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Abstract

Recently, deep convolutional neural networks have been widely used in the field of video
action recognition. Current approaches tend to concentrate on the structure design for
different backbone networks, but what kind of network structures can process video both
effectively and quickly still remains to be solved despite the encouraging progress. With the
help of neural architecture search (NAS), we search for three hyperparameters in the video
processing network, which are the number of frames, the number of layers per residual stage
and the channel number for all layers. We relax the entire search space into a continuous
search space, and search for a set of network architectures that balance accuracy and
computational efficiency by considering accuracy as the primary optimization goal and
computational complexity as the secondary optimization goal. We conduct experiments on
UCF101 and Kinetics400 datasets, validating new state-of-the-art results of the proposed
NAS based scheme for video action recognition.
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1. Introduction

The purpose of video action recognition is to classify people’s action based on their behaviors
in a video. This task is essentially a multi-category classification problem with video as input
and the output is an action label. In recent years, deep convolutional neural networks have
been widely used in video action recognition tasks. Two-stream network Simonyan and
Zisserman (2014) uses a pretrained 2D network to process images, and then adds temporal
information for fusion. I3D Jiang et al. (2017) directly applies 3D convolution to model the
entire video. These two kinds of approaches have shown its advantages with remarkable
results.

However, the question of what kind of network can better represent video information
is still a challenging problem that has not been fully solved. Towards this direction, X3D
Feichtenhofer (2020) applies six scalable dimensions for the network structure, and gets
a network based on the way of expansion, which achieves the best results so far on the
Kinetics dataset Kay et al. (2017). This task, however, can be further solved with neural
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network architecture search(NAS) since NAS turns to be a competitive solution for better
architecture design for many problems in the field of computer vision. Generally speaking,
NAS can automatically design a more effective network framework than hand-crafted one,
and it has come a long way in the field of image classification Zoph and Le (2017). Then,
it finds its wide applications in other related domains such as object detection Chen et al.
(2019), semantic segmentation Zhang et al. (2020), image super resolutionWu et al. (2021),
depth estimation Chen et al. (2021) and so on. However, NAS is still rarely applied in the
video domain. One work Piergiovanni et al. (2019a) utilizes evolutionary algorithm based
methods, but its searching process tends to be very long.

Inspired by the great sucess of NAS in other computer vision domains, we propose a novel
NAS scheme for video action recognition. Specifically, three of the six dimensions proposed
in X3D are selected and integrated into our search space. As shown in the Table 1 and
Table 2 | the search space in this paper is a 3D ResNet He et al. (2016) with 33 convolution
layers, where the number of channels used in each layer, the content of operations and the
number of operation stacks are all obtained by searching. The network built on the whole
search space can be understood as a Supernet, and each choice of network structure is a
subset of the Supernet. We divide the whole network into several stages, and each stage is
further divided into two parts: head layer and stack layer. The head layer is responsible
for searching the number of channels used in each stage. It will select candidate channels
in each stage, and transforms the feature input in the previous stage into the feature of the
chosen number of channels and downsamples them. The features processed by head layer
will then be passed into a certain number of stack layer. Stack layer first searches for the
appropriate number of stacking layers from the pre-designed maximum number of layers,
and then selects the specific operation in these layers. Among these operations, we change
the network input of different frames through dilation, so that the network can focus on
different temporal resolution without losing frames.

After the search space is designed, we relax it to a continuous search space so that we
can update the parameters of the Supernet by gradient back propagation just like optimiz-
ing a neural network. We consider accuracy as the primary goal of network architecture
optimization and computational complexity as the secondary optimization goal. The op-
timal path is searched from the Supernet and our final network structure is constructed
by the Viterbi algorithm Viterbi (1967). The final results are obtained by retraining on
this network structure. It is found that the new video recognition network searched by the
proposed novel NAS scheme yields better recognition results compared to state-of-the-art
(SOTA) methods.

