ω. Figure 3 shows
the model accuracy of VGG16 and ResNet56 on different datasets with increasing percentage
of sample size. We make the following observations from the figure. (1) The model accuracy
is relatively low under few samples. A possible reason is that matrix decomposition of UV
in Eq. (5) based on fewer samples are more likely to be under-fitting. (2) As the number
of samples increases, the decomposed UV tends to be stable, and the accuracy of the fine-
tuned model is improved. (3) Sampling more than 5% of the datasets brings marginal
benefit to the model accuracy, therefore randomly sampling 5% of the datasets for low-rank
decomposition is enough to achieve high performance.
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(b) ResNet56 on CIFAR100

Figure 4: Influence of the error tolerance rate ε.

4.4.2. Influence of error tolerance rate ε

In the optimization process of Eq. (5)(6)(7), the error tolerance ε determines the granularity
of frequency pruning, where a larger ε results in a lower-rank decomposition. We explore the
model accuracy of VGG16 and ResNet56 with increasing ε, and the results are illustrated
in Figure 4. We make the following observations from the figure. (1) For ε ≤ 0.05, the
influence to model accuracy is negligible. The reason is that for small ε, the information
loss in matrix decomposition is minor, and the model accuracy can easily be restored after
fine-tuning. (2) For larger ε, the model accuracy drops rapidly. The reason is that larger ε
leads to more aggressive low-rank decomposition with less rounds, which could cause higher
damage to the model accuracy which is unable to recover by fine-tuning. A suitable choice
of ε is within (0, 0.05) in our experiments.

5. Conclusion

In this paper, we proposed an iterative deep model compression and acceleration method
in the frequency domain. We applied Discrete Cosine Transform (DCT) on convolutional
kernels, and train them in the frequency domain to get their sparse weight matrices. We de-
composed the frequency matrices using low-rank approximation, pruned and fine-tuned the
model iteratively to restore the accuracy and obtain a compact model representation. We
demonstrated that model inference can be conducted with the decomposed frequency ma-
trices, where model parameters and inference cost can be reduced. We conducted extensive
experiments using VGG and ResNet on three open datasets, which demonstrated that the
proposed method outperforms the state-of-the-arts with significant practical improvements
on model compression ratio and test accuracy.
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