
Proceedings of Machine Learning Research 157:–, 2021 ACML 2021

Robust Domain Randomised Reinforcement Learning
through Peer-to-Peer Distillation

Chenyang Zhao czhao2@ed.ac.uk
University of Edinburgh, United Kingdom

Timothy Hospedales t.hospedales@ed.ac.uk

University of Edinburgh, United Kingdom

Abstract

In reinforcement learning, domain randomisation is a popular technique for learning general
policies that are robust to new environments and domain-shifts at deployment. However,
naively aggregating information from randomised domains may lead to high variance in
gradient estimation and sub-optimal policies. To address this issue, we present a peer-to-peer
online distillation strategy for reinforcement learning termed P2PDRL, where multiple
learning agents are each assigned to a different environment, and then exchange knowledge
through mutual regularisation based on Kullback–Leibler divergence. Our experiments
on continuous control tasks show that P2PDRL enables robust learning across a wider
randomisation distribution than baselines, and more robust generalisation performance to
new environments at testing.

Keywords: domain randomisation, deep reinforcement learning, mutual learning

1. Introduction

Deep reinforcement learning (RL) has been successfully applied to various tasks, including
Go (Silver et al., 2016), Atari (Mnih et al., 2015), and robot control tasks (Schulman et al.,
2017), etc. However, a growing body of research has shown that it remains challenging to
learn deep RL agents that are able to generalise to new environments (Cobbe et al., 2019).
Agents can ‘overfit’ to the training environments visual appearance (Tobin et al., 2017;
Cobbe et al., 2019), physical dynamics (Packer et al., 2018; Zhao et al., 2019), or even specific
training seeds (Zhang et al., 2018a). If there is a new environment, or domain-shift, between
training and testing, RL tends to under-perform significantly. This problem has longer been
appreciated, and is particularly salient, in the field of robotics, where there is an inevitable
reality gap (Tobin et al., 2017; Koos et al., 2012) between the simulated environments used
for training and deployment in the real-world. These issues have motivated an important
line of research in improving zero-shot domain transfer (Cobbe et al., 2019; Andrychowicz
et al., 2020), i.e., to learn generalised policies from training domains that can be directly
and successfully deployed in unseen testing domains without further learning or adaptation.

One common strategy to improve policy generalisation is to apply domain randomisa-
tion during training. With domain randomisation, we first generate a random set of, or
distribution over, domains with different properties such as observation function (Tobin
et al., 2017), dynamics (Peng et al., 2018), or both (Andrychowicz et al., 2020). A policy is
then trained with this distribution, for example by drawing a new random sample from the

© 2021 C. Zhao & T. Hospedales.

Zhao Hospedales

domain distribution during each learning episode. If this distribution of training domains is
rich enough to include within its support properties of the real-world or target environment
– and if a policy can be successfully trained to fit the entire training domain distribution –
then that policy can be successfully deployed in the target environment without adaptation.
A challenge with domain randomisation is that training a single model on a wide distribution
of domains usually leads to high variance gradient estimates, which will subsequently raise
the RL policy optimisation problem (Mehta et al., 2020). To ameliorate this issue, several
studies have proposed distillation techniques where an ensemble of teacher models are each
trained locally in a different domain – where gradients are lower variance, and hence RL is
more stable. The teacher models are then distilled into a global student policy that should
perform across all domains (Ghosh et al., 2018; Teh et al., 2017; Rusu et al., 2016; Parisotto
et al., 2016; Czarnecki et al., 2019). Distilling local policies into a global policy with a
supervised objective provides a more robust way to learn from a broad distribution over
domains and ultimately enable better generalisation to held-out testing domains – albeit at
some additional computational cost (Ghosh et al., 2018). Figure 1 summarises the learning
flowcharts of different policy distillation methods.

Our work continues this line of investigation. The main contribution is to show that the
centralised distillation is unnecessarily, and indeed sub-optimal. In particular, we propose an
online distillation framework, where each agent both learns to optimise performance in a local
domain and mimics its peers from other domains with peer-to-peer distillation, as shown in
Fig. 1d. More specifically, inspired by deep mutual learning (Zhang et al., 2018b; Anil et al.,
2018), we train each model with two losses: a conventional RL loss, and a distillation loss
that measures the similarity in predictions between the local model and the others. In this
work, the expected Kullback–Leibler (KL) divergence between predicted distributions as the
objective is used to optimise for information exchange. This online distillation framework is
named Peer-to-Peer Distillation Reinforcement Learning (P2PDRL). We empirically show
that, compared to conventional baselines, and offline distillation alternatives, e.g. divide-
and-conquer (DnC) reinforcement learning (Ghosh et al., 2018), P2PDRL achieves more
competitive learning performance without the additional cost of a centralised distillation
step. Overall, P2PDRL learns more quickly, succeeds to learn on a wider distribution of
domains, and transfers better to novel testing environments compared to competitors.

The key contributions of this work are summarised as:

• We propose P2PDRL, an online distillation framework that uses an ensemble of local
agents that learn with local experience only, while sharing knowledge via regularisation
on the statistical distance of their predicted distribution;

• Our experiments show that P2PDRL can achieve more effective learning on a wider
distribution of training environments compared to competitors, without distilling to a
centralised policy. All peers show increased robustness to the domain shift of novel
environments.