Our contributions can be summarized as follows:

e Considering the needs of both accuracy and efficiency, we design a novel feasible search
space that consists of the channel number, convolution type and stack depth for the
problem of video action recognition.

e We present a practical search algorithm through the relaxation, yielding much more
efficient search speed in the large search space.

e Extensive results demonstrate that our method yields new state-of-the-art results on
Kinetics400 and UCF101.
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2. Related Work

2.1. Video Action Recognition

With the development of deep learning (DL), many wonderful video action recognition
methods have emerged. The classic two-stream network Simonyan and Zisserman (2014)
divides the video into spatial image information and temporal information. There are many
remarkable methods like ResNet He et al. (2016) or Inception Szegedy et al. (2015) regarding
the extraction of image features. The spatial part carries information about the background
and the target subject depicted by the video. For the temporal part, the motion information
of each frame is extracted by the optical flow, and the classification results are generated
jointly after fusing the two parts of information. However, due to the high computational
cost of optical flow, the extraction of temporal information by this method is gradually
replaced by other methods. Slowfast Feichtenhofer et al. (2019) uses inputs with different
frame rates, the slow path learns spatial information with few frames and the fast path
learns temporal information with a large number of frames, and then combines it with
non-local network to model the relationship between frames from a global perspective and
obtains very good results. 2D convolution can model image features, while video has a
temporal dimension information in addition to image information, so another idea is based
on 3D convolution, such as C3D Tran et al. (2015), which directly models the information
of the whole video. This type of method no longer requires the fusion strategy of two-
stream networks and achieves relatively higher accuracy, but the computational cost of this
type of method is also high. So there are many methods between 2D and 3D dedicated to
reducing the computational complexity of 3D convolution, such as P3D Wei et al. (2019),
R(2+41)D Tran et al. (2018), S3D Xie et al. (2018). The basic block of this paper uses dilation
convolution in the temporal dimension to simulate different frame numbers of inputs. The
number of channels of the ResNet network in our work is obtained by architectural search,
which is also different from any previous network structure.

2.2. Neural Architecture Search

Neural Architecture Search (NAS) aims to enable the computer automatically search for
a better network structure based on the given data and constraints. The architecture
search can be divided into three parts, which are the search space, the search strategy, and
evaluation. The search space defines which hyperparameters need to be searched. The per-
formance evaluation strategy can reflect the merit of network structure in the search space.
The search strategy is the way to efficiently find the best results. With the development of
architectural search, many promising search strategies have emerged, the authors in Baker
et al. (2017) and Zoph and Le (2017) have used reinforcement learning to search networks.
In Real et al. (2017), evolutionary algorithms were introduced to solve the search problem.
In the follow-up paper Real et al. (2019), AmoebaNet was further proposed to make the se-
lection in evolution favor younger models. Both of the previously mentioned methods treat
the search space as a discrete space. If the search space can be made continuous and the
objective function can be differentiated, then the search operation can be performed more
efficiently based on gradient information. DARTS Liu et al. (2019) designs a continuous
search space based on such an idea, which drastically reduces the search time. The search
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space used in this paper is a continuous search space, but our search space is different from
the above methods.

NAS has achieved highly competitive performance in image classification task( Zoph
et al. (2018); Liu et al. (2018)) and other related tasks. However, there are not many
methods to combine video action recognition with NAS. The reason is that NAS has high
requirements for computation resource, and the search efficiency of early methods is rela-
tively low, so there are few methods to combine NAS with video tasks. The three classic
works of EvaNAS Piergiovanni et al. (2019b), AssembeNet Ryoo et al. (2020) and tiny video
network Piergiovanni et al. (2019a), all of which use evolutionary algorithms as search strat-
egy. Peng et al. (2019) combines DARTS directly with the video task, but results show that
such an approach lacks the integration of temporal information and the final results are not
good.

