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A. Impact of other adversarial defense approaches

In the submitted paper, we used PGD-{y trained model to generate robust attribution
maps, then leveraged the saliency maps of PGD adversarially trained models to align the
generated attribution maps. The benefits of robustly trained models have been studies by
several previous research. For example, (Tsipras et al., 2018) showed that the saliency maps
of adversarially robust models align well with human perception. (Zhang and Zhu, 2019)
demonstrated that the representation learned by robust models are more biased towards
shape-based features and alleviates texture-based features. (Margeloiu et al., 2020) showed
that adversarially trained CNNs are more interpretable for medical imaging diagnosis.

Since previous works all investigated the influence of PGD adversarial training on the
interpretable of CNNs, it raises the question whether the phenomenon can be generalized
to other adversarial training approaches. In this section, we compare PGD training with
other two adversarial defense approaches: Defensive distillation and Jacobian regularization,
and see whether other adversarial defense approaches can also be used to generate faithful
explanations.

A1l. Defensive Distillation

(Papernot et al., 2016) proposed defensive distillation, which leveraged the notion of Knowl-
edge Distillation (Hinton et al., 2015) to make deep neural networks robust against adver-
sarial attacks. (Papernot et al., 2016) first trained a teacher model by standard training
manner, then scaled the output logits of the teacher model:

o (z)/T

scaled(T) = W

where fi . .(x) represents the scaled logits for sample z, z;(z) denotes the output of teacher

model, and the parameters 7' is a scale factor to control the mean magnitudes of i, .(z).
Instead of minimizing the cross-entropy loss between model’s output and the ground true
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one-hot label, Defensive distillation uses the scaled logits derived from teacher model to
supervise the student model. The target outputs of student model is defined as:

Hbin E(m,y)wD [L(H, z, fscaled(x))]

where L denotes the loss function of the model and fsqeq(z) denotes the scaled logits.
Noticed that the scaled logits have the right target label but with smaller mean input
gradients. The motivation of defensive distillation is to make mean input gradients of the
model to be small in order to defend adversarial attacks, and the mean input gradients is
controlled by the hyperparameter 7. (Papernot et al., 2016) showed that doing so improves
resilience of a network to small perturbation in the images. However, it is worth noting
that Defensive distillation is not a valid defense approach under many adversarial attacks
such as Carlini and Wagner attacks (Carlini and Wagner, 2017).

A2. Jacobian Regularization (Gradient masking)

(Ross and Doshi-Velez, 2018) studied input gradient regularization(also known as Jacobian
Regularization or Gradient Masking) as a method for adversarial robustness. Jacobian
regularization jointly optimize the model by integrating Jacobian regularizer into training:

win By ) (L0, 2,y) + M|Vl (fo(), )l

where ||V,L (fo(z),y)||; denotes the square of the Forbenius norm of the input-output
Jacobian, and A is a hyper parameter that determines the importance of the Jacobian
regularizer. Intuitively, a small adversarial perturbation becomes unlikely to change the
output of the model drastically when the magnitude of input-output Jacobian is small. It is
shown that Jacobian regularization can be combined with brute-force adversarial training
to improve robustness against adversarial attacks.

A3. Experiment results

In this section, we investigate whether other adversarial defense approaches such as De-
fensive distillation and Jacobian regularization can also be also used to generate faithful
explanations, or the effect of improving interpretability is just a special case of PDG training.
We conduct experiments on CIFAR10 dataset and use ResNet18 as the model architecture.
As for the hyperparameters of the two adversarial defense approach, the temperature 1" set
to 100 for Distillation defensive and the factor A for Jacobian Regularization is set 0.5. The
rest of hyperparameters are same as the submitted paper.

For the standard trained model and adversarial trained models, we use vanilla saliency
maps as the attribution method to generate explanations, then compare the impact of
different adversarial defense approaches on the faithfulness of saliency maps. As shown in
Figure 1, Defensive distillation doesn’t improve the faithfulness of saliency maps, the ROAR
performance of defensive distillation is quite close to the standard training model. Jacobian
regularization has similar effect to improve the faithfulness of interpretability, while the
effect is slighter lesser than PGD training.
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Figure 1: ROAR evaluation on CIFAR10, which shows the impact of different adversarial
defense approaches on the faithfulness of saliency maps.

Figure 2 shows the saliency maps of standard trained model compared with Defensive
distillation, Jacobian regularization and PGD training. As shown in the figure, saliency
maps from the Jacobian regularization trained model and PGD trained model all align
with human perception (Tsipras et al., 2018), while the defensive distillation does not have
such effect. Interestingly, the visualization result align with the ROAR evaluation shown
in Figure 1: only those saliency maps are human understandable can generate faithful
explanations.