2. Related Work

Domain Generalisation in Deep RL A growing body of work has discussed generalisa-
tion problems in RL. In the context of tasks with discrete and continuous observation/action

Robust Domain Randomised Reinforcement Learning through P2PDRL

Output Policy

Data
Collection

Policy
Update

Until
Convergence

Data
Collection

Policy
Update

Until
Convergence

Supervised
Distillation

Initial Policy Initial Policy

(a) Distilling from pre-
trained teachers models

Central Policy

Data
Collection

Policy
Update

N iterations

Data
Collection

Policy
Update

N iterations

Supervised
Distillation

Initial Policy Initial Policy

Output Policy

(b) Alternatively train-
ing local teachers and
central models

Central Policy

Data
Collection

Policy
Update

N iterations

Data
Collection

Policy
Update

N iterations

Supervised
Distillation

Initial Policy Initial Policy

Output Policy

(c) Regularising local
training with the central
policy

Output Policy

Data
Collection

Policy
Update

Until
Convergence

Data
Collection

Policy
Update

Until
Convergence

Initial Policy Initial Policy

(d) Directly regularising
local training with peers

Figure 1: Flowcharts of different policy distillation methods. The dashed line indicates
training with regularised losses. (a) pre-trained teacher models are distilled into a student
policy (Parisotto et al., 2016; Rusu et al., 2016); (b) after every N iterations of locally
training, the teacher models are distilled into and then re-initialised as the central policy
(Ghosh et al., 2018); (c) a central policy is trained to mimic teacher models and local model
training is regularised by KL-divergence to the central policy (Teh et al., 2017); (d) P2PDRL
directly regularise local training with KL-divergence to every other peers.

spaces, Cobbe et al. (2019) and Zhang et al. (2018a) concluded that deep RL policies could
easily overfit to random seeds used during training and underperform during testing. In the
context of domain-shift between training and testing, Zhao et al. (2019) and Packer et al.
(2018) further highlighted the problem that deep RL agents often fail to generalise, e.g.,
across different friction coefficients or wind conditions.

To improve RL agents’ performance in testing environments, several adaptation methods
have been proposed (Gupta et al., 2017; Rusu et al., 2017). These use data from testing
domains and aim to perform sample efficient adaptation. Recent advances (Clavera et al.,
2019; Ritter et al., 2018) perform meta-learning on training environments to learn how
to adapt efficiently to testing environments. Where direct deployment to target domains
without adaptation is desired or necessary, a common approach is domain randomisation.
Here the training simulator is setup to provide a diverse array of environments for learning
in terms of observations (Sadeghi and Levine, 2017; Tobin et al., 2017; Andrychowicz et al.,
2020) or dynamic perturbations (Tan et al., 2018). A key challenge is that, in absence
of a known and precisely-specified model of the testing domain, one must define a rather
wide distribution of training domains to be confident that its span includes likely testing
domains. However, learning from such a diverse training signal is extremely challenging in
RL, and often leads to high variance in gradient estimation and convergence to sub-optimal
policies(Mehta et al., 2020; Yu et al., 2020), as we illustrate in Fig. 2.

In this paper, we address this dichotomy between overfitting of agents to individual
domains, and inability of agents to fit to a wide distribution of domains. Our framework
enables state of the art on-policy methods (Schulman et al., 2017) to effectively and robustly

Zhao Hospedales

learn a wide distribution of domains by performing local RL and global knowledge exchange
via distillation.

Policy Distillation The notion of model distillation (Hinton et al., 2014) has increas-
ingly been applied to policy distillation in RL. It is often used for learning from multiple
source tasks, where a student agent is trained to mimic the behaviour of one or multiple
teacher policies (Czarnecki et al., 2019). Several early studies (Rusu et al., 2016; Parisotto
et al., 2016) assumed pre-trained teacher policies and trained one student to match the
state-dependent probability of the teacher’s predicted actions (Fig. 1a). Later methods
(Teh et al., 2017) learned a global policy in parallel with learning multiple local policies:
the global policy is trained to distil from local individuals while local policies learning is
regularised by the global policy (Fig. 1c). Finally, Ghosh et al. (2018) proposed to alternate
between training local agents regularised by a global policy, distilling a central global policy,
and periodically resetting local agents to the distilled global policy (Fig. 1b).

Compared to these methods, we propose an online peer-to-peer distillation framework
that avoids explicitly distilling to a global policy (Fig. 1d). Instead, we learn a cohort of
agents collaboratively by performing local RL and global peer-to-peer knowledge distillation.
Peers use their own local states for distillation, thus simplifying data exchange compared to
alternatives such as Ghosh et al. (2018).

Mutual Learning While distillation (Hinton et al., 2014) is widely used in teacher-
student training, a minority of studies (Zhang et al., 2018b; Anil et al., 2018) have explored
simultaneous mutual learning among a cohort of students. These have considered improving
conventional generalisation in supervised learning. We provide the first investigation of
peer-to-peer learning for RL, and for the purpose of improving robustness to domain-shift.