3. Method

In this section, we will introduce the method of this paper in detail. According to the six
scalable architecture parameters proposed in X3D Feichtenhofer (2020) , we choose three of
them to form our search space, namely temporary resolution, number of layers per residual
stage (bottleneck width) and the channel number for all layers (channel). In this paper, the
network structure is composed of several stages. The first stage is responsible for receiving
input and transforming it into the basic feature map, and it is not involved in the search
process. The following stages includes one head layer and a certain number of stack layers.
The head layer is responsible for searching the number of channels in each stage, and stack
layer is responsible for searching the bottleneck width and the temporal resolution. The
search space considered in this work is shown in Table 1 and Table 2. At the end of this
section, the search process will be described, and the searched final network structure is
shown in Table 3.

3.1. Head Layer

As shown in Table 1, each stage in the search space has one head layer. The head layer
of each stage has a predefined number of candidate channels to choose from. The search
process is to learn what channel number of head layer that is more suitable for this stage.
After the head layer of each stage is processed, it will pass through a certain number of
stack layers and then each candidate head layer of the next stage is passed in to continue the
search. The part about stack layers will be introduced in sec 3.2. We assume that the head
layer h; connections to m subsequent head layers, then the path between h; and the head
layer h; from the next stage can be represented by a parameter §;;. Just like DARTS Liu
et al. (2019), we relax the head layer connections as a continuous representation. We define
it as the sum of the output of all candidate head layers, and the weight of each path is
computed by softmax. It can be expressed as follows:

_ean(py)
P ST eonla) W



VIDEO ACTION RECOGNITION WITH NEURAL ARCHITECTURE SEARCH

After searching the most suitable number of channels for this stage, the head layer will
down-sample the input feature map to obtain the features of larger receptive field and send
them to the next stage.

Stage 2 | head layer | candidate channels : 48

candidate channels : 56

candidate channels : 64

Stage 3 | head layer | candidate channels : 72

candidate channels : 96

candidate channels : 112
max stack layer operation number : 5
Stage 4 | head layer | candidate channels : 128
candidate channels : 144
candidate channels : 160
candidate channels : 176
max stack layer operation number : 10
Stage 5 | head layer | candidate channels : 192
candidate channels : 208
candidate channels : 224
max stack layer operation number : 5
Stage 6 | head layer | candidate channels : 240
candidate channels : 256
candidate channels : 272
candidate channels : 288
max stack layer operation number : 5
Stage 7 | head layer | candidate channels : 480
candidate channels : 496
candidate channels : 512
max stack layer operation number : 1

Table 1: The search space of this work. The head layer of each stage can select one of the
following three or four candidate channels as the channel number of this stage.
The stack layer of each stage will first select one of the numbers less than max
stack layer operation number as the number of stack layers in this stage. Each
stack layer then selects a specific operation, which will be described in the Table 2
of stack layer section.

3.2. Stack Layer

In each stage of the search space, after selecting the appropriate number of channels through
the head layer and completing the down-sampling operation, a certain number of stack layers
will pass through. We define four operation types that stack layer can choose in advance,
which are basic operation with temporary dilation of 1, 2, 4 and skip connection. The basic
operation is shown in the Figure. 1, and the search space of all these operations in stack
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layers is illustrated in Table 2. Just like the basic operation of R(2+1)D Tran et al. (2018),
we decompose the original 3D convolution of T' x H x W into 2D convolution 1 x H x W
in spatial dimension and 1D convolution 7' x 1 x 1 in temporal dimension, which reduces
the calculation cost. The basic operation of this paper also adds 1D dilation convolution in
temporal dimension, using different filters allows temporal convolution to focus on different
temporal resolution without losing temporal granularity. We also consider the structure of
R(241)D, when the dilation is 1, the basic operation is the same as that of R(24+1)D. In
addition to selecting the type of operation in each stack layer, this paper also searches the
number of stack layer stacks. We have designed the maximum number of stack layers in
each stage in advance. When this stage does not need so many basic operations, the network
can choose skip operation. The output of the previous stack layer will not be processed and
will be directly transferred to the next stack layer.