Defensive distillation Jacobian regularization .
Std Model trained model trained model PGD trained model

Figure 2: Saliency maps of standard trained model and adversarially trained models.
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B. Impact of PGD hyperparameters

As discussed in Section 4.4 of the submitted paper, we used PGD-{y adversarial trained
models to generate faithful explanations. PGD training iteratively computes an adversarial
example as:

$£+1 = Hclip (l’é + asgn (VxL(ea €, y)))

where Ilgp, . is a clips function computed as:

1_Iclip, € (.%') =

{ x+ﬁ€ if ||2" — ]|, > e
x! otherwise

where the degree of robustness of adversarial examples can be controlled by two hyperpa-
rameters: radius € and iteration size. The perturbed adversarial example remains a valid
input within a e-ball surrounding the benign sample x, and the distance can be defined as
different ¢, norm distances. In this section 3.2, we used PGD-/> with to generated faith-
ful explanations to align the generated atttribution due to it has the best performance.
In this section, we show the impact of PGD hyper-parameters with different £, norm on
explanation’s faithfulness.

The following table shows the ROAR evaluation of PGD trained model’s attribution
maps under different PGD hyperparameters. The experiment was conducted on CIFAR10
dataset. We evaluated 20-step and 40-step PGD training. The € were set as 1.0, 1.5, 2.0,
2.5 for PGD-/; training and 4/255, 8/255, 16/255 for PGD-¢ training, respectively. The
rest of hyperparameters are the same as the submitted paper.

Table 1: Remove and Retrain(ROAR) evaluation for attribution maps from PGD trained
models under different settings

Hyperparameters Remove and Retrain Rate n

Method | =7, { 0%  40%  60%  80%
1 20 87.48%  81.98%  76.24%  66.43%
1 40 88.13%  81.68%  75.81%  66.14%
1.5 20 88.4%  81.45% T74.50% 63.74%
PGD-ty 1.5 40 87.43% 81.94%  74.90%  65.12%
2 20 88.31% 82.8%  74.03% 65.03%
2 40 87.93%  83.78%  75.74%  64.53%
2.5 20 89.04%  82.22% 75.1% 63.94%
2.5 40 88.62%  82.81%  75.01%  65.77%
4/255 20 88.13% 84.68%  78.39%  67.54%
4/255 40 88.61%  83.7%  78.64%  68.02%
PGD-¢ 8/255 20 88.76%  83.86%  77.26%  66.25%
| 8/255 40 89.43%  84.05% 77.03% 65.24%
16/255 20 90.75%  86.15%  81.15%  71.66%
16/255 40 90.21%  85.78%  80.24%  70.93%
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The degree of robustness is mainly determined by the radius €. As shown in Table 1,
the ROAR performances are close to each other, and the experiment did not show a strong
correlation between the degree of robustness and the faithfulness of derived explanation. It
is worth noting that PGD-/¢, trained model performed slightly better than PGD-{, trained
model.

Std model PGD —f;(e=1) PGD —1;(e=15) PGD —13(e=2) PGD —1;(e=25)

Figure 3: Saliency maps of standard trained model and PGD trained models with different
€. Saliency maps from higher ¢ models are more similar to the original image.

On the other hand, we found an interesting correlation between the degree of robustness
€ and the shape of the saliency maps. As shown in Figure 3, saliency maps from higher €
models are more similar to the original image. This phenomenon aligns with the findings of
(Etmann et al., 2019) that showed an interesting relationship between a model’s adversarial
robustness, its saliency map and its original input image:

[{z, VU (2))]

P) < I

+¢ (1)

where p(z) represents the degree of robustness of the model, V¥ (z) denotes the saliency

map explanation, W is a metric to depict the similarity between the original image x

and its saliency map VV¥(z) (we call it the alignment between image and its saliency map),
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Figure 4: Relation between the alignment % and the robustness € in PGD training

and ¢ is an error term. The above inequality shows that when the robustness (the distance
to the decision boundary) grows, saliency map will be more similar to input image.
In (Etmann et al., 2019), the degree of robustness p(z) is defined by:

p(a) = inf (el : f(w+e) # f(2)} 2)

where f(.) denotes the output of a machine learning. Equation 3.6 depicts the minimum
distance between data points to the decision boundary of the model. In our work, we
choose the radius of PGD training € as another measurement to depict the robustness
of adversarially trained models. As shown in Figure 4, as the radius of PGD adversary
increases, so does the alignment(the similarity between the input image and its saliency
map). In other word, when a model is PGD adversarially trained with higher e, its saliency
map will be more similar to the input image, which is according with the visualization result
shown in Figure 3.
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