3. Methodology

3.1. Preliminaries

An episodic Markov decision process (MDP) is defined by 〈S,A, R, T, γ〉, where S is the
state space, A is the action space, R : S × A → R is the reward function, T : S × A → S
is the transition function, and γ is the discount factor. The objective of a learning agent
is to learn a stochastic policy π∗ : S × A → R that maximises the expected cumulative
return: π∗ = arg maxπ Eπ

∑∞
t=0 γ

tR(st, at).
We denote the parameters that describe a domain as ξ. In domain randomisation, each

training domain is randomly sampled with domain parameters ξ from a pre-defined set Ξ.
Thus, the modified objective function becomes

π∗ = arg max
π

Eξ∼ΞEπ
∞∑
t=0

γtR(st,ξ, at,ξ). (1)

Policies trained with a diverse set of domains should generalise better to unseen testing
domains (Andrychowicz et al., 2020). However, in practice, diverse training domains may
cause high variance in gradients (Mehta et al., 2020), thus leading to poor learning behaviour.
In practice, this manifests as a significant drop in training performance as diversity of training
domains increases. In such cases, the effect of the policy’s inability to fit the training task
at all dominates its greater exposure to diverse environments due to domain randomisation.
Thus performance in both training and testing domains is poor.

Robust Domain Randomised Reinforcement Learning through P2PDRL

1000

2000

3000

Te
st

in
g

Re
tu

rn test

0.0 0.2 0.4 0.6 0.8
Level of randomisation

1000

2000

3000

4000
Tr

ai
ni

ng
 R

et
ur

n
train

(a) Walker task

1000

2000

3000

Te
st

in
g

Re
tu

rn test

0.0 0.2 0.4 0.6 0.8
Level of randomisation

1000

2000

3000

4000

Tr
ai

ni
ng

 R
et

ur
n

train

(b) Ant task

Figure 2: Comparisons between asymptotic training performance and testing performance
in a hidden testing domain, both as a function of training distribution diversity. Policies are
trained with PPO. Results are averaged over 8 random seeds.

This challenge is illustrated in Fig. 2, which shows the performance of an agent during
training as well as its performance when tested on a held-out domain – all plotted as a
function of training set diversity. As the diversity of training domains increases from zero,
we see that training performance decreases continually as it becomes harder for a single
policy to fit an increasingly diverse distribution of environments (Fig. 2, below). More
interestingly, we also observe that testing performance initially increases, as the increased
domain randomisation benefits robustness to the held out domain (Fig. 2, above). However
as training diversity continues to increase, testing performance starts to drop, as the stronger
domain randomisation challenge makes it difficult for the policy to learn the task at all.

3.2. Online Distillation

To avoid training with data sampled from all domains, we propose to assign each learning
agent to a domain, and train it with data from its local domain only. Alongside the
conventional RL loss, agents are regularised by each other through an online distillation loss,
which encourages all agents to act similarly across all domains given the same state input.

We formulate the proposed peer-to-peer distillation method with a cohort of K local
agents. Each agent consists of an actor network, parameterised by θi, and a critic network,
parameterised by φi.

Fig. 1d illustrates the process of P2PDRL in the case of two agents. At each iteration,
each agent randomly samples a domain ξi and generates trajectory data by following its local
policy. The objective function includes a conventional RL loss, which learns from the local
experience, and a KL divergence-based distillation loss that matches predicted distributions
across all local agents.

Local Optimisation To optimise over the local experience, we use proximal policy
optimisation (PPO) (Schulman et al., 2017), an industry standard on-policy deep RL

Zhao Hospedales

Algorithm 1: Online Peer-to-Peer Distillation Reinforcement Learning with PPO

1: Input: Distribution over domains Ξ, num. of learning agents K, hyperparameter α,
max timesteps T .

2: Initialise: Initial actor θ0, initial critic φ0.
3: Initialise: every agent with θ0, φ0

4: while not converge do
5: for i = 1, 2, ...,K do
6: Sample a domain ξi ∼ Ξ for agent i
7: Collect trajectory data τi following policy πi for T timesteps in domain ξi.
8: end for
9: for 1, 2, ..., max epoch number do

10: for 1, 2, ..., num of minibatches per epoch do
11: for i = 1 to K do
12: Sample minibatch Bi from τi
13: θi ← θi −∇θi [LPPO(Bi, θi) + αLidis(Bi, θi)]
14: Compute target value V targ with Bellman equation.
15: Update φi with MSE loss (Vn − V targ)2.
16: end for
17: end for
18: end for
19: end while

algorithm, as the base optimiser. The following surrogate loss is optimised in PPO to update
actor θi:

LPPO(θi; ξi) = E
[
min

(
r(t)At,ξi , clip(r(t), 1− ε, 1 + ε)At,ξ

)]
, (2)

where ε is the hyperparameter, At,ξ is the estimated advantage in domain ξ at timestep t,

and r(t) is the probability ratio πθ(at|st)
πθold(at|st)

. The critic networks φi are trained locally with

conventional MSE loss, where target values are computed through Bellman equations using
local trajectory data.