Stack Layer Operation Choice | Receptive Field with Kernel Size 3
1 | Basic Operation with dilation 1 3
2 | Basic Operation with dilation 2 5
3 | Basic Operation with dilation 4 7
4 Skip without convolution

Table 2: The four operations that can be chosen for the stack layer.

The search process of stack layer is similar to that of head layer. Let O be the set
of candidate operations. We use an architecture parameter «, to represent the candidate
operation o € O in stack layer S. We relax the stack layer by defining it as a weighted sum
of outputs from all candidate operations. The architecture coefficient of the operation is
computed as a softmax of architecture parameters over all operations in the stack layer. It
can be expressed as follows:

Zo’eO exp(af)’)

The output of the stack layer S can be expressed as follows:

T = S w) - o) (3)

0eO

3.3. Architecture Search

The size of the search space is about 5.84 x 10'®, and we can search via back propagation
in the relaxed search space for a better search efficiency. At the beginning of the search,
the weight of each path in the Supernet is not trained. The network architecture tends to
choose a faster convergence architecture, which makes the network narrow. In order to solve
this problem, we first train a certain number of epochs so that each path in Supernet has an
initial weight. The next part is just like what DARTS Liu et al. (2019) did. In each epoch,
in the first step, we optimize the network weight w with a formula of V., Liyqin(w, o, §) on
the training set. In the second step, we fix the network weight and optimize the network
architecture parameters o and by applying formula V, gL,q(w, o, 3) on the validate set.
We repeat this alternative process until the network architecture obtained by the search
basically does not change.



VIDEO ACTION RECOGNITION WITH NEURAL ARCHITECTURE SEARCH

X
!

Spatial conv 1* H*W

!

Temporalconv T*1%*1

l

(a) (b)

Figure 1: The basic operation of stack layer. In (a), the traditional 3D convolution is de-
composed into a 2D spatial convolution for the height H and width W of the
picture and a 1D temporal convolution for the time dimension T. (b)shows ef-
fects of the optional temporal convolution basic operation with dilation 2. Green
block is the convolution kernel, and blue block is the feature T of the temporal
dimension in the feature map.

In the search process, we take the accuracy as the primary evaluation goal, and we also
take the FLOPs (floating-point operations) as the secondary evaluation goal, so that the
obtained network architecture takes into account both the accuracy and the computational
complexity in terms of FLOPs. For each stage G;, the computational complexity can be

described as :
i+m

d=c+ Y pi-(cf+c) (4)
j=i+1

where ¢t means the cost (FLOPs) of stack layers from the G; stage, and m denotes the
number of candidate head layers on the subsequent stage, p;; denotes the path probability
between stage G; and G , and cﬁlj denotes the cost (FLOPs) of the head layer in stage
G which processes the data from stage G;. Then we can use a recursive approach to
calculate the computational complexity (FLOPs) of the entire network structure. The final
loss function can be described as

Lfinal = Lcross—entropy +A- lng (C) (5)

where A and k are the hyper-parameters to control the magnitude of the model cost, and ¢
is the total FLOPs of the network.

In the selection of stack layer, we use the method of argmax to choose the maximum
value of all operations. While in the connection of head layer, Viterbi algorithm Viterbi
(1967) is taken to choose the connection path with the maximum sum of weights to generate
the final network architecture diagram. The Viterbi algorithm is widely used to find the
most probable path between hidden states. For the proposed NAS search algorithm, there
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are some possible paths to pass between each stage, and there are corresponding weights
on each path. What we need in the end is the path with the largest weight, and the Viterbi
algorithm uses the idea of recursion to solve this kind of problems. Starting from the first
layer, the n paths with the largest weights among the n nodes in this and the next layer
are calculated and retained each time, which greatly reduces the computation by discarding
the paths that are not likely to be the greatest weight in advance. Since there are too many
possible paths for our method, the Viterbi algorithm is chosen to find the path with the
highest weight more efficiently than the greedy algorithm Faigle (1979) which X3D used.

input : 3 * 16 * 224 * 224

Stage 1 head layer channels : 32

Stage 2 head layer channels : 64

Stage 3 head layer channels : 96
stack layer number : 0

Stage 4 head layer channels : 160

stack layer number : 6 | Basic Operation with dilation 4
Basic Operation with dilation 4
Basic Operation with dilation 4
Basic Operation with dilation 1
Basic Operation with dilation 1
Basic Operation with dilation 4
Stage 5 head layer channels : 224

stack layer number : 3 | Basic Operation with dilation 2
Basic Operation with dilation 4
Basic Operation with dilation 4

Stage 6 head layer channels : 288

stack layer number : 4 | Basic Operation with dilation 2
Basic Operation with dilation 2
Basic Operation with dilation 2
Basic Operation with dilation 1

Stage 7 head layer channels : 512
stack layer number : 1 | Basic Operation with dilation 2
Global Average Pooling and Classifier

Table 3: The network architecture obtained from the NAS on the Kinetics400 dataset.

4. Experiment

In this section, we will first introduce the two datasets used in this paper. Then the results
of the search and training on the Kinetics400 Kay et al. (2017) dataset will be shown.
Finally, some ablation experiments and analysis are performed on UCF101 Soomro et al.
(2012) dataset. The implementation details are provided in the Appendix.
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4.1. DataSet

Kinetics400 Kay et al. (2017) dataset contains 400 human action categories, each of them
contains at least 400 videos. The dataset contains 225,946 training videos and 18,584
validation videos, each of which lasts for about 10 seconds.

UCF101 Soomro et al. (2012) is an action recognition dataset of realistic action videos
collected from YouTube. 13320 videos from 101 action categories are provided. The videos
of 101 action categories are divided into 25 groups, each group contains 4-7 videos of one
action. UCF101 is diverse in terms of action, with a large variation in camera motion,
background, lighting conditions, etc.

4.2. Result

In this section, we compare our searched network with the existing SOTA video action
recognition methods on Kinetics400 and UCF101 datasets. In order to be fair, when the
compared methods have multiple input frames, we try to choose the version with 16 input
frames for the comparison. The methods we compare also only use the RGB modality
information for processing. During inference, the most intuitive way is to take the whole
video to produce a classification result, but it is generally not done due to the limitation
of memory and computational efficiency. A more common approach nowadays is proposed
by Slowfast Feichtenhofer et al. (2019), which divides a whole video into multiple ‘view’,
and each view represents a temporal clip with a spatial crop. Sending each view into the
network to get a softmax score, and then averaging the softmax score to get the final
prediction result. This inference method is better than directly using the whole video for
classification. Following the same inference strategy, we divide the whole video into 10 clips
on average, take 16 pictures in each clip, resize the short edge of the picture to 256, and
then cut three 224 x 224 crops from the left, middle and right of the image. At last we get
30 views per video and the final prediction is an average of all views’ softmax scores.

From the results shown in Table 4 and Table 5, the network structure obtained from the
NAS achieves the highest topl accuracy on both Kinetics400 and UCF101 datasets. For
Kinectics400, the searched network architecture achieves 78.2% topl accuracy with 15.78
GFLOPS, while on UCF101, our searched model obtains 95.3% topl accuracy. We have
taken into account both accuracy and computational complexity in the search process. The
decomposition of the traditional 3D convolution into a spatial convolution and a temporal
convolution has greatly reduced the computational complexity, making the method of this
paper the lowest among these methods in terms of computational complexity. Our network
structure also does not need to be pre-trained on ImageNet or other image datasets. The
final result also confirms the initial idea that each extended dimension of X3D can indeed
be searched for using architecture search to obtain a network structure that is more suitable
for video processing than the artificial design.