Peer-to-Peer Distillation Similar to Zhang et al. (2018b), we minimise KL di-
vergence between models’ predictions for online distillation across different agents. More
specifically, the KL mimicry distillation loss for the i-th agent is,

Ldis(θi, ξi) =
1

K − 1

k 6=i∑
k

Eπi,ξi
[
DKL(πθi(·|s)||πθk(·|s))

]
, (3)

where Eπi,ξi(·) is the expectation over trajectory data generated in domain ξi with policy πi.
During training, the peers are optimised jointly and collaboratively, with the optimisation

processes for the all peers being closely coupled. The overall loss function for each peer is

Lθi = LPPO(θi, ξi) + αLdis(θi, ξi). (4)

In this way, each network learns both to optimise the expected return given local
experience as well as to match the probability estimate of its peer with the KL mimicry loss.

Robust Domain Randomised Reinforcement Learning through P2PDRL

Discussion Our overall algorithm is summarised in Fig. 1d and Alg. 1. Note that
information is only exchanged in distillation steps between learning agents. Different from
DnC (Ghosh et al., 2018), we do not require local learners to have access to trajectory data
sampled by peers; only model parameters need to be shared. This simplifies data exchange
and enables more efficient implementation. Furthermore, we do not distill local policies to
a central global policy. Although each agent optimises locally, over time, they all become
domain invariant due to peer-to-peer knowledge exchange.

4. Experiments and Results

4.1. Summary

Our experiments investigate and answer several questions summarized here, with full details
given in the following sections.
Q1: How does P2PDRL compare to other baselines in terms of training performance,
including both sample efficiency and asymptotic return? A1: Training performance is
similar or asymptotically slightly better than competitors.
Q2: Can P2PDRL learn more robust policies that perform better against domains shifts
during testing, compared to competing methods? A2: Yes. P2PDRL policies are more
robust, tending to outperform competitors when evaluated on novel domains.
Q3: Can P2PDRL’s performance be explained or replicated by more conventional regulari-
sation techniques? A2: No. Standard KL or entropy-based regularization cannot explain
or replicate P2PDRL’s robust performance.

4.2. Environment and Settings

We focus our analysis on five continuous control tasks from OpenAI Gym, including Walker,
Ant, Humanoid, Hopper, and HalfCheetah (Brockman et al., 2016). All tasks are simulated
in MuJoCo. To generate different domains, we change wind condition, gravity constant,
friction coefficient, robot mass, and initial state distribution in simulation. We summarise
the diversity of randomised distribution as a scalar ε ∈ [0, 1]. Higher ε value means more
diverse distributions. Given a specific ε, dynamic parameters are randomly sampled from an
uniform distribution defined by ε. Details are listed in appendix A.1.

We compare our P2PDRL, with the following prior methods as competitors:
PPO (Schulman et al., 2017). PPO provides the state of the art on-policy Deep RL

method, which is also used as the basic learning algorithms across all settings. We train the
agent to maximise expected return for the full training distribution: At each iteration, the
agent first randomly samples a domain and trajectory data within this domain, then learns
to maximise the return in the sampled domain.

Distributed PPO (Heess et al., 2017). In this setting, we have multiple agents that
compute gradients locally in the sampled domains and a central learner that collect gradient
information and apply updates. At each iteration, each peer independently samples one
local domain and gathers gradient information with local data by acting on-policy in their
assigned domain. A central learner then updates a global policy with the average of gradients
across all domains and reassigns the updated policy to all agents.

Zhao Hospedales

Distral (Teh et al., 2017). Originally focused on knowledge transferring when learning
multiple tasks, Distral trains an ensemble of task-specific policies, constrained against a
single global policy at each gradient step. The global policy is trained with supervised
learning, to distil common behaviour from task-specific policies.

DnC (Ghosh et al., 2018). Originally focused on providing robustness to choice of initial
state in single domain learning, DnC partitioned the initial state distribution into multiple
sub-domains, and alternates between local policy optimisation steps and global distillation
steps. In this work, we modify DnC to train agents in the domains with different dynamics
parameters. We do not assume domain knowledge to partition the distribution. Instead
domains for DnC agents are sampled from the same distribution as all competitors.

Implementation Details To demonstrate the performance of our proposed method,
we by default take K = 2 learning agents in parallel, regularised by each other. For the
implementation of actor and critic networks, we use two separate MLP networks with two
hidden layers, 64 units in each layer. All results are averaged over 8 random seeds. More
implementation details are listed in appendix A.2.

Hyperparameters for all PPO-derived methods include the learning rate and the batch
size, i.e., number of environment steps sampled for each iteration. These are important due to
their impact on convergence/fitting and may require algorithm-specific tuning. Additionally,
when comparing sample efficiency, one needs to account for batch-size used by all methods
including fairly accounting for samples used by multi-agent methods such as P2PDRL,
Distral, DisPPO, and DnC. Since our focus is on generalisation performance, we prioritised
optimizing for testing performance. To this end we performed an initial hyperparameter
sweep in learning rates and batchsizes for each method independently. The outcome of
this sweep in terms of batch size was that all methods obtained their individually best
performance when using 4096 total steps (summing across all agents, where applicable) per
iteration. Thus our results should be interpreted as all methods being individually tuned for
testing performance. However, incidentally, they are also directly comparable in training
sample efficiency as the use the same number of samples per iteration.

4.3. Training and Generalisation Performance

Generalisation to Novel Environments We evaluate the generalisation performance
of the policy learned above, by evaluating it on a novel testing domain with different
testing randomisation strengths εte. Fig. 3 compares the training return, represented by
learning curves. We show that across all five tasks, P2PDRL can achieve competitive
asymptotic performance comparing to baselines. More importantly, Fig. 4 compares the
testing performances in a range of different distributions of domains. P2PDRL learned
policies are able generally to generalise better against domain shifts to novel environments.

To further understand the training and testing performance, we also illustrate expected
return surfaces in Fig. 5. Specifically, we use three reference points in the optimisation
trajectory to define a 2-dimensional plane. As you can see from Fig. 5, the first point is
the initial policy, the middle point is the policy trained after 8 million timesteps, and the
last point is the outcome policy after training. Each point on this plane refers to an affine
combination of reference policies. We plot both expected return in training scenario and

Robust Domain Randomised Reinforcement Learning through P2PDRL

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Number of steps (million)

0

1000

2000

3000

4000

5000
Tr

aj
ec

to
ry

 R
et

ur
n

PPO
DIS_PPO
DISTRAL
DnC
P2PDRL

Walker2d-v2

(a) Training return on Walker

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Number of steps (million)

0

1000

2000

3000

4000

Tr
aj

ec
to

ry
 R

et
ur

n

PPO
DIS_PPO
DISTRAL
DnC
P2PDRL

Ant-v2

(b) Training return on Ant

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Number of steps (million)

1000

2000

3000

4000

Tr
aj

ec
to

ry
 R

et
ur

n

PPO
DIS_PPO
DISTRAL
DnC
P2PDRL

Humanoid-v2

(c) Training return on Humanoid

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Number of steps (million)

0

250

500

750

1000

1250

1500

1750

Tr
aj

ec
to

ry
 R

et
ur

n

PPO
DIS_PPO
DISTRAL
DnC
P2PDRL

Hopper-v2

(d) Training return on Hopper

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Number of steps (million)

0

1000

2000

3000

4000

5000

Tr
aj

ec
to

ry
 R

et
ur

n

PPO
DIS_PPO
DISTRAL
DnC
P2PDRL

HalfCheetah-v2

(e) Training return on HalfCheetah

Figure 3: Summary of training performances across five different continuous control tasks,
represented by learning curves. All experiments are trained with a predefined training
randomisation distribution εtr = 0.2. Results are averaged over 8 random seeds.

0.0 0.2 0.4 0.6 0.8 1.0
Level of Randomisation

0

1000

2000

3000

4000

5000

Te
st

in
g

Re
tu

rn

Walker2d-v2
PPO
DIS_PPO
DISTRAL
DnC
P2PDRL

(a) Testing return on Walker

0.0 0.2 0.4 0.6 0.8 1.0
Level of Randomisation

1000

1500

2000

2500

3000

3500

4000

Te
st

in
g

Re
tu

rn

Ant-v2
PPO
DIS_PPO
DISTRAL
DnC
P2PDRL

(b) Testing return on Ant

0.0 0.2 0.4 0.6 0.8 1.0
Level of Randomisation

1000

2000

3000

4000

5000

6000

Te
st

in
g

Re
tu

rn

Humanoid-v2
PPO
DIS_PPO
DISTRAL
DnC
P2PDRL

(c) Testing return on Humanoid

0.0 0.2 0.4 0.6 0.8 1.0
Level of Randomisation

0

250

500

750

1000

1250

1500

1750

2000

Te
st

in
g

Re
tu

rn

Hopper-v2
PPO
DIS_PPO
DISTRAL
DnC
P2PDRL

(d) Testing return on Hopper

0.0 0.2 0.4 0.6 0.8 1.0
Level of Randomisation

1500

2000

2500

3000

3500

4000

4500

Te
st

in
g

Re
tu

rn

HalfCheetah-v2
PPO
DIS_PPO
DISTRAL
DnC
P2PDRL

(e) Testing return on HalfCheetah

Figure 4: Summary of generalisation performances across five different continuous control
tasks. The figures show the testing performance as a function of the testing randomised dis-
tribution diversity εte. All experiments are trained with a predefined training randomisation
distribution εtr = 0.2. Results are averaged over 8 random seeds.

Zhao Hospedales

w1

w2

w3

Expected Return in Train Env

500

1000

1500

2000

2500

3000

3500

(a) PPO Training

w1

w2

w3

Expected Return in Test Env

500

750

1000

1250

1500

1750

2000

2250

2500

(b) PPO Testing

w1

w2

w3

Expected Return in Train Env

500

1000

1500

2000

2500

3000

3500

(c) P2PDRL Training

w1

w2

w3

Expected Return in Test Env

500

750

1000

1250

1500

1750

2000

2250

2500

(d) P2PDRL Testing

Figure 5: Illustrations of training and testing return surfaces, trained by PPO and P2PDRL
in Walker task. Reference policies are: initial policy w1, trained policy after 8 million steps
w2, and final policy w3.