The reason why NAS can obtain better results than a human-designed network is that
it considers more possible ways of combining hyperparameters related to architecture. We
use a supernet to enumerate all the possibilities in the search space. The network archi-
tecture that people designed before this by experiment or experience is often a subset of
the supernet. In addition, the differential search method together with Viterbi algorithm
enable efficient recognition of the optimal network structure.
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Model Pretraining Dataset | Top-1 | Top-5 | GFLOPs x views | Input Frames
S3D-G ImageNet 69.4 89.1 66.4 x 30 64
ECOgN - 70.7 89.4 267 x 1 92
R(24+1)D - 72.0 90.0 152 x 115 32
I3D ImageNet 72.1 | 90.3 108 x N/A 64
TSN - 72.5 90.2 80 x 10 25
R(24+1)D Sports-1M 74.3 914 152 x 115 32

SlowFast 4%16 R50 - 75.6 92.1 36.1 x 30 4+ 32

TEA ImageNet 76.1 92.5 66 x 30 16
Nonlocal R50 ImageNet 76.5 92.6 282 x 30 32
X3D-L - 77.5 92.9 24.8 x 30 16
Ours - 78.2 93.1 15.78 x 30 16

Table 4: Comparison to the state-of-the-art on Kinetics400 val set. We report the inference
cost with a single “view” (temporal clip with spatial crop) x the numbers of such
views used (GFLOPsxviews).

Model Pretraining Dataset Accuracy GFLOPs
Peng et al. (2019) - 58.6 N/A
TRN - 83.5 83.83
C3D Sports-1M 85.2 38.57
P3D ImageNet + Sports-1M 88.6 18.51
TSN ImageNet + Kinetics 91.1 80
R(2+1)D RGB Sports-1M 93.6 41.69
ECO Kinetics 94.8 267
Ours Kinetics 95.3 15.78

Table 5: Comparison results of our method with other methods on UCF101 Dataset.

4.3. Ablation Study and Analysis

In this section, ablation study about the search dimension and their combination is con-
ducted to explore the influence of search dimensions on the final results, and the result is
shown in Table 6. All our ablation experiments are performed on UCF101 dataset.

Channels, Stack Number and Operation. Theoretically speaking, there should be
six ablation experiments. But once the specific stack operation is searched and determined
in this stage, the stack number is also determined. Therefore, the results from searching
the channel and stack operation are the same as those obtained from the previous three
dimensions, so they are not listed. When searching for the stack number, there is a situation
that the stack number is not the same as the original one, and the original stack operation
cannot be put in the new network structure. As a result, when searching stack number,
all stack operations are fixed as basic operation with dilation 1, which is actually temporal
convolution without dilation, so it returns to the basic R(2+1)D network operation. Ex-
periments show that adding a certain number of temporal dilation convolutions is helpful
for the accuracy improvement.
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Search Epoch  Channel Stack Operation Stack Number Accuracy GFLOPs

1 70 v 89.08 17.11
2 70 v 89.90 18.19
3 70 v 88.81 18.19
4 70 v v 90.64 19.27
) 70 v v 90.59 20.40
6 40 v v v 86.92 18.47
Ours 70 v v v 91.52 15.78

Table 6: Ablation studies on UCF101 dataset. v' symbol means this dimension is searched.

As illustrated in Table 6, generally speaking, channels, stack number and stack op-
eration are all important hyperparameters for network structure. The results of ablation
experiment searching a single dimension show that search for stack operation achieves the
highest accuracy among the three factors. The reason may be that this part reflects the
temporal information. The stack operation of this work allows the network to pay attention
to the number of frames with different intervals, so as to better capture the long interval
temporal information, facilitate the establishment of the connection between the frames,
and produce a better overall classification result. It can also be noticed clearly that when
integrating the three dimension’s search together, the proposed NAS method yields the best
network architecture for video action recognition.

Search Epochs. We also explore the effects of the number of search epochs on the
final results. The original search process uses 70 epochs in total, with the first 10 epochs
producing the supernet’s initial weight. Then we search for 60 epochs, we use training set
to update operation weights, and validation set to update architecture parameters. Starting
from the 50th epoch, we use the inference set to test the resulting network architecture.
Figure. 2 (a) illustrates the change of accuracy with epoch during the search on the Ki-
netics400 dataset. And Figure. 2 (b) shows the relationship between loss and epoch. The
result shows that the search result has converged at the 70th epoch since there is almost
no change for the accuracy. In the ablation experiment, we reduce the number of the later
search stages to half of the original one, and explore the differences between the network
structure and the final network structure obtained at this time. The results show that more
search epochs will produce better accuracy.

5. Conclusions

Video action recognition remains a challenging problem to be fully solved despite the
remarkable progress of deep learning related techniques. In this work, we have proposed a
novel NAS based approach to effectively search a better network architecture with better
recognition performance and less computational burden. A new search space that considers
the number of channels used in each layer, the content of operations and the number of
operation stacks has been first suggested, followed by an efficient differentiable searching
method. FExtensive experiments on Kinetics-400 and UCF-101 validate an encouraging
performance of the searched network architecture for video action recognition.
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(a)The accuracy change with epoch during the search in the Kinetics400 dataset.
(b)The loss change during the search in the Kinetics400 dataset. Blue line is the
result on the training set, green line is the result on validate set and red line is
the result on the inference set.
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Appendix A.

A.1. Implement details

Data Augmentation. For UCF101 and Kinetics400 datasets, we use the same data
augmentation method in the process of search and training. For the spatial dimension,
video frames are scaled to the size of 256 x 342 and then randomly crop 224 x 224 pixels
from the frame. For the temporal dimension, we randomly sample 16 consecutive frames
from the video with temporal jittering while training. In the inference process, 10 clips and
3 crops are used to make a fair comparison with the common practice.

Search. For the search part, we divide the data used for training in the original dataset
into three parts: training, validate and inference, accounting for 0.6, 0.2 and 0.2 of the
total respectively. The search process uses a total of 70 epochs. We use the training set
to optimize the operation weight w of the network. First, we let the network train for 10
epochs, so that each path in Supernet has an initial weight wg. In the next 60 epochs,
we first use the validate set to optimize the network architecture parameters o and 5, and
then use the training set to optimize the operation weight w. In the last 20 epochs, we add
the inference set data to evaluate the final effect. Our search was performed on two Tesla
V100 32G GPUs, each with a batch size of 8. When we optimize the operation weight w
of the network, we use the SGD optimizer Sinha and Griscik (1971) with 0.9 momentum
and 4 x 107° weight decay. The learning rate strategy uses cosine annealing learning rate
schedule Loshchilov and Hutter (2017). The initial learning rate was 0.02 and the lowest
was 1 x 1074, For the optimization of network architecture, we use Adam optimizer Bengio
and LeCun (2015) with 10~3 weight decay, 8 = (0.5,0.999). And the learning rate is the
fixed 3 x 10~* for the two parameters of the architecture. The loss function we use is a
cross entropy loss plus a computational complexity constraint.

Retrain. After the search, we get the final architecture on this dataset and the weight
information trained on each path corresponding to this architecture. We retrain the network
based on the architecture and weight information. We use the whole training dataset for
training, and get the final results on the origin validation set. Because we don’t need to
save supernet information, our batch size can be larger in training than in searching. In
this paper, we use 16. The whole model is trained for 150 epochs, and the optimizer uses
SGD with 0.9 momentum and 4 x 107> weight decay. The learning rate strategy uses cosine
annealing learning rate schedule Loshchilov and Hutter (2017). The initial learning rate
was 0.1 and the lowest was 1 x 1074 . The dropout probability is 0.5 after the final global
average pooling layer. Finally, it is sent to the linear layer to classify according to the
number of categories of each dataset. The loss function we use is a cross entropy loss.
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