1000

2000

3000

Te
st

in
g

Re
tu

rn

0.0 0.2 0.4 0.6 0.8
Level of randomisation

1000

2000

3000

4000

5000

Tr
ai

ni
ng

 R
et

ur
n

PPO
P2PDRL

(a) Walker task

1000

2000

3000

Te
st

in
g

Re
tu

rn

0.0 0.2 0.4 0.6 0.8
Level of randomisation

1000

2000

3000

4000

Tr
ai

ni
ng

 R
et

ur
n

PPO
P2PDRL

(b) Ant task

Figure 6: Comparisons between asymptotic training and testing performance, both as a
function of the diversity of the training randomisation distribution. Policies are trained with
different randomisation strengths εtr and tested with a pre-defined held-out testing domain.

a pre-defined testing scenario for points in these plane. Though both PPO and P2PDRL
learn well in training domain, P2PDRL outperforms PPO in terms of testing performance.

Dependence of Testing Performance on Randomisation Strength in Training
We also demonstrate asymptotic training return of a policy and its generalisation performance
as a function of range of training domains, as initially motivated in Fig. 2. We train our policy
with different levels of randomisation εtr and test all learned policies in a pre-defined target
domain where εte = 0.5. As shown in Fig. 6, the training performance levels of PPO and
P2PDRL decrease in tandem as the training distribution becomes more diverse and harder
to fit with a single model. Crucially, as discussed earlier, the generalisation performance of
PPO in terms of testing return drops rapidly after around εtr = 0.5. Meanwhile the testing
return of P2PDRL is stable up to a much higher level of training domain randomisation.

Robust Domain Randomised Reinforcement Learning through P2PDRL

0 2 4 6 8 10 12 14 16
Number of steps (million)

0

1000

2000

3000

4000

5000

6000

7000

Tr
aj

ec
to

ry
 R

et
ur

n

PPO
Reg with old

P2PDRL

Training performance in Humanoid task

0.0 0.2 0.4 0.6 0.8 1.0
Level of Randomisation

0

2000

4000

6000

8000

Te
st

in
g

Re
tu

rn

Testing performance in Humanoid task
PPO
Reg with old

P2PDRL

Figure 7: Comparison of P2PDRL with regularised single agent learning in Humanoid
task. The left figure presents with learning curves and the right figure show the testing
performance under variant domain distributions.

101 102

Policy Entropy

0

500

1000

1500

2000

2500

3000

3500

Te
st

in
g

Re
tu

rn

P2PDRL
PPO

(a) Policy Entropy in Walker

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Number of steps (million)

7.0

6.9

6.8

6.7

6.6

6.5

6.4

Lo
g

va
ria

nc
e

Ant-v2
PPO
P2PDRL

(b) Variance in Ant

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Number of steps (million)

7.1

7.0

6.9

6.8

6.7

6.6

Lo
g

va
ria

nc
e

Humanoid-v2
PPO
P2PDRL

(c) Variance in Humanoid

Figure 8: (a): Testing performance of as a function of policy entropy in Walker task. Blue
cross: PPO trained policies learned with different entropy regularisers. Green dot: P2PDRL
trained policy. (b,c): Log variance of gradient estimation on Ant and Humanoid task.
Policies are trained with PPO and P2PDRL.

4.4. Further Analysis

In this section, we design additional experiments to better understand P2PDRL. The first
two experiments test the alternative hypothesis that P2PDRL’s good performance is due to
a simple regularization effect that can easily be duplicated with standard techniques.

P2PDRL v.s. Regularised Single Agent Learning To investigate the benefit of
learning multiple peers, we compare P2PDRL with a single agent setting where the learning
is regularised with KL-divergence to itself. More specifically, in the control experiments,
we train with only one agent and replace the peer-to-peer distillation loss in equation 3
with KL-divergence to the policy itself πold: Lreg(θ) = Es

[
DKL(πθ(·|s)||πθold(·|s)

]
. The

comparison shown in Fig. 7 shows clear benefit of learning a cohort of agents collaboratively
over only applying KL regularised updates in the Humanoid task .

P2PDRL v.s. Entropy Regulariser Intuitively, P2PDRL helps prevent the agents
converging to a deterministic policy through distilling from peers, and thus natually learns
policies with higher entropy. We next compare P2PDRL with entropy regularised PPO in
the Walker task. We run 11 different entropy regulariser coefficient, ranging from 10−3 to
102, and report the entropy and testing performances of learned policy. Fig. 8a shows that as

Zhao Hospedales

agent
agents
agents

agent

agent
agents
agents

Figure 9: Analysis of number of learning agents in P2PDRL. Left: Controlling the number
of timesteps experienced by each learning agent. Right: Controlling the total number of
timesteps experienced by all learning agents.

the learned policy entropy increases, the agent initially benefits, but ultimately fails to learn
the primary task later where the entropy regulariser increases further and dominates the
objective function. More interestingly, we observe that P2PDRL achieves a higher testing
performance with a relatively low entropy, suggesting that it learns more general policies,
rather than simply regularizing learning through encouraging higher entropy.

Further Analysis on Gradient Variance As discussed in Mehta et al. (2020),
conventional domain randomisation techniques suffer from the problem of high variance in
gradient estimation. We here empirically analyse the variance of gradient estimator during
the training process, comparing P2PDRL with PPO baseline. More specifically, at the start
of each iteration, we sample a batch of data with 4096 timesteps and estimate gradients
with minibatches of size 64. Gradient variances are computed over 64 sampled minibatches.
We plot the quantity of log(Var[∇θLPPO(B, θ)]) in PPO versus log(Var[∇θ(LPPO(B, θ) +
αLdis(B, θ))]) in P2PDRL, over number of timesteps during training. B is the sampled
minibatch used for estimating gradients. As shown in Fig. 8b, 8c, in both tasks, P2PDRL
leads to gradients with lower variances compare to the PPO baseline, suggesting that
P2PDRL helps to stablise the training process.

Extension to Larger Cohort The previous experiments simply train small cohorts
of K = 2 local learning agents, and already achieve strong results. As our primary aim
is robustness and not finding opportunities for parallel computing, the impact of a larger
cohort size is only of secondary interest. Nevertheless, in this experiment we study how
P2PDRL scales with larger cohorts on an example task Ant. We compare learning with
K = 4, K = 2, and a single independent agent (equivalent to PPO), controlling the number
of timesteps experienced by each peer. In this case, we sample a batch of 2048 steps for
each agent. Fig. 9 (left) shows that PPO fails to learn the task with a small batch size,
while P2PDRL is able to learn with small batch size, with the guidance from peers. In
such settings, we do also see gains from applying P2PDRL with more peers, with K = 4
outperforming K = 2 in terms of asymtopic performance.

We can also repeat this experiment controlling instead the total number of timesteps
across all learning agents per iteration. Each agent thus gathers 1024, 2048 and 4096
timesteps respectively per iteration. As shown in Fig. 9 (right), again, in the case of learning
Ant task, having larger cohorts is not necessarily better as the batch size becomes too small

Robust Domain Randomised Reinforcement Learning through P2PDRL

for each agent to learn locally. In practice, the size of cohort needs to be designed to balance
batch size per agent and knowledge exchange among agents.

5. Conclusion

Generalisation of trained agents to novel domains is a crucial but lacking capability in today’s
RL. We propose an online distillation based reinforcement learning algorithm P2PDRL.
From our experiment results of 5 different continuous control tasks, P2PDRL improved
the generalisation performance to novel domains compared to baselines. This is achieved
through domain-local RL and global knowledge exchange through peer-to-peer distillation,
which provides a more robust training on a wide range of randomised domains.

References

OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob
McGrew, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray,
et al. Learning dexterous in-hand manipulation. The International Journal of Robotics
Research, 39(1):3–20, 2020.

Rohan Anil, Gabriel Pereyra, Alexandre Passos, Robert Ormandi, George E Dahl, and
Geoffrey E Hinton. Large scale distributed neural network training through online
distillation. In ICLR, 2018.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. Openai gym, 2016.

Ignasi Clavera, Anusha Nagabandi, Simin Liu, Ronald S. Fearing, Pieter Abbeel, Sergey
Levine, and Chelsea Finn. Learning to adapt in dynamic, real-world environments through
meta-reinforcement learning. In ICLR, 2019.

Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman. Quantifying
generalization in reinforcement learning. In International Conference on Machine Learning,
pages 1282–1289, 2019.

Wojciech Marian Czarnecki, Razvan Pascanu, Simon Osindero, Siddhant M Jayakumar,
Grzegorz Swirszcz, and Max Jaderberg. Distilling policy distillation. In AISTATS, 2019.

Dibya Ghosh, Avi Singh, Aravind Rajeswaran, Vikash Kumar, and Sergey Levine. Divide-
and-conquer reinforcement learning. In ICLR, 2018.

Abhishek Gupta, Coline Devin, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Learning
invariant feature spaces to transfer skills with reinforcement learning. In ICLR, 2017.

Nicolas Heess, Dhruva TB, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne, Yuval
Tassa, Tom Erez, Ziyu Wang, SM Eslami, et al. Emergence of locomotion behaviours in
rich environments. arXiv preprint arXiv:1707.02286, 2017.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
In NeurIPS deep learning workshop, 2014.

Zhao Hospedales

Sylvain Koos, Jean-Baptiste Mouret, and Stéphane Doncieux. The transferability approach:
Crossing the reality gap in evolutionary robotics. IEEE Transactions on Evolutionary
Computation, 17(1):122–145, 2012.

Bhairav Mehta, Manfred Diaz, Florian Golemo, Christopher J Pal, and Liam Paull. Active
domain randomization. In Conference on Robot Learning, pages 1162–1176. PMLR, 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski,
Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan
Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533, 02 2015.

Charles Packer, Katelyn Gao, Jernej Kos, Philipp Krähenbühl, Vladlen Koltun, and
Dawn Song. Assessing generalization in deep reinforcement learning. arXiv preprint
arXiv:1810.12282, 2018.

Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep multitask
and transfer reinforcement learning. In ICLR, 2016.

Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real
transfer of robotic control with dynamics randomization. In 2018 IEEE international
conference on robotics and automation (ICRA), pages 1–8. IEEE, 2018.

Samuel Ritter, Jane Wang, Zeb Kurth-Nelson, Siddhant Jayakumar, Charles Blundell,
Razvan Pascanu, and Matthew Botvinick. Been there, done that: Meta-learning with
episodic recall. In International Conference on Machine Learning, pages 4354–4363.
PMLR, 2018.

Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James
Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell.
Policy distillation. In ICLR, 2016.

Andrei A Rusu, Matej Večeŕık, Thomas Rothörl, Nicolas Heess, Razvan Pascanu, and Raia
Hadsell. Sim-to-real robot learning from pixels with progressive nets. In Conference on
Robot Learning, pages 262–270. PMLR, 2017.

Fereshteh Sadeghi and Sergey Levine. Cad2rl: Real single-image flight without a single real
image. In Robotics: Science and Systems, 2017.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of go with deep neural networks and tree search.
nature, 529(7587):484, 2016.

Robust Domain Randomised Reinforcement Learning through P2PDRL

Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner, Steven
Bohez, and Vincent Vanhoucke. Sim-to-real: Learning agile locomotion for quadruped
robots. In CoRR, 2018.

Yee Teh, Victor Bapst, Wojciech M Czarnecki, John Quan, James Kirkpatrick, Raia Hadsell,
Nicolas Heess, and Razvan Pascanu. Distral: Robust multitask reinforcement learning. In
NeurIPS, 2017.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel.
Domain randomization for transferring deep neural networks from simulation to the real
world. In 2017 IEEE/RSJ international conference on intelligent robots and systems
(IROS), 2017.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn,
and Sergey Levine. Meta-world: A benchmark and evaluation for multi-task and meta
reinforcement learning. In Conference on Robot Learning, pages 1094–1100. PMLR, 2020.

Amy Zhang, Nicolas Ballas, and Joelle Pineau. A dissection of overfitting and generalization
in continuous reinforcement learning. arXiv preprint arXiv:1806.07937, 2018a.

Ying Zhang, Tao Xiang, Timothy M Hospedales, and Huchuan Lu. Deep mutual learning.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 4320–4328, 2018b.

Chenyang Zhao, Olivier Sigaud, Freek Stulp, and Timothy M Hospedales. Investigating
generalisation in continuous deep reinforcement learning. arXiv preprint arXiv:1902.07015,
2019.

Zhao Hospedales

Appendix A. Experimental details

A.1. Environment Setup

We evaluate our method with five different benchmark tasks provided by OpenAI gym:
Walker2d, Ant, Humanoid, Hopper, and HalfCheetah. We modify wind condition (horizontal
force), gravity factor, friction coefficient, robot link masses, and initial positions for generating
domains with dynamic variants. We introduce a scalar ε ∈ [0, 1] to control the variances
of domain distributions. Given a specific ε value, the dynamic parameter distributions are
defined in table 1.

Table 1: List of randomised distributions.

Environment Randomised Distribution

Wind w ∼ U(−5.0ε, 5.0ε)
Gravity g ∼ U

(
g0(1− 0.25ε), g0(1 + 0.25ε)

)
Friction f ∼ U

(
f0(1− 0.3ε), f0(1 + 0.3ε)

)
Robot mass m ∼ U

(
m0(1− 0.5ε),m0(1 + 0.5ε)

)
Initial position x ∼ U(x0 − ε, x0 + ε)

A.2. Hyperparameter Choices

For PPO and Distributed PPO, we run a hyperparameter sweep on learning rate β :
[1e− 4, 3e− 4, 1e− 3, 3e− 3, 1e− 2] and batchsizes: [2048, 4096, 8192, 16384]. For Distral,
DnC and P2PDRL, we run a hyper-parameter sweep also on distillation loss coefficient
α : [0.1, 0.3, 1.0, 3.0, 10.0], in addition to learning rate and batchsizes. We report the best
performing set of hyperparameters: for both PPO and distributed PPO, we use learning rate
of 3e− 4 and batchsizes of 4096; and for Distral, DnC and P2PDRL, we use learning rate
of 1e− 4, batchsizes of 4096, and distillation loss coefficient of 1.0. Other hyperparameter
choices are listed in table 2.

Table 2: List of hyperparameter choices.

Hyperparameter Value

Actor hidden layers [64, 64]
Actor activation tanh

Critic hidden layers [64, 64]
Critic activation tanh

Num. of epochs per iteration 10
Num. of minibatches per epoch 32

Clipping parameter 0.2
Discount factor 0.99
GAE parameter 0.95

Optimiser Adam

	Introduction
	Related Work
	Methodology
	Preliminaries
	Online Distillation

	Experiments and Results
	Summary
	Environment and Settings
	Training and Generalisation Performance
	Further Analysis

	Conclusion
	Experimental details
	Environment Setup
	Hyperparameter Choices

